
Open Access Maced J Med Sci. 2022 Nov 01; 10(F):665-674. 665

Scientific Foundation SPIROSKI, Skopje, Republic of Macedonia
Open Access Macedonian Journal of Medical Sciences. 2022 Nov 01; 10(F):665-674.
https://doi.org/10.3889/oamjms.2022.10141
eISSN: 1857-9655
Category: F - Review Articles
Section: Systematic Review Article

Projecting Malaria Incidence Based on Climate Change Modeling 
Approach: A Systematic Review

Mazni Baharom1 , Sharifah Saffinas Syed Soffian1 , Chua Su Peng1 , Mohd Hafiz Baharudin1 , Ummi Mirza1 , Mohd 
Faizal Madrim2* , Mohammad Saffree Jeffree2 , Syed Sharizman Syed Abdul Rahim2 , Mohd Rohaizat Hassan1

1Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur, 
Malaysia; 2Department of Public Health Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota 
Kinabalu, Sabah, Malaysia

Abstract
BACKGROUND: Climate change will affect the transmission of malaria by shifting the geographical space of the 
vector. 

AIM: The review aims to examine the climate change modeling approach and climatic variables used for malaria 
projection.

METHODS: Articles were systematically searched from four databases, Scopus, Web of Science, PubMed, and 
SAGE. The PICO concept was used for formulation search and PRISMA approach to identify the final articles.

RESULTS: A total of 27 articles were retrieved and reviewed. There were six climate factors identified in this 
review: Temperature, rainfall/precipitation, humidity, wind, solar radiation, and climate change scenarios. Modeling 
approaches used to project future malarial trend includes mathematical and computational approach.

CONCLUSION: This review provides robust evidence of an association between the impact of climate change 
and malaria incidence. Prediction on seasonal patterns would be useful for malaria surveillance in public health 
prevention and mitigation strategies.
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Introduction

Malaria is a life-threatening disease caused by 
Plasmodium parasites. It is transmitted to people through 
the bites of infected female Anopheles mosquitoes, 
called “malaria vectors.” There are five parasite species 
that cause malaria in humans, and two of these 
species – Plasmodium falciparum and Plasmodium 
vivax – pose the largest threat. Malaria is a public health 
burden; however, it is preventable and curable. In 2019, 
there were an estimated 229 million cases of malaria 
globally [1]. The estimated number of malaria mortality 
was 409,000 in 2019. Children aged under 5 years are 
the most vulnerable group affected by malaria. In 2019, 
they accounted for 67% (274,000) of all malaria deaths 
internationally. The World Health Organization (WHO) 
African Region (AFR) carries a disproportionately high 
share of the global malaria burden. In 2019 alone, the 
region was home to 94% of malaria cases and mortality. 
In 2018, P. falciparum accounted for 99.7% of estimated 
malaria cases in the WHO AFR, 50% of cases in the WHO 

South-east Asia Region, 71% of cases in the Eastern 
Mediterranean and 65% Western Pacific. P. vivax is the 
most prevalent parasite in the WHO Region of America, 
representing 75% of all malaria cases [1]. Total funding for 
malaria control and elimination reached an estimated US$ 
3 billion in 2019. Subsidies from governments of endemic 
nations amounted to US$ 900 million, representing 31% 
of total aid.

Climate plays a crucial role in malaria 
transmission, particularly in tropical countries. Factors 
such as land use, population growth, urbanization, 
migration, and high economic development also contribute 
to malaria transmission [2]. Climate change will directly 
affect the information of vector-borne disease by shifting 
the vector’s geographical space, increasing reproduction 
and biting rate, and shortening the pathogen’s incubation 
period [3]. Other factors such as temperature, rainfall, 
and humidity may influence the population of Anopheles 
and malaria incidence [4], [5]. Warmer temperatures can 
reduce the sporogonic cycle duration; hence, mosquitoes 
will be more infective and spread widely [6]. Temperature 
suitable for mosquitoes lifespan ranges from 16°C to 36°C 
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with life sustainability equal to 90%. A higher proportion 
of mosquitoes in the incubation period in temperature 
varies from 28°C to 32°C [7]. Rainfall does not affect 
parasites directly; however, it plays an important part in 
malaria spread. Rain will form stagnant water as breeding 
place for Anopheles. High rainfall increases humidity and 
prolong age of adult mosquitoes [2].

At present, there are developments of conceptual 
models or modeling in controlling malaria transmission. 
Mathematical modeling of malaria is the best method 
to synthesize information, measure uncertainty, and 
extrapolate knowledge [8]. Modeling of malaria used 
as a climate factor has been undertaken in countries 
such as Nigeria, Bangladesh, Brazil, Kenya, Ethiopia, 
China, West Africa, Burundi, and Bhutan [2]. Numerous 
studies employ either mechanistic or statistical modeling 
frameworks that have investigated climatic change 
effects on the distribution and intensity of malaria risk 
in different situations. In some studies, an association 
was established between climatic change and the 
exacerbation of the risk while in others, the climatic effect 
was not established. However, instead, the increasing 
malaria burden was attributed to other factors such as 
drug resistance, failure of vector control operations, and 
changes in land use [9]. Interpretations of results from 
studies that employed a statistical modeling framework 
are often limited by the absence of good quality 
data caused by the weak and fragmented nature of 
national health information systems in malaria-endemic 
countries [10]. Other than that, heterogeneity exists in 
the projection approach in terms of no standardized 
settings used to predict the future incidence of malaria.

It is essential to address the high uncertainties 
of climate predictions by estimating the impact of climate 
change over the predictions by current climate models 
used for predicting the re-emergence of malarial incidence 
in endemic and non-endemic countries. Since there are 
not many articles that study the temporal projection of 
malaria incidence based on climatic variables, hence 
with the advent of this review, it is hoped that the results 
will build an understanding of the association between 
climatic variables and malaria transmission in terms 
of epidemiological evidence. Therefore, this review 
examines the climate change modeling approach and 
climatic variables used for malaria projection.

Methodology

The review protocol – PRISMA

The PRISMA review protocol guided this 
study. PRISMA, otherwise known as Preferred 
Reporting Items for Systematic Reviews and Meta-
analyses, is explicitly designed for systematic reviews 
and meta-analyses [11]. PRISMA aims to prompt 
researchers to source the correct information with an 

accurate level of detail. Based on this review protocol, 
the researchers started their systematic literature review 
by formulating appropriate research questions. Next, the 
researchers began the systematic search that consists 
of three main sub-processes: Identification, screening 
(inclusion and exclusion criteria), and eligibility. Next, 
the researchers appraise the quality of the selected 
articles using the mixed methods appraisal tool (MMAT) 
Version 2018 [12] to ensure the quality of the articles 
for reviewing. Finally, the researchers explore in detail 
the data that were extracted for analysis and validation.

Formulation of the research question

The formulation of the research question for this 
study was based on PICO. PICO is a tool that assists 
authors in developing a relevant research question for 
the review. It is based on three main concepts: Population 
or problem, interest, and context/outcome [13]. Based 
on these concepts, the researchers have included the 
three main aspects in the review, namely, community 
(Population), climate change modeling approach and 
climatic variables (Interest), and projection of malaria 
incidence (Context/Outcome), which guided the 
researchers to formulate their main research question 
“What are the climate change modeling approach and 
climatic variables used for malaria projection?”

Systematic searching strategies

There are three main processes in the 
systematic searching strategies process: Identification, 
screening, and eligibility (Figure 1).

Identification

Identification is a process to enrich the 
keywords by identifying the synonyms and their variation 
during article searching in the databases. The search 

Table 1: Keywords search used in the identification process
Database Search string
Scopus TITLE-ABS-KEY ([“climate change*” OR “global warming” OR “climate 

emergenc*” OR “climate crisis” OR “global heating” OR “weather crisis” 
OR “extreme weather” OR “temperature” OR “humid*” OR “precipitation” 
OR “rainfall”] AND [“malaria incidence” OR “malaria epidemiology”] AND 
[“project*” OR “forecast*” OR “estimate*” OR “prediction” OR “calculation” OR 
“expectation” OR “prognosis” OR “computation” OR “extrapolation”])

Web of 
Science 

TS =  ([“climate change*” OR “global warming” OR “climate emergenc*” 
OR “climate crisis” OR “global heating” OR “weather crisis” OR “extreme 
weather” OR “temperature” OR “humid*” OR “precipitation” OR “rainfall”] 
AND [“malaria incidence” OR “malaria epidemiology”] AND [“project*” OR 
“forecast*” OR “estimate*” OR “prediction” OR “calculation” OR “expectation” 
OR “prognosis” OR “computation” OR “extrapolation”])

PubMed ([“climate change*” OR “global warming” OR “climate emergence*” OR 
“climate crisis” OR “global heating” OR “weather crisis” OR “extreme 
weather” OR “temperature” OR “humid*” OR “precipitation” OR “rainfall”] 
AND [“malaria incidence” OR “malaria epidemiology”] AND [“project*” OR 
“forecast*” OR “estimate*” OR “prediction” OR “calculation” OR “expectation” 
OR “prognosis” OR “computation” OR “extrapolation”])

SAGE ([“climate change*” OR “global warming” OR “climate emergence*” OR 
“climate crisis” OR “global heating” OR “weather crisis” OR “extreme 
weather” OR “temperature” OR “humid*” OR “precipitation” OR “rainfall”] 
AND [“malaria incidence” OR “malaria epidemiology”] AND [“project*” OR 
“forecast*” OR “estimate*” OR “prediction” OR “calculation” OR “expectation” 
OR “prognosis” OR “computation” OR “extrapolation”])

https://oamjms.eu/index.php/mjms/index
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string was developed and enhanced using Boolean 
operators and phrase searching, as shown in Table 1. 
The systematic literature search was conducted in May 
2021 involved four primary databases: Scopus, Web 
of Science, PubMed, and SAGE, which resulted in the 
retrieval of 276 records. These four databases were 
selected because of their availability and accessibility 
in our organization. There were 91 duplicate records 
found and removed. The records were exported from the 
databases and arranged for screening in an Excel sheet.

Screening

The title and abstract of each record were 
examined for relevance and screened based on specific 
criteria by MB, SSSS, SPC, and MHB. This screening 
process excluded 107 articles, while the remaining 78 
articles retrieved full text for eligibility. The inclusion 
criteria for article selection were: (1) Published in 
2012–2021, (2) full original article, (3) written in English, 
and (4) observational study. In addition, articles that are 
not original, such as systematic review, conference 
proceedings, book chapters and reports, were excluded 
from the study. Any disagreement on article selection 
was resolve through discussion.

Eligibility

Four independent reviewers screened the 
potentially relevant articles for eligibility. MB, SSSS, 
SPC, and MHB reviewed the full-text articles and kept a 
log of the reason for the article excluded from the study. 
A total of 51 articles were excluded in view of absence 
of future prediction periods (n = 37), the articles were 
focus on spatial prediction only (n = 6), focus on vector 
distribution prediction (n = 5) and article related to model 
validation study (n = 3). Subsequently, the remaining 
articles proceeded for quality appraisal.

Quality appraisal

The remaining articles from the eligibility 
process need to be examined to ensure that the quality 
of methodology is free from any bias [14]. MMAT for 
the systematic review of non-randomized studies was 
used by MB, SSSS, SPC, and MHB to ensure the 
value of diverse study designs in a review. The authors 
focused on the 25 criteria that cover five categories of 
the articles. For the articles to be included in the review, 
all authors must mutually agree. Any disagreement 
was discussed between them before deciding on the 
inclusion or exclusion of the articles for the review. Thus, 
all the remaining 27 articles were eligible for review.

Data extraction and analysis

This study relied on the qualitative aspect 
of the article related to environmental factors and 

their effect on malaria disease. The present study 
selected the qualitative technique, while the authors 
read the 27 articles thoroughly, particularly in abstract, 
results, and discussions. Data extraction was conducted 
by MB, SSSS, SPC, and MHB based on the research 
questions. It denotes that any data from the reviewed 
studies that can answer the research questions were 
extracted and placed in a table. Subsequently, the 
researcher performed a systematic analysis that 
identified findings based on efforts related to noting 
patterns and themes, clustering, counting, noting 
similarities, and relationships within the extracted 
data [15]. This analysis is considered the most suitable in 
synthesizing a mixed research design (integrative) [16]. 
Furthermore, it is explained as a descriptive method 
that reduces the data in a flexible model that merges 
with other data analysis techniques [17].

The first step of systematic analysis is to 
generate findings. The authors had identified all the 
patterns that emerged among all reviewed articles’ 
extracted data in the process. Next, any similar or related 
extracted data were pooled in as a characteristic, and 
eventually, six findings were created. The development 
of these findings was done using this technique in a 
group consisting of authors with the characteristics of 
the results. During the development of the findings, 
authors discussed any inconsistencies, thought, 
puzzles, or ideas associated with the interpretation of 
the data until the point of agreement on the adjustment 
of the developed findings.

Results

Background of the selected articles

A total of 27 studies were included in this 
systematic review (Figure 1). Descriptive summary of 
included studies concerning publication year, study 
location, and setting is shown in Tables 2 and 3. All 
eligible studies were conducted in various countries, 
including Afghanistan, China, Ethiopia, Ghana, India, 
Iran, Kenya, Republic of Korea, Mali, Mozambique, 
Uganda, and other African countries. When categorized 
into the WHO regions, 16 of the studies were performed 
in the AFR, five studies from the South-east Asian 
region and three studies from Eastern Mediterranean 
Region and Western Pacific Region, respectively. The 
analyzed articles were published in the year 2012–2021. 
These quantitative studies resumed cross-sectional 
study design with time-series analysis for prediction of 
the future malaria cases. However, the baseline period 
trend across all studies was not uniform, renders it 
difficult to compare the projection results. Two studies 
used 2001–2009 as baseline period while another two 
studies used 2005–2015, but the rest of the studies 
varied in their baseline period selection. The duration 
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of the baseline period (in years) used for the future 
prediction in all of the studies ranging from <5 years to 
more than 25 years. The availability and completeness 
of the meteorological information and climate change 
scenarios contributed significantly to the modeling 
approach of the projection studies.
Table 2: Descriptive summary of included studies (n = 27)
Characteristic Frequencies (%)
WHO regions

AFR 16 (59)
SEAR 5 (19)
EMR 3 (11)
WPR 3 (11)

Publication year
2012–2016 15 (56)
2017–2021 12 (44)

Duration of the baseline period (years)
<5 years 1 (4)
5–10 years 14 (52)
11–15 years 4 (15)
16–20 years 3 (11)
21–25 years 3 (11)
More than 25 years 2 (7)

Study design
Cross-sectional 27 (100)

AFR: African region, SEAR: South-east asian region, EMR: Eastern mediterranean region, WPR: Western 
pacific region.

Climate factors variable

The climate factors variables employed in 
these studies mainly consist of surface temperature 
(26 studies), rainfall/precipitation (19 studies), relative 
humidity (11 studies), wind (four studies), and solar 
radiation (two studies). In addition, four studies 
considered the additional factor of the geographical 
vegetation index, whereas a study includes topographic 
depression as variables to fit the prediction modeling of 
malaria cases. However, the selection of environmental 
factors other than climate studied in each article is 
primarily dependent on multifactorial and will not be 
discussed further in this review.

Climate change scenarios

Two studies conducted in the East AFR and the 
Republic of Korea used representative concentration 
pathway (RCP) 8.5 and RCP 4.5 as the climate 
change scenarios to drive the future prediction of 
malaria both regionally and nationally. However, as the 
Intergovernmental Panel on Climate Change (IPCC) 
produced, the climate change scenarios resembled the 
gradual simulation increase of temperature at the global 
level by up to 2100 (IPCC 2014). Therefore, limited 
usage of climate change scenarios may indirectly 
impact the consistency of the future prediction periods 
and malaria trends.

Modeling approach

Several types of models are used to project 
the future malaria trend based on the mathematical 
and computational approach [18]. In the 27 studies 
that projected malaria’s future nationally or regionally, 
23 used a mathematical modeling approach and the 
other four used computational methods. Studies that 
performed autoregressive integrated moving average 
(11 studies), regression analyses (five studies), the 
Liverpool Malaria Model (three studies), general additive 
modeling (two studies), generalized linear Poisson 
modeling (one study), and polynomial distributed lag 
time-series regression (one study) were categorized 
into the mathematical approach. Meanwhile, the 
HYDREMATS model, Ross-Macdonald model, Waikato 
environment for knowledge analysis model, and SLIM 
model utilizes complex computational approaches 
based on machine learning analysis.

Discussion

Despite predicting the malaria incidence 
in a particular population and place using multiple 
methods of environmental modeling, there are still 
other challenges that need to be overcome in reducing 
malaria incidence. The literature suggested that 
human intervention factors such as insecticide-
treated bed nets and the complexity of multi-
species vectors contribute significantly to malaria 
transmission [19], [20], [21]. In addition, the human 
host mobility for work and home, mass migration of 
workers for better socioeconomic condition, education 
on protective measures against malaria infection, 
and nutritional status of vulnerable groups have 
collectively impacted the dynamicity of morbidity and 
mortality rate of malaria [20], [21], [22], [23]. Besides 
the climate change effect that has tremendously cause 
a large-scale increase in malaria incidence, the housing 
structures, land use, and access to healthcare are often 
missed in modeling studies [23], [24].

Records identified from:
Databases (n = 276)

Records removed before screening:
Duplicate records removed 

(n = 91)

Records screened
(n = 185)

Reports sought for retrieval
(n = 78)

Records excluded**
(n = 107)

Reports not retrieved
(n = 0)

Reports assessed for
eligibility (n = 78)

Studies included in review
(n = 27)

Reports excluded: 51 articles.
Absence of future prediction periods

(n = 37)
Focus on spatial prediction (n = 6)

Focus on vector distribution prediction
(n = 5) 

Model validation study (n = 3)
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Figure 1: The PRISMA flow diagram
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Table 3: Characteristics of included studies
ID Authors (year) Country Baseline 

study period
Future 
prediction 
period

Prediction 
Modelling 
Involved

Accuracy of Modelling Factors/Climatic Variables 
Involved

Results/Outcome Conclusion

1 (Ateba  
et al. 2020)

Mali 2012–2017 40-weeks 
based 
incidence

Functional 
Generalised 
Spectral 
Additive model

Adjusted R square = 
67.3%

Rainfall, average air 
temperature, humidity in 
the ground surface, wind 
speed

Malaria incidence 
per 1000-persons 
week

Geo-epidemiological 
approach using functional 
models is useful to health 
managers to allocate 
resource for epidemic 
outbreak control and 
management

2 (Anwar  
et al. 2016)

Afghanistan 2005–2015 12 months ARIMA Model R square = 0.897 Precipitation, surface 
relative humidity, 
enhanced vegetation 
index, surface air 
temperature

Malaria cases per 
1000 outpatients

Vegetation is correlated 
with malaria cases in 
Afghanistan, hence, 
vegetation seems to be a 
better predictor of malaria

3 (Ermert  
et al. 2012)

Africa 1960–2000 2001–2050 Liverpool 
Malaria model

None Surface temperature, 
rainfall, p. Falciparum 
infection rate

Infectious bite per 
human per year

The model confirms 
the impact of altered 
temperature and 
precipitation under future 
climate on spread of malaria

4 (Saha  
et al. 2020)

India 1995–2016 annual ARIMA Model None Temperature, rainfall, 
relative humidity

Malaria incidence 
per year

ARIMA model has prospect 
for the future prediction of 
malaria in India

5 (Bouma  
et al. 2016)

Ethiopia 1966–1980 August 2016 
– July 2017

Regression 
analysis

R square = 0.6 Sea surface temperature Malaria cases per 
annum

El-Nino related global 
warming as a climate signal 
that translates into large 
scale of malaria incidence

6 (Dabaro  
et al. 2021)

Ethiopia 2010–2017 monthly 
forecast of 
2030

ARIMA model None Rainfall and temperature Malaria incidence Rainfall was positively 
correlated with the malaria 
incidence while the 
temperature was negatively 
correlated

7 (Darkoh  
et al. 2017)

Ghana 2002-2015 2016–2020 ARIMA model None Rainfall and temperature Malaria incidence There is an association of 
temperature and malaria 
incidence

8 (Le  
et al. 2019)

Kenya 2008–2013 S2 & S3 
(future)

SLIM Model R square = 0.93−0.96 1. Daily precipitation
2.  Mean daily air 

temperature
3.  Mean annual 

evapotranspiration
4.  Topographic 

depression
5. Soil characteristics
6. Vegetation cover

Trend of malaria 
incidence

This work can be applied 
to analyze the impacts of 
environmental changes 
on other mosquito-borne 
diseases in particular and 
vector-borne diseases in 
general.

9 (Leedale  
et al. 2016)

East African 
Community 
(EAC) region

1980–2005 Future slices 
(2016-2085)

1. LMM
2.  Vector-borne 

Disease 
Community 
Model of 
International 
Centre for 
Theoretical 
Physics 
Trieste 
(VECTRI)

None 1. Rainfall
2. Temperature
3. Precipitation

Malaria 
transmission (vector 
survival probability)

These scenarios will still be 
undermined by the possibility 
of bio-technological 
break throughs (e.g. The 
development of cost-efficient 
vaccines and novel control 
techniques) that might 
occur during the following 
decades.

10 (Nath and 
Mwchahary 
2012)

India 2001–2010 12 monthly 
seasonal 
oscillation

SARIMA 
models

r = 0.689 1. Rainfall
2. Temperature
3. Relative humidity

Malaria incidence 
rates (MIR)

1.  Climatic variables are not 
instantaneous facilitator of 
malaria transmission 

2.  The implicit association 
between the two makes it 
difficult to develop a tool 
for forecasting malaria 
incidence based on 
individual influences of the 
climatic variables 

11 (Macleod and 
Morse 2014)

Africa 1871–2010 12 months LMM None 1. Temperature
2. Precipitation

Malaria incidence A tailor-made visualization 
may help to simply 
communicate quantified key 
modelling uncertainties, and 
the work described here 
is the first step toward the 
creation of such a tool

12 (Midekisa  
et al. 2012)

Ethiopia 2001–2009 1–3 months SARIMA 
Models

None 1. Rainfall
2.  Actual 

evapotranspiration
3.  Land surface 

temperature
4. Vegetation indices

Malaria incidence Malaria risk indicators 
such as satellite-based 
rainfall estimates, LST, EVI 
exhibited significant lagged 
associations with malaria 
cases in the Amhara region 
and improved model fit and 
prediction accuracy

13 (Mohapatra  
et al. 2021)

India 2002–2017 Monthly WEKA None 1. Rainfall
2. Temperature
3. Relative humidity

Malaria incidence The climate is an extremely 
complex factor to predict, 
and the results provided 
promising signals for 
predicting future malaria 
incidents

(Contd...)
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Table 3: (Continued)
ID Authors (year) Country Baseline 

study period
Future 
prediction 
period

Prediction 
Modelling 
Involved

Accuracy of Modelling Factors/Climatic Variables 
Involved

Results/Outcome Conclusion

14 (Mopuri  
et al. 2020)

India 2001–2016 January 
2015–
December 
2016

SARIMA 
Models

R squared = 0.85 1. Mean temperature
2. Rainfall
3.  Normalised Difference 

Vegetation Index
4. Wind speed

Malaria incidence The predictive results 
indicate that the 
models help for better 
understanding the disease 
transmission mechanism 
and can also assist in 
malaria intervention and 
control programs

15 (Moukam 
Kakmeni  
et al. 2018)

Africa 2000–2010 2050 (future 
climate)

The Ross–
Macdonald 
model

None Temperature Predicted value R 
nought

The findings in this research 
could constitute a realistic 
basis for understanding the 
interactions and complexities 
between the disease 
(malaria), its vectors and the 
parasites

16 (Ostovar  
et al. 2016)

Iran 2003–2009 Weekly and 
monthly

ARIMA Weekly model (R2 
= 0.863), monthly 
model (R2 = 0.424)

Rainfall, temperature, 
relative humidity

Malaria incidence Statistical models can be 
with a MEWS to predict 
malaria incidence, while  
the time-series model  
also has acceptable 
accuracy. 

17 (Sewe  
et al. 2017)

Kenya 2003–2012 2013 General 
additive 
modelling 
framework

R2 in General 
Additive Model (GAM)
1-month lead = 0.44
2-month lead = 0.37
3-month lead = 0.16
GAMBOOST
1-month lead = 0.71
2-month lead = 0.56
3-month lead = 0.50

Land surface 
temperature, precipitation, 
normalised difference 
vegetation index

Monthly Malaria 
admissions at a 
district hospital.

GAMBOOST model with 
a lead time of 1 month 
proved to have the best 
accuracy to predict monthly 
admissions at a district 
hospital. The use of boosting 
regression in GAM models 
can be beneficial in early 
warning systems to improve 
predictions.

18 (Sheikhzadeh 
et al. 2017)

Iran 2005–2015 2019–2025 Regression 
analysis

Not included Mean of monthly 
temperature, monthly 
precipitation, monthly 
humidity, monthly 
highest temperature, and 
socioeconomic (education 
and wealth).

Monthly incidence 
of locally transmitted 
vivax and falciparum 
malaria.

Socioeconomic and climatic 
variables are most important 
contributors to malaria 
transmission. 

19 (Yamana and 
Eltahir 2013)

West africa 1980–1999 2080–2099 Simulation 
based on 
Hydrology, 
Entomology 
and Malaria 
Simulator 
(HYDREMATS) 
model and 
General 
Circulation 
model.

Not included Rainfall, temperature, 
wind speed, wind 
direction and radiation

Vectorial capacity Findings emphasise the 
importance of rainfall in 
determining how climate 
change would affect malaria 
transmission in the future 
climates. Result predicted 
there is no major rise in 
malaria prevalence in Africa 
region

20 (Zinszer  
et al. 2015)

Uganda 2006–2013 Weekly 
forecast over 
a 52-week 
forecasting 
period

ARIMA model 
with exogenous 
variable 
(ARIMAX)

The accuracy of the 
models varied widely 
between the sites. 
Large relative error 
measures (200%).

Rainfalls, LST, EVI Number of 
confirmed malaria

Clinical data such as drug 
treatment could be used 
to improve the accuracy of 
malaria predictions  
in a highly endemic setting 
when coupled  
with environmental 
predictors

21 (Ferrão  
et al. 2017)

Mozambique 2006–2014 3.5 months 
in advance 
prediction

ARIMA model 
and regression 
model 
- box-cox

R-square in this study 
was 0.725, implying 
that 72.5% of the 
variance in malaria 
occurrence can be 
explained by variance 
in the predictive 
variables

Temperature, relative 
humidity, wind speed, 
visibility, and precipitation

His model is robust 
and, can predict the 
expected number of 
malaria cases 3.5 
months in advance 

A seasonal pattern was 
observed in malaria 
occurrence in Chimoio with 
peaks during weeks 1–12 
(January to March)

22 (Gao  
et al. 2012)

China, Anhui 
province

1990–2009 1–2 months PDL 
time-series 
regression

The modelling 
results show that 
92%, 93% and 90% 
of the variance in 
malaria transmission 
was accounted for 
by rainfall in the 
northern, middle 
and Southern Anhui 
Province,

Temperature, RH, rainfall 
and The MEI

Impact of rainfall on 
malaria follows lag 
of 1–2 months

A significant association 
between malaria 
transmission and rainfall in 
Anhui Province

23 (Goswami  
et al. 2012)

Northeast 
India

2006–2010 2 years 
prediction

genesis model 
of malaria 
epidemiology

Cant tell Daily temperature, rainfall 
and humidity

12 districts follow 
independent 
patterns of annual 
cycle and inter 
annual variability of 
epidemiology

Inclusion of the three 
meteorological variables, 
with the expressions for 
exposure and transmission, 
can accurately represent 
observed epidemiology 
over multiple locations and 
years

(Contd...)
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Climate change models of malaria provide a 
quantitative method of considering the impact of climate 
variables on malaria transmission. Several climatic 
variables have been identified in this study: Temperature, 
rainfall, precipitation, humidity, wind direction, and solar 
radiation. Among the climate-change scenarios used 
for climate modeling and research are the IPCC Fifth 
Assessment Report (AR5) in 2014 that include the RCP 
2.6, 4.5, 6, and 8.5 projected for the year 2100 [25]. The 
variation of the mosquito population in both aquatic and 
adult stages is highly dependent on climatic factors. The 
largest total mosquito population is found to correspond 
to the highest air temperature and rainy seasons. 
Simulations obtained from projected climate scenarios 
show that the elevated CO2 condition increases the 
habitat index for mosquito reproduction, which leads to 
a higher density of vectors, thus leading to an increase 
in malaria incidence. Unlike the high CO2 condition, the 
rise in air temperature has two distinct effects on malaria 
dynamics. First, temperature affects the development of 
malaria as the parasite does not develop below 18°C and 
over 40°C [26]. Second, higher air temperature reduces 
soil moisture, thus decreasing the habitat index for the 
Anopheles vector. Furthermore, higher air temperature 
non-linearly shortens the life cycles of Anopheles and 
Plasmodium. Although, under high air temperature 
increase, non-linear effects of air temperature are 
stronger than the impacts of soil moisture decrease 
on vector abundance, resulting in more significant 
changes of malaria incidence [21]. A study carried out 

in India by Mopuri shows that peak transmission of 
malaria occurs during the South-west monsoon (June 
to September). Whereas mean temperature, average 
wind speed, relative humidity, and normalized difference 
vegetation index have significantly correlated with 
malaria cases in different seasons. The Visakhapatnam 
district contains heterogeneous climatic conditions and 
different altitudinal variations that favor the vectors and 
parasites, thus lead to high transmission of malaria [27]. 
Furthermore, Siraj et al. predicted that a 1°C increase 
in daily mean temperature would result in three million 
additional malaria cases in the unstable transmission 
highlands of Africa [28].

Since the formulation of AR5, RCP 4.5 
is described by the IPCC as an intermediate 
scenario [29]. For the climate change scenario, the 
future carbon dioxide concentration scenario was used 
as the boundary condition of the climate model and 
many different situations were assumed and applied. 
The RCP scenario is the most studied; however, only 
two studies in this review used it [30], [31]. According 
to the IPCC, RCP 4.5 requires that CO2 emissions start 
declining by approximately 2045 to reach roughly half of 
the levels of 2050 by 2100. It also requires that methane 
emissions (CH4) stop increasing by 2050 and decline 
somewhat to about 75% of the CH4 levels of 2040 and 
that sulfur dioxide emissions decline to approximately 
20% of those of 1980–1990 [29]. Analysis of simulated 
data using RCP 4.5 shows that the trend of malaria 
incidence will gradually increase [30]. The predictive 

Table 3: (Continued)
ID Authors (year) Country Baseline 

study period
Future 
prediction 
period

Prediction 
Modelling 
Involved

Accuracy of Modelling Factors/Climatic Variables 
Involved

Results/Outcome Conclusion

24 (Karuri and 
Snow 2016)

East African 
coast

1990–2011 2 months AR model 
of order two 
can be used 
to forecast 
the malaria 
hospital 
burdens over 
the subsequent 
12 months.

Not mention Temporal association 
between monthly 
paediatric malaria hospital 
admissions, rainfall, and 
Indian Ocean Sea surface 
temperatures

The proportion 
of paediatric 
admissions to KDH 
due to malaria 
can be forecast 
by a model which 
depends on the 
proportion of 
malaria admissions 
in the previous 2 
months

Surveillance data can 
build time-series prediction 
models which can be used 
to anticipate seasonal 
variations in clinical burdens 
of malaria and aid the timing 
of malaria vector control.

25 (Kim  
et al. 2019)

Limpopo, 
South Africa

1998–2015 1–2 weeks 
prediction

MEWS, 
GLM and 
autoregressive 
integrated 
moving 
average 
(ARIMA) time 
series model

Correlation coefficient 
r>0.8 for 1-2 weeks 
ahead forecast

Temperature and 
precipitation

Malaria incidence The prediction model 
showed good performance 
for the short-term lead time, 
and the prediction accuracy 
decreased as the lead time 
increased but retained fairly 
good performance

26 (Kim  
et al. 2012)

Korea 2001–2009 7-week 
prediction

Generalised 
linear Poisson 
models and 
DLNM were 
used for Akaike. 
information 
criterion.

Not mention Effects of temperature, 
relative humidity, 
temperature fluctuation, 
duration of sunshine, and 
rainfall

An increase in 
temperature, 
relative humidity 
and sunshine was 
associated with 
increase in malaria 
incidence

Lagged estimates of the 
effect of rainfall on malaria 
are consistent with the time 
necessary for mosquito 
development and P. Vivax 
incubation

27 (Kwak  
et al. 2014)

Korea 2001–2011 CNCM3 
climate model

coefficient of 
determination R is 
0.852

The effect of time 
lag between malaria 
occurrence and mean 
temperature, relative 
humidity, and total 
precipitation

An increase of 
malaria occurrence 
before rainy season 
in summer using 
climate change 
scenario and 
CNCM3 climate 
model

There is a strong correlation 
between malaria occurrence 
and monthly average 
temperature, relative 
humidity, and precipitation 
data are analyzed with time 
lag effect between malaria 
occurrences

*ARIMA: Autoregressive integrated moving average, SARIMA: Seasonal autoregressive integrated moving average, PDL: Polynomial distributed lag, RH: Relative humidity, LST: Land surface temperature, EVI: Enhanced 
vegetation index, MEI: Multivariate ENSO Index, GAMBOOST: General Additive Model with boosting, LMM: Liverpool malaria model, SLIM: Stochastic lattice-based integrated malaria, MEWS: Malaria early warning system, 
GLM: Generalized linear model, DLNM: Distributed lag non-linear models
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results indicate that the modeling helps better 
understand the disease transmission mechanism and 
assist in malaria intervention and control programs.

Recent studies have shown that state-of-the-
art modeling approach ensemble prediction systems 
can make a skilfull forecast of climatological variables 
to anticipate the emerging malaria trend [30], [32], [33]. 
However, the specific climate factors used in respective 
geographic settings to integrate the modeling approach 
contribute to the heterogeneity in future malaria 
prediction [18], [34], [35]. Despite the increasing use of 
complex mathematical modeling and mechanistic multi-
model, there is no observed systematic pattern in the 
future prediction period among the included studies. 
This could be explained by utilizing different time serial 
intervals, baseline periods, and covariates within each 
modeling approach yielded distinct forecasts of malaria 
trends over one another [36], [37], [38]. There is no 
universal modeling approach to date that can fit all 
the countries given the dynamicity of climate change 
behavior.

Modeling outcomes can vary depending on 
the epidemiological characteristics of the malaria 
diseases, encompassing the agent, host, and 
environment [37], [38], [39]. A centralized reference 
data platform that allows for sharing climatological 
parameters would enable researchers to calibrate 
future malaria prediction based on comparable and 
standardized metrics [26], [37], [38], [40]. However, the 
review noted inconsistency in computation of climate 
factors variable into the modeling approach that is 
ultimately limited by the availability of information at 
the national or subnational level [41], [42]. This makes 
the future prediction of malaria under the simulation of 
climate change alone is challenging without uniform 
calibration [43], [44].

Strengths

This review highlights the current public health 
issues on re-emerging malaria compounded with the 
flexible climate change behaviors. It identifies future 
research areas on the incorporation of non-climatic 
predictors of malaria. Besides, the review finds cautious 
interpretation when utilizing any type of modeling 
approach due to the heterogeneity. Future projection 
of malaria is direly essential to aid in the planning and 
mitigation strategies by the stakeholders; hence, the 
need for the scientific consensus on data potentially 
used in the modeling.

Limitations

There are several limitations to this review. 
Most of the articles found do not holistically fulfill the 
inclusion criteria of temporal prediction of malaria 
incidence based on climatic variables. Hence, it was 
challenging to search for quality papers to be included 

in the systematic appraisal. Besides that, the habitat 
index was estimated only from open topographic 
depressions, limiting the applicability of the proposed 
model in urban areas [21]. However, malaria can also 
occur in urban. Furthermore, modeling can be extended 
using statistical techniques to analyze the uncertainty 
of small-size anthropogenic factors on the dynamics of 
malaria in the cities. In addition to that, the dynamics 
of malaria caused by multi-species vectors are not 
considered. Although Anopheles is the primary vector 
involved, malaria transmission in many other places 
is influenced by the population dynamics of other 
numerous vector species.

Furthermore, human hosts are assumed 
to be immobile in most of the modeling projections. 
However, it has been shown that mass migration may 
contribute to malaria infection dynamics, especially at 
scales that exceed the limits of mosquito dispersal [22]. 
Another limitation is that very few studies use IPCC’s 
standardized climate change scenario to predict 
malaria incidence. One of the strengths of using the 
IPCC AR5 climate model is its ability to predict climate 
over a longer time or glacial year. The disadvantage is 
that it only considers the natural Earth systems and not 
the interaction between humans and nature.

Conclusion and Recommendations

This review provides robust evidence of an 
association between the impact of climate change 
and malaria incidence. There are growing numbers 
of research that forecast malaria incidence based on 
climate factor variables, but limited studies utilize the 
climate change scenarios in future malaria prediction. 
In addition to the future forecasts, accounting for 
alternative climate factor variables, the benefit would 
come from considering climate change scenarios 
and other non-climatic drivers such as the presence/
absence of malaria vectors, population growth, and 
deforestation as crucial factors triggering malaria 
transmission. This would strengthen projection 
realism and act as a podium for academics and 
policy makers’ consensus on provisions to mitigate 
future malaria. With all the limitations and strengths 
discussed, multiple methods of using the statistical 
method and predicting models must fit in the study. 
The local context of the disease where the variability 
of the malaria vector, the malaria parasite, and even 
the climate variability is different from place to place. 
Having the local knowledge of seasonal patterns 
would be helpful to apply to these prediction methods 
of malaria disease, which could help strengthen 
the public health intervention in terms of mitigation 
strategies.
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