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Abstract
Skin microbiota is an integral part of the human immune system. Staphylococcus aureus is one of the essential 
components of the normal flora. Approximately 20–30% of healthy individuals are persistently colonized with 
S. aureus, whereas the remainders are considered low-level intermittent carriers. Despite these natural aspects
of existence, S. aureus can be a major opportunistic human pathogen. This versatile microorganism can infect a
variety of anatomical sites, causing a broad spectrum of pathologies ranging from superficial to invasive infections. 
It developed a variety of strategies to adopt to a changing microenvironment. This attributed to the emergence of 
resistance to antibiotics of different classes during the past six decades. Methicillin-resistant S. aureus (MRSA)
was originally confined to health-care settings (health-care-associated MRSA). Later on, community-acquired
MRSA was identified as another source of infections. Recent figures indicate that MRSA strains have been
associated with approximately 75% of all S. aureus infections worldwide. Several guidelines have been published
to establish an adequate treatment of skin and soft tissue infections (SSTIs) caused by MRSA strains. In the first 
part of this review, we focus on current treatment guidelines with a focus on medical drug therapy, but drug therapy
has its own limitations. Recently, the interest in herbal remedies has greatly increased. There is growing evidence
of antimicrobial activity of medicinal plants and their extracts. The second part of this review is dedicated to herbal
compounds to circumvent antibiotic resistance. Herbal compounds may potentiate the action of antibiotics and
restore the activities of antibacterial agents against which S. aureus has developed a drug resistance. Part 2
focuses on the role of S. aureus in pathology of the two major inflammatory skin diseases, i.e., atopic dermatitis
(AD) and psoriasis. Finally, Part 3 provides an overview on natural compounds with antimicrobial activity against
S. aureus and possible use in the treatment of SSTIs,
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PART I - THE SKIN MICROBIOME, 
STAPHYLOCOCCUS AUREUS, SKIN AND 
SOFT TISSUE INFECTIONS, ANTIBIOTIC 
THERAPY

Introduction

Skin microbiota is an integral part of the 
human immune system, and it comprises a wide array 
of biological organisms. Staphylococcus aureus is one 
of the essential components of the normal flora, which 
inhabits the moist squamous epithelium of the anterior 
nares. Other common sites of carriage include the skin, 
pharynx, perineum, axillae, and vagina [1]. Approximately 
20–30% of healthy individuals are persistently colonized 
with S. aureus, whereas the remainders are considered 
low-level intermittent carriers [2]. An individual can carry 
a single strain of the bacterium over an extended period 
or multiple strains with varying frequencies at different 
anatomical sites [3].

Despite these natural aspects of existence, 
S. aureus can be a major opportunistic human pathogen.
This versatile microorganism can infect a variety of
anatomical sites, causing a broad spectrum of pathologies
ranging from superficial to invasive infections. Indeed,
the bacterium was first described from abscesses in a
knee joint in the 1880s [4]. Subsequently, it has become
a leading cause of bacteremia, osteomyelitis, prosthetic
device infections, septic arthritis, pneumonia, meningitis,
toxic shock syndrome, and urinary tract infections.
Besides, S. aureus causes a range of skin and soft tissue
infections (SSTIs), which can be benign (uncomplicated
cellulitis and impetigo) or life-threatening infections.

Importantly, S. aureus has a considerable 
capacity to adapt to various pressures in human, 
and this is attributed to the emergence of resistance 
to antibiotics of different classes during the past six 
decades [5]. In particular, resistant strains of S. aureus 
were first described after the introduction of methicillin 
in the 1960s [6]. Subsequently, methicillin-resistant S. 
aureus (MRSA) was confined to health-care settings 
(health-care-associated MRSA [HA-MRSA]). In the 
1990s, several reports have revealed MRSA isolation 
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from children and adults with SSTIs who had not been 
exposed to health-care risk factors [7], [8], [9]. This was 
associated with an increased incidence of SSTIs as a 
result of the community-acquired MRSA (CA-MRSA) 
epidemic, which has increased the burden of endemic 
SSTIs strains at that time. For example, the number 
of emergency visits due to SSTIs in the United States 
was estimated to be increased from 1.2 to 3.4 million 
cases from 1993 to 2005 [10], where molecular typing 
indicated that the predominant clones were USA400 and 
USA300 [11], [12]. Similarly, the rates of hospitalization 
attributable to abscesses with CA-MRSA have 
evidenced a 3-fold increase in England from 1991 to 
2006 and a 48% increase in Australia between 1999 and 
2008 [13], [14]. Therefore, recent figures indicate that 
MRSA strains have been associated with approximately 
75% of all S. aureus infections worldwide [15], [16], [17].

As a consequence, several guidelines have been 
published to establish an adequate treatment of SSTIs 
caused by MRSA strains. However, the aforementioned 
observations demonstrate that the S. aureus can 
virtually resist all introduced antibiotics, causing a 
significant health burden and substantial economic 
costs to eliminate the associated infections [18]. Such 
negative consequences require immediate attention by 
the scientific community to find novel alternatives for 
the prevention and treatment of MRSA. The proposed 
solutions entail a multipronged approach that includes 
vaccination to prevent the infection, monitoring, and the 
development of novel therapies [19]. The latter seems 
to be the most reasonable approach to control the vast 
burden. The use of herbal remedies is one of these 
solutions, although it belongs to the traditional systems 
of medicine. This chapter reviews the current treatment 
of resistant S. aureus infections, the mechanisms of 
resistance of the bacterium, and the efficacy of herbal 
bioactive compounds in MRSA control.

Current Recommendations for the 
Treatment of SSTIs Attributable to MRSA

The relevant guidelines for the management 
of SSTIs were published in 2005 [20] and revised in 
2014 [21] by the Expert Panel of the Infectious Diseases 
Society of America (IDSA). The authors of the revised 
version reported a lack of prospective studies to support 
and validate the guidelines [21]. In general, incision and 
drainage is the mainstay treatment of the mild cases with 
purulent SSTIs, including furuncles, carbuncles, and 
abscesses. Antibiotics are recommended for patients 
with concurrent systemic signs of infection, such as 
fever, as well as patients with immunosuppression, 
rapidly progressive cellulitis, or patients at the extremes 
of age. Trimethoprim-sulfamethoxazole (TMP-SMX) 
can be used as both an initial empiric therapy and a 

defined treatment for patients with a MRSA purulent 
infection with moderate signs of systemic inflammation. 
In those who have failed the surgical intervention 
plus oral antibiotics or patients with a profound 
fever (>38°C), vancomycin, linezolid, clindamycin, 
daptomycin, ceftaroline, and tetracycline (doxycycline 
or minocycline) are recommended (Table 1) [21].

Table 1: The recommended antimicrobial agents for MRSA 
SSTIs infections
Antibiotic Dosage* Limitations
Vancomycin Adults: 30 mg/kg/d (IV) in two 

divided doses
Children: 40 mg/kg/d (IV) in 
two divided doses

VISA and VRSA emergence

Linezolid Adults: 600 mg/12 h (IV), or 
600 mg bid (oral)
Children: 10 mg/kg/12 h (IV 
or oral)

Costly, limited clinical 
evidence, toxic, resistance 
by mutations in the rRNA 
methyltransferase and the 23S 
rRNA, cross-resistance with 
other PTC antibiotics

Clindamycin Adults: 600 mg/8 h (IV), or 
300–450 mg qid (oral)
Children: 25–40 mg/kg/d (IV), 
or 30–40 mg/kg/d (oral); both 
regimens are given in three 
divided doses

Resistance by mutations 
in the 23S rRNA, inducible 
resistance

Daptomycin Adults: 4 mg/kg/d (IV) od Myotoxicity, interaction with 
pulmonary surfactants, and a 
trend of resistance by genetic 
mutations that increase the 
positive charge of the microbial 
cell membrane

Ceftaroline Adults: 600 mg (IV) bid Leukopenia with long-term 
treatment, resistance 
mediated by mecA-and 
non-mecA-dependent 
mechanisms.

Doxycycline, 
minocycline

Adults: 100 mg (oral) bid
Children: not recommended in 
children aged<8 years

Clinical experience is still 
limited

* The listed dosages in children are not appropriate for neonates. IV: intravenous; PTC: peptidyl transferase 
center; VISA: vancomycin intermediate resistant S. aureus; VRSA: vancomycin-resistant S. aureus.

Vancomycin

Vancomycin is a broad-spectrum glycopeptide 
antibiotic acting by interfering with cell wall synthesis 
through binding to the D-alanyl-D-alanine residues; 
hence, it inhibits the synthesis and polymerization of 
the N-acetyl-glucosamine and N-acetylmuramic acid 
subunits within the peptidoglycan (PGN) layer in the 
cell wall (Figure 1). Eventually, the cell wall becomes 
weaker, causing leakage of the intracellular content 
and cell death [22]. Vancomycin is the most reliable 
antibiotic for MRSA treatment in the United States and 
China, and it can be used safely in penicillin-allergic 
patients [21], [23]. Besides, it has been considered the 
last line of defense against MRSA infections.

Linezolid

Linezolid, another antimicrobial agent that 
belongs to the oxazolidinone class, was approved for 
the treatment of MRSA two decades age [24]. Linezolid 
acts by the inhibition of bacterial protein synthesis. This 
occurs by interaction with the ribosome cluster through 
binding to the 23S subunit of the 50s ribosome [25]. 
Recent meta-analyses showed significantly better 
clinical and microbiological cure rates in MRSA patients 
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receiving linezolid as compared to those receiving 
vancomycin without major differences in the safety 
outcomes [26], [27]. Nevertheless, the daily costs of 
inpatient treatment were significantly higher with linezolid 
than vancomycin. Besides, the available relevant meta-
analyses [26], [27] were based on nine comparative 
randomized studies with a high risk of bias. There is 
also an evidence of potentially adverse reactions, which 
may be serious (thrombocytopenia) or permanent (optic 
neuritis and peripheral neuropathy) [28]. Therefore, 
these limitations may preclude the wide spread use 
of linezolid, particularly in resource-limited health-care 
settings.

Clindamycin

Based on the IDSA recommendations, MRSA 
skin infections can be managed by a number of other 
antimicrobial agents. Clindamycin is a lincosamide 
bacteriostatic antibiotic that has been approved for 
the treatment of several infections, including lower 
respiratory infections, septicemia, gynecological 

infections, and SSTIs. It has the ability to reversibly bind 
to the 50S subunit of the ribosome. Therefore, it inhibits 
protein synthesis [29]. The rates of treatment failure 
when clindamycin was administered after incision and 
drainage of CA-MRSA skin infections were 25%; these 
rates were comparable to those following the use of a 
TMP-SMX combination [30].

Daptomycin

Daptomycin is a rapidly bactericidal lipopeptide 
antibiotic which has a broad-spectrum in vitro activity 
against several Gram-positive bacteria. It was approved 
by the Food and Drug Administration (FDA) in 2003 for 
the treatment of SSTIs, right-sided endocarditis, and 
S. aureus bacteremia [31]. The antibiotic is structurally 
similar to a group of innate antimicrobial molecules 
named cationic antimicrobial peptides (AMPs), 
particularly cathelicidin LL-37, which can inherently 
disrupt the microbial membrane integrity [32]. However, 
the mechanism of action of the antibiotic is basically 
dependent on the interaction with calcium and the 

Figure 1: A schematic representation of the biological implications of peptidoglycans in the cell wall of S. aureus. (a) Normal bacterial cell wall 
synthesis involves a successful cross-linking of the peptidoglycan precursors, which are composed of N-acetyl muramic acid alternating with 
N-acetyl glucosamine and a chain of five amino acids (oligopeptide). This can be mediated by two enzymes known collectively as penicillin-
binding proteins (PBPs). (b) The β-lactam ring of penicillins and cephalosporins (red triangle) binds to PBPs, interferes with cross-linking, 
inhibits cell wall synthesis, and ultimately leads to cell wall rupture. (c) New PBPs, namely PBP2a, are expressed by the acquisition of genomic 
data through horizontal DNA transfer and subsequent clonal spread. This confers the resistance to β-lactam antibiotics in MRSA leading to a 
successful cross-linkage of peptidoglycans

a

b
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anionic phospholipid phosphatidylglycerol (PG) to 
successfully deliver daptomycin molecules to the 
bacterial cell membrane [33]. Consequently, owing 
to binding to phosphatidylglycerol headgroups, 
daptomycin molecules lead to membrane depolarization 
and permeabilization and leakage of intracellular 
content [34].

Clinically, daptomycin causes significant 
improvements in about 90% of patients with complicated 
SSTIs [35], [36]. In addition, despite the scarcity of 
comparative studies, daptomycin had superior efficacy 
and safety outcomes compared to vancomycin for 
complicated skin infections, as revealed by clinical 
cure rates, resolution of symptoms, and the duration of 
inpatient treatment [37]. However, although daptomycin 
is well-tolerated, it may cause myopathy and increased 
serum creatine phosphokinase levels [38], [39]. 
Besides, daptomycin may interact with pulmonary 
surfactants; thereby, it has a limited efficacy in MRSA-
attributable pneumonia [40].

Ceftaroline

Ceftaroline is a bactericidal antibiotic of the fifth-
generation cephalosporins, which has a broad-spectrum 
activity against multiple Gram-positive and Gram-
negative bacteria. Its FDA approval was granted in 2010 
for acute SSTIs caused by MRSA and the susceptible 
strains to methicillin [41]. It has also been approved for 
clinical use in Europe and Australia in 2012 and 2013, 
respectively [42]. The molecular basis of its activity 
relies on its high affinity to bind to the MRSA-associated 
penicillin-binding protein 2a (PBP2a), rendering a high 
antibacterial action to MRSA by preventing bacterial 
cell wall synthesis. These actions are mediated by the 
1,3-thiazole ring in its molecular structure. Based on the 
results of phase III randomized clinical trials (RCTs), 
intravenous ceftaroline showed high clinical cure rates 
and few adverse events comparable to those implied 
by vancomycin plus aztreonam among patients with 
complicated SSTIs [43], [44]. Furthermore, a recent 

meta-analysis showed a mean cure rate of 74% with 
infrequent toxicities, although a considerable proportion 
of patients on prolonged courses (≥21 days) experience 
neutropenia [45]. Therefore, patients should be regularly 
monitored for leukopenia.

In addition to the absence of validating 
prospective studies for the use of the mentioned 
antibiotics in MRSA infections, there are marked 
deficiencies in the concordance with IDSA guidelines, 
particularly in the emergency settings [46]. Besides, the 
effects of these treatments on the quality of life of patients 
are still questionable. The most important limitation of 
treatment is the expanding rates of resistance by MRSA, 
which is discussed in detail in the following section.

Restrictions to the Use of Antibiotics

MRSA antimicrobial resistance: the genetic 
basis

The acquisition of antibiotic resistance by 
S. aureus has been a critical clinical problem. The 
adaptation of S. aureus to various environmental stresses 
that confer antimicrobial resistance is mainly mediated 
by the exchange of genetic information between 
bacteria via mobile genetic elements (MGEs), including 
plasmids, staphylococcal cassette chromosomes 
(SCCs), bacteriophages, and transposons. Both SCCs 
and plasmids play an integral part in the resistance to 
vancomycin and β-lactam antibiotics [47]. Indeed, the 
latter group of antibiotics act inherently via binding of 
the β-lactam ring to two main enzymes involved in the 
cross-linking of cell wall PGN (Figure 1); these enzymes 
are termed PBPs. The earliest wave of resistance 
(against penicillin) was confined to hospitals, and it 
was predominantly conferred by the blaZ gene, which 
inactivates the β-lactam ring via encoding a β-lactamase 
(Figure 2) [48]. This was followed by a second wave of 

Figure 2: A timeline of resistance stages of Staphylococcus aureus following the introduction of antimicrobial agents
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methicillin resistance that is mediated by the low affinity 
PBPs (PBP2a). These proteins are encoded by the 
mecA gene on a specific SCC (type I SCCmec, MRSA-I). 
Most CA-and HA-MRSA strains have specific SSCmec 
variants, indicating the prominent role of MGEs in the 
antimicrobial resistance. The third stage of resistance 
entailed the emergence of novel MRSA strains (MRSA-II 
and III), and it was still involving patients admitted to 
hospitals and health-care facilities (Figure 2).

As previously mentioned, vancomycin has 
been widely used to manage multiple MRSA strains. 
Nonetheless, due to the extensive prescription of 
vancomycin worldwide, resistant strains to vancomycin 
have been discovered in the mid-to-late 1990s [49], 
namely vancomycin intermediate-resistant S. aureus 
(VISA). These strains were acquired in the community, 
and they contained novel MGEs (MRSA-IV). 
Subsequently, completely resistant strains were 
reported in 2002 (vancomycin - resistant S. aureus 
[VRSA]) [50]. The minimum inhibitory concentrations 
(MICs) of VISA and VRSA strains are 4–8 µg/mL 
and ≥16 µg/mL, respectively. The VISA phenotype is 
acquired through a set of stepwise mutations in distinct 
genes that play important roles in the biosynthesis of 
bacterial cell walls (reviewed in [51]). This leads to a 
significant thickening of the cell wall. On the other hand, 
complete vancomycin resistance is conferred by the 
vanA operon, which is located on a plasmid [52]. The 
vanA operon is carried by a Tn1546 element acquired 
from vancomycin-resistant Enterococcus faecalis [53].

The resistance of S. aureus to other antibiotics 
was also evident in the clinical practice. Mutations 
in PBP proteins, exclusively outside the penicillin-
binding domain, seem to correlate with resistance 
to ceftaroline [54]. Interestingly, Kelley et al. [55] 
stated that ceftaroline resistance could be mediated 
by missense mutations that might had already been 
established before the introduction of the antibiotic. 
Besides, the involvement of mutated PBPs other than 
PBP2a, such as PBP3 and PBP4, has been reported in 
other investigations [54], [56]. This type of resistance 
can be overcome by combining ceftaroline with low 
doses of methicillin. Additional non-mecA mechanisms 
of resistance have been recently demonstrated, where 
mutated clpX endopeptidase, transcription terminator 
Rho, and pp2c protein phosphatase have influenced 
the resistance mechanisms [57].

From another perspective, mutations 
in the domain V of the 23S rRNA gene and the 
chloramphenicol florfenicol resistance (the presence 
of cfr gene) confer the resistance to linezolid [58], [59]. 
Moreover, cross-resistance between linezolid and other 
antibiotics acting on the ribosomal peptidyl transferase 
center, such as tiamulin, has been reported [60]. As for 
clindamycin, genetic mutations in the erm genes can 
cause significant alterations of the main binding sites 
(the 23S ribosomal RNA) by coding the methylase 
enzyme [61]. Such modifications can either be inducible 

or constitutively expressed [62]. Notably, the inducible 
resistance could not.

Regarding daptomycin, S. aureus seems to 
induce changes in the cell membrane and the membrane 
phospholipid content to make it more positively charged. 
This would create an electrostatic repulsive action 
against the positively charged daptomycin-calcium 
complexes to prevent their binding to the membrane. 
Such changes would be incurred by gain-of-function 
mutations in the mprF gene, which encodes the 
multiple peptide resistance factor protein; hence, it 
increases the expression of positively charged lysyl-PG 
[63]. Intriguingly, an alternative resistance pathway is 
mediated by the increased expression of the dlt operon 
and the subsequent enhancement of alanine attachment 
(positively charged) to teichoic acid in the cell wall [64].

Collectively, the dilemma of antimicrobial 
resistance is apparent for each introduced antibiotic to 
the market. These antibiotics lose their clinical values 
with overuse or if they are dosed incorrectly. Besides, 
resistance to some antibiotics, such as ceftaroline, 
may have been established in S. aureus strains even 
before drug introduction. These restrictions could be 
compounded by other virulence mechanisms that may 
support the pathogenicity of S. aureus.

Virulence factors of S. aureus in SSTIs

The skin represents the first line of defense 
against invading S. aureus, forming a physical barrier 
that prevents the entry of bacteria into deeper layers 
and/or internal dissemination. Keratinocytes are the 
major constituent of such a barrier. In addition to the 
physical function, keratinocytes can detect the invading 
microbes via their pattern recognition receptors, which 
would subsequently initiate the cutaneous innate immune 
response comprising of a proinflammatory response 
(interleukin-1α [IL-1α] and tumor-necrosis factor α 
[TNFα]) along with the production of AMPs (β-defensins) 
[65]. These changes are characteristic features of early 
abscesses, which contain multiple viable and dead 
polymorphonuclear leukocytes (PMNs), fibrin, tissue 
debris, and live bacteria in the central core [66]. Of note, 
PMNs play a significant role in abscess formation and 
resolution. They are heavily recruited to the site of infection 
in response to host proinflammatory molecules, tissue 
damage, and bacterial signals [67], [68]. Chemotactic 
factors produced by keratinocytes, macrophages, PMNs, 
and T cells would contribute to the influx of neutrophils in 
SSTIs. However, the resistant strains of S. aureus harbor 
an arsenal of virulence factors that can overcome the 
physical barrier and the cutaneous immune response; 
these factors are reviewed below.

Toxins and surface proteins

Toxins have a significant role in SSTIs 
pathogenesis through different mechanisms (Figure 3). 
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More specifically, the secreted cytolytic toxins have 
the most prominent effect on host cells by inducing 
pore formation and the subsequent cell lysis. These 
membrane-damaging toxins include bicomponent 
toxins (panton valentine leukocidin [PVL]), α-toxins, 
and phenol-soluble modulins (PSMs). PVL was first 
described in SSTIs in 1932 [69], as it was associated 
with severe, necrotizing lesions. This bicomponent 
exotoxin is carried by 90–95% of CA-MRSA strains in 
Australia [70], [71], indicating a prominent role of PVL 
in virulence, transmissibility, and fitness of the bacteria. 
However, less than one-third of HA-MRSA isolates 
are PVL-positive [72]. PVL is encoded by two genes 
(lukS-PV and lukF-PV). It binds to specific complement 
receptors on the neutrophil surface, causing pore 
formation and cell lysis. In a case–control study carried 
out among children presenting to an emergency 
department, PVL was significantly higher in MRSA 
isolates in patients with SSTIs than their peers without 
SSTIs [73]. However, the impact of this virulent factor 
on the clinical outcomes and the therapeutic efficacy is 
generally still elusive.

S. aureus α-toxin (α-hemolysin) is another 
β-barrel pore-forming, water soluble toxin. Neutrophils 
are not targeted by such a toxin; instead, α-toxin lyses 
macrophages and lymphocytes, and it can induce 
morphological changes in the platelets [74]. Actually, 
the endemic strain in the United States (USA300) is 
known to produce high levels of α-toxin as a result of 
expressing significant levels of the accessory gene 
regulator (Agr), which regulates multiple virulence 
factors [75]. In addition, experimental deletion of 
saeRS and Agr genes reduced the expression of 
α-toxin, and this reduced the number of skin lesions 
in a murine model [75], [76]. Furthermore, it has been 
shown that α-toxin is the most significant virulence 
factor in the PVL-negative CA-MRSA strains isolated 

in China [77]. Interestingly, therapeutic targeting of 
α-toxin by neutralizing monoclonal antibodies has 
significantly prevented dermonecrosis in mouse and 
rabbit models, and such an effect was optimized by the 
coadministration of vancomycin or linezolid [78], [79]. 
This suggests novel approaches for controlling SSTIs 
caused by MRSA.

Unlike the aforementioned β-barrel pore-
forming toxins, PSMs (α and β) are non-cell-specific, 
receptor independent peptides which have a high 
ability to lyse neutrophils shortly after phagocytosis by 
S. aureus [80]. This leucocyte-destroying effect would 
facilitate immune evasion and persistence of skin 
infections. Presumably, PSMs play the most important 
role in the pathogenesis of SSTIs as evidenced by the 
production of higher quantities of PSMs in the clinical 
isolates of SSTIs as compared to other isolates from 
patients with infective endocarditis and pneumonia [81]. 
Intriguingly, these types of proteins can modulate 
the adaptive immune response in the most virulent 
MRSA strains via upregulation of the CCR7 receptors 
located on dendritic cell surfaces, and they enhance 
IL-10 production and reduce TNF production by CD4+ 
dendritic cells [82]. Notably, PSM of the alpha type 
(highly expressed in CA-MRSA) is encoded by the 
psmα operon located in the core genome [83], as well 
as the psm-mec gene located within the MGE element 
SCCmec [84]. This indicates a potential correlation 
between PSM-mediated virulence and antibiotic 
resistance in S. aureus.

S. aureus also possesses multiple cell-wall 
anchored (CWA) proteins bound to the PGN which 
contribute to bacterial virulence. For instance, SasX 
has been associated with HA-MRSA epidemics in Asia, 
since it can be involved in immune evasion and abscess 
formation [85]. Surface protein A (SpA) is another 

Figure 3: Summary of virulence factors of Staphylococcus aureus located on the cell surface or secreted by the bacterial cell
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important factor of immune evasion. Its structural 
domains are key factors for binding to immunoglobulin 
(Ig) G, von Willebrand factor, and TNF receptor 1 
(TNFR1) [86]. IgG binding provides a latent period 
during which S. aureus can establish itself in the skin, 
while binding to TNFR1 located on keratinocytes can 
promote a proinflammatory response. Other virulence 
proteins have been established, yet their contribution 
to resistance is still incompletely understood. For 
example, the clumping factor A (ClfA) contributes to 
platelet aggregation, and it protects S. aureus from 
phagocytosis by neutrophils via enhancing fibrinogen 
recruitment to the bacterial cell surface; therefore, it 
has an implication in abscess formation [87]. Similarly, 
ClfB has a role in determining the bacterial load at the 
infection site, which impacts the formation and structure 
of skin abscesses [88]. Fibronectin-binding proteins 
(FnBPs) can also control the bacterial burden in the 
abscess, and they enable the bacterial cell to effectively 
adhere to and invade keratinocytes [89], [90].

In sum, the secreted toxins by S. aureus are the 
most significant virulent factors that contribute to SSTIs, 
particularly dermonecrosis. This causes profound 
inflammation and excessive skin damage. Besides, 
the cytolytic effect on leucocytes can assist in immune 
evasion and facilitate the persistence of infection. The 
increased expression of these factors in MRSA strains 
indicates that they play a role in resistance; however, 
the exact resistance-related implications of these toxins 
are still unclear. Regarding surface proteins, only SasX 
has been found in resistant S. aureus strains, and they 
seem to be confined to hospital settings.

Quorum sensing

Quorum sensing is an important adaptive 
process to the external environment in S. aureus. 
It regulates the production of virulent proteins by a 
sufficient number of bacterial cells, who would have 
a higher infective potential than smaller populations. 
This regulatory mechanism is basically dependent on 
the population density, and it is regarded one of the 
major controlling mechanisms of pathogenesis. Cell-
to-cell communication in quorum sensing is generally 
regulated by the Agr system [91]. This system is 
mediated by specific signaling molecules called 
autoinducing peptides (AIPs). These peptides are 
encoded by one of the four major transcripts of the Agr 
system (agrD) and are exported through the C-terminal 
cleavage of the agrB gene product. When AIPs reach a 
critical concentration threshold extracellularly (10 µm), 
they are detected by a sensor protein encoded by the 
AgrC transcript. Subsequently, the AgrC protein is 
phosphorylated and the associated AgrA protein binds 
to the promotor regions for RNAII and RNAIII (P2 and 
P3, respectively), as well as the PSMα and PSMβ 
(Figure 4). Consequently, the activation of the Agr 
system increases the expression of multiple virulence 

toxins, including α-toxin, PVL, and PSMs, as well as 
degrative enzymes, such as proteases [92]. However, 
it downregulates SpA [93]. Indeed, Agr regulation is 
critical for controlling the timing of expression of the 
mentioned virulence factors, where high Agr activity is 
apparent during the development of acute infection. On 
the other hand, decreased Agr activity is more prominent 
in chronic infections and biofilm formation [91].

Biofilm formation

In vivo growth of bacterial cells is more 
challenging than laboratory-based settings, where 
nutrients are readily available to the planktonically 
growing cells. Conversely, S. aureus may pursue 
other survival-supportive pathways in nutrient-deficient 
conditions. Bacterial cells tend to form multicellular 
aggregations encased in a self-produced matrix of 
extracellular polymeric substances (EPSs) [94]. The 
formation of a biofilm is a complex sequential process 
of three major phases (Figure 5). First, bacterial cells 
are attached to a biotic (living) or an abiotic (non-living) 
surface by hydrophobic, electrostatic forces. Second, 
these cells grow exponentially into multicellular layers 
via microbial surface components recognizing adhesive 
matrix molecules (MSCRAMMs) and accumulation-
associated protein until the complete maturation of 
the biofilm. In this phase, active cells are predominant 
in the outer layer of the biofilm, while dormant, or 
possibly non-growing, cells are located in the center. 
The EPS matrix contains proteins, teichoic acid, 
exopolysaccharides, and/or micromolecules, such as 
extracellular DNA (eDNA). Finally, the biofilm ruptures 
or encased and planktonic cell clusters are dispersed to 
start a new invasive colony [95].

Indeed, biofilms represent a real challenge 
in the clinical practice. Bacterial cell attachment to 
the surface of indwelling devices and the subsequent 

Figure 4: The quorum sensing circuit of Staphylococcus aureus
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biofilm formation are deemed the most common 
causes of device-related infections [96], [97]. This 
includes all types of implanted medical devices, such 
as prosthetic heart valves, central venous catheters, 
joint replacements, cardiac pacemakers, contact 
lenses, and intravascular lines. As a result, bacterial 
cells within a biofilm, particularly dormant cells, are 
tenacious to the host immune system and resistant 
to antimicrobial drugs. Such a “recalcitrance” state 
toward antibiotics is ascribed to tolerance and 
resistance mechanisms (Figure 6). In particular, the 
penetrative capacity of antibiotics is reduced with the 
existence of electrical differences with polymers within 
a biofilm [98]. Moreover, the presence of dormant cells, 
known as persisters [98], [99], represent a significant 
barrier to treatment since antibiotics can essentially 
act on biosynthetic processes (protein, DNA, and 

cell wall synthesis) in the growing bacteria. Although 
these persisters account for only a small proportion of 
the whole bacterial population (0.1%), they would be 
able to grow and confer high rates of antibiotic failure 
and recurrence of infections [100]. Another important 
mechanism of antimicrobial resistance in a biofilm is the 
bacterial efflux pump [101]. It removes toxic compounds 
from the bacterial cells, including antibiotics, and it can 
mediate multidrug resistance phenotype.

As a consequence, infections associated 
with biofilm formation have been associated with 
increased morbidity and mortality. Barsoumian 
et al., [102] found that biofilms produced by MRSA and 
Pseudomonas aeruginosa were associated with more 
severe infections and higher mortality rates than non-
biofilm forming isolates. Surgical removal is inevitably 
required, causing prolonged hospitalization and 

Figure 6: The major mechanisms of antimicrobial resistance in the biofilms of Staphylococcus aureus

Figure 5: The lifecycle of a Staphylococcus aureus biofilm
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significant costs to health-care systems [103], [104]. 
In skin infections, biofilm formation is a significant 
phenomenon in almost all types of SSTIs as revealed 
in a recent investigational study [105]. There is an early 
evidence indicating that bacterial cells in clinical isolates 
from patients with impetigo are more potent biofilm 
formers than those with furuncles [106], whereas other 
recent studies showed contrasting outcomes [105]. 
Seemingly, biofilms are formed by the colonizing 
strains already established on the skin surface, which 
may partly demonstrate that biofilm formation is crucial 
for successful colonization [105]. The latter notion is 
supported by the fact that the increased bacterial density 
of S. aureus on the skin correlates with the capacity 
of biofilm formation [107]. Nonetheless, the proficient 
biofilm-forming strains isolated from medical device 
infections as well as superficial skin infections could not 
exacerbate patients’ symptoms as compared to other 
strains with a low capacity to form biofilms [108].

Pathogenic Changes Associated with 
S. aureus Infection

Besides the virulence factors of S. aureus, there 
is a variety of pathogenic mechanisms of skin diseases 
include a complex set of immunological, environmental, 
and physiological effects. These are responsible for 
the observed symptomatology and wide variation 
of severity of SSTIs, including impetigo, erysipelas, 
cellulitis, furuncles, folliculitis, carbuncles, scalded skin 
syndrome, and fasciitis [109]. The induced changes 
occur due to inflammation, the initiation of oxidative 
stress reactions, and the impairment of healing.

Inflammation

Physiologically, the physical and biochemical 
barriers of the skin are composed of keratinocytes as 
well as the associated lipids, sweat, and AMPs [110]. The 
outer epidermis contains keratinocytes in different stages 
of maturation, T cells, and Langerhans cells, whereas 
the inner dermis is formed by collagen, connective 
tissues, and elastin fibers. These fibers host several 
types of immune cells, such as dermal dendritic cells, 
macrophages, mast cells, T and B lymphocytes [111]. 
Therefore, the skin contains a considerable number 
of immune cells which can be involved in fighting 
against S. aureus infection. In particular, the first cells 
that recognize pathogenic microorganisms are the 
keratinocytes via their pattern recognition receptors, 
such as the scavenger receptors MARCO and CD36 
as well as toll-like receptors (TLRs) and nucleotide-
binding oligomerization domain-1 [112], [113]. The 
induced signaling pathways through these receptors 
are the main contributors of inflammation. This activates 

distinct transcriptional factors to form and release 
cytokines, including interferon γ (IFNγ), IL-1α, IL-1β, 
IL-17A and F, TNFα, and IL-22. Furthermore, signaling 
molecules mediate the generation of chemokines and 
antimicrobial effectors, such as inducible nitric oxide 
synthase and AMPs [114], [115].

Intriguingly, TLR2 on keratinocytes and 
resident macrophages recognize S. aureus to release 
neutrophilic chemoattractant and AMPs, such as 
defensins and LL-37, and this enhances cytokine 
release and phagocytosis [114]. Therefore, it is thought 
that TLR2 is a critical element in combatting S. aureus 
infection [116]. The recruitment of monocytes and 
neutrophils to the site of infection is regulated by 
dermal and perivascular macrophages [117]. The 
recruited neutrophils in the skin can phagocytose 
S. aureus cells, undergo degranulation, and form 
extracellular nets (traps) for bacterial cell killing. 
This would mediate abscess formation, which would 
ultimately be encapsulated with a fibrous substance 
and macrophages (Figure 7). However, toxins 
produced by virulent strains, such as PVL, PSMs, 
and α-toxin, can accelerate neutrophil death and 
subsequently initiate the release of IL-33, IL-1α and 
other danger associated molecular patterns, leading 
to variable forms of SSTIs [66].

Oxidative stress

Oxidative stress is another important part of 
the host immune response. During an oxidative burst 
(following phagocytosis), macrophages, neutrophils, 
and monocytes can generate O-

2, HOCL, and H2O2 
(components of the reactive oxygen species [ROS]) via 
the action of NADPH oxidase and myeloperoxidase. 
This causes bacterial cell death by direct and indirect 
mechanisms [118], [119]. However, ROS accumulation, 
either by ROS overproduction or impaired elimination, 
can lead to oxidative stress. In such an instance, 
cell damage is induced by protein oxidation, DNA 
mutation, and lipid peroxidation [120]. In S. aureus 
infections, oxidative stress is promoted in neutrophils, 
macrophages, and leucocytes, and this is associated 
with increased free radical production and limited 
antioxidant effects by such cells [121]. These changes 
would cause further damage to the injured skin in 
SSTIs causing increased severity of symptoms and 
exacerbated inflammation. ROS overproduction can 
also damage extracellular matrix proteins and alter the 
functions of fibroblasts and keratinocytes. Besides, it 
maintains the activation of proinflammatory cytokines 
and activates metalloproteases [122].

Like ROS, nitric oxide is a reactive oxidant 
having bactericidal and properties against S. aureus. 
It is virtually produced by all immune cells, and it is 
regarded an important component of reactive nitrogen 
species [123]. Nonetheless, excessive nitric oxide levels 
can induce adverse effects by inducing apoptosis of host 
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cells, inhibiting cell proliferation, and preclude antigen 
presentation and TNFα production by phagocytes. 
In addition, nitric oxide can be utilized by S. aureus to 
proliferate and to mediate lactic acid fermentation to 
inhibit the activation of stress regulon [124].

Impaired healing

Normally, wound healing comprises of four 
stages, including coagulation, inflammation, cell 
division and epithelial resurfacing [125]. The existence 
of pathogenic S. aureus would interfere with the healing 
process through protease and toxin secretion, which 
would promote antibiotic resistance [126]. S. aureus 
toxins reduce the number of fibroblasts, preclude 
collagen production, and maintain the production of 
inflammatory mediators [127]. Furthermore, chronic 
infections characterized by excessive release of 
oxidants and proteases by immune cells would degrade 
the extracellular matrix; hence, it cause difficult healing. 
Recently, it has been shown that biofilm formation 
in chronic S. aureus infection contributes to the 
inhibition of granulation tissue formation and impaired 
tissue biomechanics [128]. In addition, these biofilms 
would deplete oxygen, raise tissue alkalinity, and 

induce dermal cell apoptosis, which impede wound 
healing [129].

PART II - STAPHYLOCOCCUS AUREUS 
IN TWO MAJOR INFLAMMATORY SKIN 
DISORDERS-AD AND PSORIASIS

S. aureus and skin inflammatory lesions

In the healthy skin, the adaptive immune 
homeostasis is controlled by commensal skin microbes 
via interaction with specific populations of effector T 
cells and antigen-presenting cells (APCs) [130], [131], 
providing a balance between supporting the commensal 
microbial survival and protecting against the overgrowth 
of pathogenic organisms. The relationship between 
dysbiosis of skin microbes and some inflammatory 
conditions has recently grabbed the attention of 
researchers. This was specifically relevant in patients 
with AD and psoriasis.

Figure 7: Pathophysiologic response to Staphylococcus aureus skin infection
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AD

In AD patients, skin barrier functions are 
significantly impaired, with multiple defects in the 
innate immune activity and decreased expression of 
AMPs [132]. Loss-of-function mutations in the FLG 
gene, which encodes the structural protein filaggrin 
in keratinocytes and corneocytes, represent a major 
genetic risk factor for AD development [133]. As a 
consequence, AD patients are susceptible to increased 
S. aureus colonization and reactive sensitization. It has 
been shown that S. aureus could be isolated from 80 
to 100% of atopic skin lesions, often without apparent 
symptoms of infection [134]. The strain has led a state 
of temporal dysbiosis in active atopic inflammatory 
lesions as revealed by microbiome analyses, indicating 
the contribution of S. aureus in AD [135]. Besides, 
the density of staphylococcal populations has been 
associated with the severity of eczema [136], and this 
might correlate with AD flare-up. Indeed, the inherent 
changes in the morphology and surface composition in 
dead keratinocytes (corneocytes) of the AD skin might 
provide a good medium to multiple ligands to which 
S. aureus can be attached [137]. For instance, fibronectin 
is abundant in AD lesions; thus, it becomes available 
to the staphylococcal FnBPs [138]. In additional, the 
cornified proteins cytokeratin and loricrin facilitate the 
binding to multiple microbial CWA proteins [139].

In addition to the relationship between S. aureus 
colonization and AD inflammation, S. aureus possesses 
a couple of virulence factors that exacerbate the disease, 
including superantigens, biofilm formation, and virulence 
proteins (Figure 8). Microbial superantigens are a group 
of toxins that activate large populations of T cells at 
small concentrations. These include staphylococcal 
enterotoxins (SEs), toxic shock syndrome toxin-1 
(TSST-1), and the SEs-like proteins [140]. Several SE 
serotypes have been described, ranging from SEA 
to SEE and SEG-SEQ. In contrast to conventional 
antigens, superantigens act without internalization or 
antigen processing, bind to the variable region of the 
β chain (Vβ) of T receptors, and bind to subtypes of 

APCs with the major histocompatibility complex class II 
(MHC II) different than those bound to conventional 
antigens [141]. Upon T cell activation, proinflammtory 
cytokines and chemokines, such as IL-1, IL-2, TNF 
α, and IFNγ, are massively produced, leading to the 
development of fever, hypotension, and shock.

In the context of AD, staphylococcal strains that 
produce large numbers of superantigens are associated 
with profound T cell activation that could be resistant to 
the immunosuppressive effect of corticosteroids, a matter 
which is evident during patient management [142]. 
T cells exert a major role in skin inflammation, and 
the lesions could be exacerbated by superantigens 
produced by S. aureus, particularly SEA, SEB, SEC, and 
TSST-1 (Figure 9). These superantigens bind to MHCII 
molecules on the surface of APCs and T cell receptors 
on T cells. Such toxins induce selective accumulation of 
T cells expressing Vβ and induce Th2 cells to release 
IL-31, which causes several pathogenic consequences, 
such as precluding keratinocyte differentiation and 
reduced filaggrin expression; therefore, patients 
would experience skin barrier disruption and itching. 
Furthermore, superantigens act also as allergens 
and mediate a profound IgE response [143]. As a 
consequence, histamine is released by mast cells and 
basophils in sensitized patients (Figure 9).

Besides superantigens, several virulence 
factors can interact with AD lesions simultaneously. 
The susceptibility of differentiating keratinocytes 
to α-toxin increases in AD patients than healthy 
individuals due to reduced filaggrin expression; hence, 
the skin barrier is significantly disrupted, allowing the 
penetration of allergens and irritants [144]. Moreover, 
the increased expression of SpA and its ligand TNFR1 
in AD patients indicates that SpA may exert a potent 
role in inflammation via inducing a proinflammtory 
response [145]. Furthermore, PSMs and gamma 
toxin cause non-degenerative degranulation and 
lysis of mast cells, respectively, and they can result 
in excessive skin damage and inflammation [146]. 
Noteworthy, Jun et al., [145] introduced a concept of 

Figure 8: Implications of Staphylococcus aureus in atopic dermatitis
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membrane vesicles (MVs), which can deliver SpA and 
potentially superantigens to keratinocytes in-vitro. Only 
intact MVs were able to perform this function, causing 
worsening of AD symptoms. Finally, biofilm formation is 
a hallmark property of S. aureus strains in AD lesions, 
while such a phenomenon is less recognized in non-
lesional areas [147]. Actually, biofilm producers can 
lead to increased AD severity, impaired host immune 
responses, increased rates of recurrent and refractory 
infections, and increased resistance to antimicrobials 
as compared to planktonic bacteria [147], [148], 
[149], [150]. Interestingly, proteases in a S. aureus 
biofilm are responsible for the degradation of cathelicidin 
LL-37, an important skin AMP; therefore, chronic S. 
aureus colonization is sustained [149].

Notably, reduced S. aureus colonization 
decreases the severity of AD lesions [150], [151]. 
Nevertheless, although antiseptics and antibiotics 
can reduce bacterial colonization, relapses can take 
place within a few weeks due to decolonization. In 
essence, resistant strains to decolonization by fusidic 
acid and mupirocin are increasingly reported [152]. As 
a consequence, the lack of therapeutic efficacy with the 
emergence of these resistant strains has underscored 
the importance of avoiding the long-term use of topical 
or systemic antimicrobial in AD [153].

In sum, skin colonization with S. aureus is 
frequent in AD patients, leading to exacerbation of skin 
inflammation by several virulence factors. There is a lack 
of effective topical or systemic antibiotics, even when 
used over long periods, for bacterial decolonization during 
AD flare-ups when added to steroid treatment [154]. This 
might be associated with the emergence of resistant 
strains or might increase the risk of adverse effects owing 
to using antibiotics in high concentrations. Recent reports 
have demonstrated that MRSA strains were isolated 
from skin lesions in 12.9–26.6% of patients with AD, with 
the predominance of PVL and SEB toxins compared to 

susceptible isolates [155], [156], [157], [158]. As such, 
there is a strong need to develop robust alternatives with 
a high-efficacy and reasonable safety measures.

Psoriasis

Psoriasis is another chronic inflammatory 
condition affecting about 0.1–11.4% of the general 
population [159]. Multiple pathogenic mechanisms have 
been proposed for disease pathogenesis, including 
autoimmune reactions, systemic drugs, mild trauma, 
infections, and stress [160]. The link between skin 
microbial dysbiosis and disease activity has been 
investigated, yet most of the studies have focused on 
Streptococci. This is because substantial alteration of the 
skin microbiota has been dominated by Streptococcus spp. 
in psoriasis lesions; however, streptococcal infection has 
been involved in initiating a single subtype of the disease 
(guttate psoriasis) [161], [162]. Nevertheless, the diversity 
of microbial communities in psoriasis lesions [163], [164] 
has suggested other microbial signatures which may have 
additional roles in disease pathogenesis.

The impact of S. aureus on disease 
pathogenesis has been studied elsewhere. The 
bacteria can exacerbate the disease by acting as a 
triggering factor, which can initiate a robust immune 
response mediated by TLRs [165]. More specifically, 
the triggering molecules include the cytolytic α-toxin, 
SpA, superantigens (mostly SEA and SEC) [166], 
lipoteichoic acid, and the staphylococcal PGN. Indeed, 
the immunomodulatory effects of S. aureus in psoriasis 
are exerted in two major pathways. First, PGN induces 
the expression of IL-13 and the vascular endothelial 
growth factor in keratinocytes. IL-13 would further 
stimulate VEFG expression in a positive feedback 
loop. The second pathway includes increasing 
the expression of the human cathelicidin LL-37 by 
the infiltrating neutrophils and keratinocytes under the 

Figure 9: The pathogenic process induced by Staphylococcus aureus in atopic dermatitis patients
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influence of PGN and other staphylococcal triggering 
molecules. Subsequently, LL-37 binds to self-DNA 
fragments located in the extracellular dermis; hence, 
such a complex would stimulate the release of IFN-α 
by plasmacytoid dendritic cells via TLR9 activation. 
Ultimately, Th1 and Th17 are activated, and IL-22, 
IL-17, and INF-γ are overexpressed. The released IL 
mediate further LL-37 production, which repeatedly 
induces proinflammatory responses as seen in psoriasis 
(Figure 10).

The aforementioned postulated mechanisms 
may explain the inflammatory pathways induced 
by S. aureus virulence factors in psoriatic lesions. 
This might be influenced by the degree of bacterial 
colonization and infection. A systematic review and 
meta-analysis of 21 comparative studies has shown that 
patients with psoriasis had a 4.5-fold increased risk of S. 
aureus colonization compared to healthy controls [167]. 
Besides, the proportion of psoriasis patients with MRSA 
were significantly higher than MRSA-colonized healthy 
controls (8.6% vs. 2.6%, respectively) [167], However, 
the impact of other cocolonizing organisms may be 
evident. Chang et al., [163] have demonstrated a loss 
of microbial community stability, with a significantly 
increased colonization of S. aureus and other pathogenic 

strains at the expense of other immunoregulatory 
bacteria, such as Propionibacterium acnes and 
Staphylococcus epidermidis. In the same context, 
Fyhrquist et al., [164] have recently shown that while 
S. aureus was the dominating microbial species in AD 
lesions, skin psoriatic lesions were colonized by multiple 
genera, such as Streptococcus, Staphylococcus, and 
Corynebacterium. Actually, patients with psoriasis are 
36% less likely to encounter S. aureus colonization on 
their skin lesions compared to AD patients [167].

In a nutshell, S. aureus colonization in psoriasis 
lesions may play a role in psoriasis pathogenesis. Such 
effect is mediated via a superantigen-driven TLR9 
pathway with selective T cell recruitment. Distinct types 
of skin cells, such as dendritic cells and keratinocytes, 
contribute to the process of plaque development. 
However, its impact on the inflammatory processes 
is less apparent than that in AD patients given the 
diversity of colonizing organisms in psoriasis patients. 
While several aspects of psoriasis pathogenesis are still 
enigmatic, the identification of early triggering factors, 
among which S. aureus products are involved, could 
provide novel therapeutic targets for the prevention and 
treatment of psoriasis.

Figure 10: The interaction between keratinocytes and immune cells in psoriasis
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PART III - NEW TREATMENT STRATEGIES 
TO SURMOUNT ANTIBIOTIC RESISTANT 
SKIN INFECTIONS USING HERBAL 
COMPOUNDS

Novel Treatment Strategies for Anti-
microbial Resistant Skin Infections: 
Herbal Treatments

From the foregoing discussion, the frequent 
isolation of S. aureus and MRSA strains in skin infections 
and some inflammatory conditions may corroborate 
their role in disease pathogenesis. For skin infections, 
several antibiotics have been used in the clinical 
practice. In dermatology, mupirocin (pseudomonic 
acid) has been extensively applied topically to treat 
patients with SSTIs and to eliminate nasal carriage of 
MRSA [168]. However, mupirocin resistance has been 
shortly detected 2 years after its first introduction in 
1985 [169]. Furthermore, the increased use of such 
antimicrobial for the management of chronic infections 
has been associated with increased rates of resistance. 
While early studies showed that mupirocin resistance 
in clinical isolates ranged between 7.7% and 19% in 
the late 1990s [170], more recent reports demonstrated 
incidences that reached as high as 31.3% [171].

This raises the need for identifying and 
developing new methods of treatment. Plant-based 
medicines have been used since 5000 years ago for 
the treatment of multiple conditions, including infectious 
diseases [172]. From the historical perspective, much 
is known about the origin and development of many 
medicinal plants in the traditional medicine of the 
ancient Greeks, Ayurveda, and traditional Chinese 
medicine [173], [174]. In North America, the use of 
medicinal plants has begun by the Native Americans, 
and subsequently conveyed to the European 
settlers  [175]. In Australia, the Aboriginal pharmacopeia 
has essentially been incorporated with a diverse set of 
herbal remedies that served the Aboriginal people as 
well as the colonists who arrived in the late 1700s [176]. 
Thus, the historical basis of medicinal plant applications 
in disease management, including infectious diseases, 
is robust and continues to this day.

Recently, the interest in herbal remedies has 
greatly increased. A specific search in the PubMed 
database between 1970 and 2020 shows that there 
are more than 19500 publications concerning the 
antimicrobial activity of medicinal plants and their 
extracts. Of them, about 950 scientific articles 
investigated herbal implications in skin infections 
caused by S. aureus and/or MRSA. Plant-derived 
compounds have exhibited favorable outcomes in 
combating the emergence of antibiotic resistance; 
hence, they may potentiate the action of antibiotics 

and restore the activities of antibacterial agents against 
which S. aureus has developed a resistance [177]. 
The antimicrobial properties of herbal agents emerge 
from multiple factors. First, herbal bioactive compounds 
have a complex composition, such that a single active 
constituent may improve the action of another one. 
This would extend the biological activities of a given 
compound in a significant manner rather than using 
that constituent solely. The potentiation of antimicrobial 
effects is ascribed to increased membrane permeability, 
disrupted efflux pumps, or precluded enzymatic 
degradation [178]. Second, the existence of multiple 
active constituents may exert significant additional 
actions on several targets. These include anti-
inflammatory, antioxidant, and/or healing-promoting 
effects. Acting on multiple physiological mechanisms 
would facilitate treatment and improve the outcomes. 
Finally, herbal compounds within a single extract 
may exert synergistic actions, accounting for multiple 
benefits. The pharmacokinetic and physiochemical 
effects of herbal compounds are improved, including 
the chemical solubility, reabsorption, and bioavailability. 
Besides, the resistance mechanisms of bacteria may be 
partly counteracted. In additional, the adverse effects 
of a distinct compound may be alleviated by another 
compound in the same extract. As a consequence 
of these benefits, it has been shown that mixtures of 
herbal compounds can possess significant antimicrobial 
effects than the isolated compounds [179]. The most 
beneficial plant-based compounds in the treatment of 
S. aureus dermatological infections are listed below 
according to their chemical structures.

Terpenes

Terpenes and terpenoids constitute a large 
group of bioactive herbal compounds with a substantial 
chemical diversity. More specifically, more than 40,000 
structural forms of terpenes have been identified, 
of which a few classes possess pharmaceutical 
properties [180]. In general, the basic building blocks 
of terpenes are the 5-carbon isoprene (C5H8) units. 
The addition/removal of functional groups in terpenes 
creates a group of derivatives named terpenoids, which 
have variable antimicrobial activities according to the 
structural changes [181].

Furthermore, the most influential factors of 
antimicrobial activity of phenolic terpenoids are the 
hydroxyl group and the delocalized electrons.

Carvacrol

Carvacrol is a monoterpene found in the 
essential oils of Thymus vulgaris, Origanum vulgare, 
Trachyspermum ammi, Citrus bergamia, and Lepidium 
africanum [182]. It has recently attracted the attention 
of researchers owing to its wide-spectrum antimicrobial 
activities. Besides, it has strong antioxidative properties 
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due to the presence of a hydrophilic phenolic OH group 
and a substituted hydrophobic aromatic ring [183].

In the literature, the MIC of carvacrol 
was divergent. It ranges from 78 to 500 µg/mL for 
S. aureus [184], [185]. S. aureus cells exposed to 
minimum bactericidal concentrations (MBCs) of carvacrol 
for 24 h had depressed PGN structures with deformed 
and wrinkled cell membranes, indicating the leakage of 
intracellular content [186]. It is likely that carvacrol has 
the ability to affect bacterial cell membrane integrity 
by disrupting the proton gradient via exchanging the 
hydroxyl proton for potassium ion. The hydroxyl group 
may also cause significant changes in the composition of 
phospholipids and fatty acids in the cell membrane, causing 
changes in the membrane fluidity and permeability [187]. 
Carvacrol and other components of the essential oil 
may additionally disperse distinct enzymes which 
mediate fatty acid synthesis, such as multicomponent 
membrane desaturase [188]. This can be directly carried 
out by increasing saturated C16 and C18 fatty acids and 
decreasing unsaturated C18 fatty acids. Indirect effects 
can involve the interference with enzymes involved in fatty 
acid synthesis (multicomponent membrane desaturase) 
as well as cis-trans isomerase which regulates the adaptive 
mechanisms to environmental stresses (Figure 11) [187]. 
These effects are exerted simultaneously with the 
aid of essential oil components rather than a single 
phytochemical compound, and this would ultimately 
increase the amount of fatty acids, decrease membrane 
fluidity, and increase membrane rigidity [189].

From another perspective, Mouwakeh 
et al., [190] have shown that intracellular accumulation 
of ethidium bromide was significantly increased in the 
presence of carvacrol in methicillin-susceptible strains 
and MRSA, and this subsequently associated with 

the inhibition of mepA efflux pump activities. Efflux 
mechanisms are known methods of antimicrobial 
resistance [191]. Interestingly, membrane integrity of 
both susceptible and resistant bacterial cells decreased 
by 50% by the half MIC, and preformed biofilms by 
these strains have been reduced effectively by 11–35% 
after carvacrol treatment [190].

When tested against oxacillin and vancomycin-
resistant S. aureus strains, carvacrol significantly 
reduced biofilm formation compared to negative 
controls, and it also had low MICs against those strains 
(250 µg/mL) [192]. Evidence indicating the proven 
activity of the hydroxyl group is supported by the lack 
of significant inhibitory effects exerted by another 
phenolic compound lacking such a structural group 
(p-cymene) [190]. Other postulated mechanisms of 
action include the induction of ROS and modification of 
fatty acids in the bacterial cell membrane [193], [194].

However, despite these robust experimental 
outcomes, the applicability of carvacrol in skin 
infections remains limited due to its permeability, which 
results in poor skin retention and the need to frequent 
applications. Recently, Mir et al. [195] developed a drug 
delivery system based on biodegradable polymeric 
nanoparticles (NPs) which could be incorporated 
into ex vivo skin lesions infected by lipase-producing 
S. aureus strains. A hydrogel matrix loaded with NPs 
improved the release of carvacrol and enhanced 
its skin retention after 24 h. This sustained effect 
was also effective against MRSA at the sites of 
infection. However, future comprehensive studies that 
investigate the biocompatibility, pharmacodynamics, 
and pharmacokinetics of carvacrol in-vivo are needed 
to prove its efficacy and safety as a viable alternative of 
conventional antibiotics.

Figure 11: Summary of the effects of herbal active compounds on MRSA
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Thymol

Thymol is a natural phenolic monoterpene 
present in many types of essential oils extracted from 
T. vulgaris, O. vulgare, T. ammi and other multiple 
types of plants [196], [197]. It is a carvacrol isomer 
with antioxidant, antimicrobial, anti-inflammatory, 
and antispasmodic properties [198]. The antioxidant 
effects of thymol have supported its use as nutritious 
substances in functional foods [199]. In addition, 
there is an evidence showing anti-cancer effects of 
thymol [200]. Thymol has also been utilized in the 
dentistry practice in a combination with chlorhexidine to 
prevent the development of caries [201].

Focusing on the antimicrobial activity, the 
first investigational study of thymol activity against 
S. aureus was in 2004 [184]. Results showed significant 
inhibitory actions against both susceptible and resistant 
strains, and there was no significant difference between 
these strains. In a more recent study, García-Salinas 
et al., [186] showed that thymol exhibited strong 
bactericidal activities. In particular, scanning electron 
microscopy (SEM) revealed a significant damage of the 
PGN layer following the exposure to MBCs of thymol 
for 24 h. Notably, a thymol-carvacrol combination 
had an additive bactericidal effect, whereas the 
combined effects of thymol and the active compound 
cinnamaldehyde was not apparent. The additive 
actions of thymol and carvacrol may be related to the 
similarity in their chemical structures [186]. Similarly, 
Kifer et al. [202] found that the MIC of thymol against 
S. aureus planktonic cells ranged between 0.250 and 
0.375 mg/mL, while the minimum biofilm-eliminating 
concentration of a mupirocin-thymol combination was 
two-fold higher than the MIC. Another combination 
comprising of thymol, EDTA, and vancomycin acted 
synergistically to reduce the colony count of MRSA 
strains [203]. As such, it seems that thymol combinations 
with other antimicrobials are more effective in reducing 
the burden of infection; however, more extensive 
studies are needed to assure the clinical efficacy and 
safety of these combinations.

As with other phenolic terpenes, thymol has 
the ability to move across the watery extracellular 
medium (due to its relative hydrophilicity) and induce 
significant alterations in membrane permeability via 
leakage of protons, potassium ions, and ATP [204]. 
This leads to leakage of intracellular components [186]. 
The bactericidal effects of thymol could be attributed 
to its capacity to bind to IolS and increase its activity 
as revealed in bioinformatics analyses [205]. IolS is 
a protein which is able to reduce aldo-keto reductase 
(AKR) substrates, such as carbonyl substrates, in 
the presence of NADPH. AKRs play important roles 
in the metabolism of steroids, which are pivotal 
for bacterial cell membrane fluidity. Thymol has a 
significant implication in enhancing the AKR activity 
of IolS; therefore, NADPH is depleted, leading to the 
depletion of glutathione (GSH), increased susceptibility 

to hydroxyl free radicals, oxidative damage, and 
eventually bacterial cell death [205]. NADPH depletion 
can also decrease the rate of lipid synthesis and adds 
to the cell membrane compromise.

Notably, thymol activity against S. aureus 
biofilms has been investigated elsewhere. Kifer 
et al. [202] indicated that the biofilm inhibitory potency 
of a thymol-mupirocin combination was significantly 
higher than that of mupirocin combinations with other 
monoterpenes, including menthol and 1,8-cineole [202]. 
It is therefore possible that thymol has enhanced the 
activity of mupirocin through disturbing membrane 
permeability; thus, a synergistic action was evident. 
Similar observations regarding antibiofilm activities 
were recently reported, where bacterial growth within 
preformed biofilms was significantly reduced after thymol 
treatment compared to non-treatment or treatment 
with cinnamaldehyde [186]. The mechanism by which 
thymol can inhibit biofilm formation is still unknown. It 
has been postulated that the phenolic phytocompound 
can interfere with the production of MSCRAMMs and 
the release of eDNA within biofilms [206].

It is noteworthy that the subcytotoxic doses 
of thymol were 0.090, 0.060 and 0.060 for fibroblasts, 
keratinocytes, and macrophages, respectively [186]. 
These values were lower than the MIC and MBC 
concentrations, but they were higher than those 
reported for the skin antiseptic chlorhexidine. Indeed, 
these important experimental outcomes corroborate the 
safety of thymol and support a rationale to its integration 
in skin preparations as an alternative to chlorhexidine 
for the treatment of infected wounds.

In addition, thymol application in skin diseases 
could extend to AD lesions. While intact MVs are 
required to effectively deliver effector molecules, 
such as SpA and superantigens, to keratinocytes in 
AD lesions and promote inflammation (discussed in 
section 4.4.1), topical application of thymol suppressed 
AD exacerbation in a mouse model by the disruption 
of MVs [207]. More specifically, thymol treatment 
disrupted the membranes of EVs, and thus it inhibited 
the expression of pro-inflammatory cytokines and 
chemokines induced in response to MVs, suppressed 
the inflammatory responses mediated by Th1, Th2, 
and Th17, and decreased the levels of IgG2a and total 
IgE. Therefore, in addition to the direct antimicrobial 
properties, thymol can alleviate the exacerbation 
of S. aureus infection via targeting EV-induced 
inflammatory responses in AD [208].

Terpinen‐4‐ol

Terpinen-4-ol is the principal component of tea 
tree oil, which is obtained by steam distillation of the 
Australian native plant Melaleuca alternifolia. The first 
evidence regarding the antimicrobial effects of tea tree 
oil has been published three decades ago, when Carson 
et al. [209] found that the MIC against MRSA was 
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0.25 mg/mL. Since then, such an essential oil has proven 
effective as an antiviral and antifungal agent and it had 
bactericidal activities against several types of bacteria, 
including MRSA, methicillin-sensitive S. aureus, and 
coagulase-negative S. aureus [210], [211], [212], [213].

Nevertheless, the main component of the 
essential oil has different results. The MIC and MBC 
of terpinen-4-ol were significantly better than tea tree 
oil against both coagulase-negative and MRSA clinical 
isolates taken from skin samples of patients who had 
undergone spinal surgery [213]. Moreover, the log10 
reduction in viable count of MRSA was significantly 
greater following an experimental exposure of the isolates 
to 5% terpinen-4-ol compared to 5% tea tree oil [213]. 
Likewise, Noumi et al. [214] have pointed out that the 
MIC against MRSA strains isolated from skin lesions and 
the blood ranged between 0.048 and 1.52 mg/mL for 
terpinen-4-ol and 6.25–50 mg/mL for the whole volatile 
oil, and the difference was statistically significant.

It is therefore plausible that the presence of 
a non-oxygenated component in tea tree oil, such as 
γ-terpinene, might have accounted for the reduced 
aqueous solubility of the compound, thereby reducing 
the effective concentrations of active molecules in 
the bacterial cell surface. On the other hand, the 
use of terpinen-4-ol exclusively has exerted potent 
antimicrobial properties given the combined hydrophilic 
(to diffuse through the surrounding media) as well as 
hydrophobic properties (to deliver the active compound 
to the cell surface) [213]. In contrast, a recent 
investigation of the available commercial preparations 
of tea tree oil used for cutaneous infections [215], it 
has been shown that the antimicrobial batches with 
the highest concentrations of terpinen-4-ol were the 
least effective in combatting MRSA and P. aeruginosa 
compared to those with low concentrations of the 
active compound. The synergistic effect of different 
compounds in the mixture may be notable; however, 
this warrants further investigations.

In general, it seems that antimicrobial 
preparations of tea tree oil formulated based on ISO 
4730 specifications are effective in reducing the MRSA 
burden. This includes ≥30% terpinen-4-ol and <15% 
1,8-cineole. To get an insight into the main mechanism 
of action involved in the bactericidal effect of terpinen-
4-ol, Carson et al. [216] revealed a significant increase 
in the optical density of bacterial suspensions treated by 
tea tree oil or terpinen-4-ol exclusively for 60 min (but 
not 30 min) compared to control suspensions. Besides, 
the authors viewed multilamellar, mesosome-like 
structures in the cytoplasm of many treated cells, which 
were not seen in untreated cells. These findings indicate 
that the active compound compromised the cellular 
morphology of bacterial cells and induced a delayed 
cell lysis. Such a delayed effect might be explained by 
non-membrane-specific mechanisms, such as blockage 
of membrane-bound proteins or antagonizing bacterial 
enzymes [216]. The non-specific mechanism can be 

further corroborated by the lack of a significant difference 
in the antimicrobial activity between terpinene-4-ol and 
its L-isomer [213], [217]. Alternatively, terpinen-4-ol might 
cause changes in the intracellular osmotic pressure, 
which weakens the cell wall and causes rupture of the 
cell membrane [216]. Concomitantly, sublethal doses 
of terpinen-4-ol might alter membrane permeability and 
impact its capacity to regulate the osmotic pressure and its 
ability to exclude toxic materials. This might partly exclude 
a direct effect on the cytoplasmic membrane [216], [218].

Of note, the appearance of mesosomes and 
the loss of cytoplasmic content may support the inability 
of terpinen-4-ol to lyse S. aureus cells, and these 
findings are comparable to other antimicrobial agents, 
such as vancomycin and phenethyl alcohol [219], [220]. 
Recently, Ramadan et al. [221] have shown prominent 
bactericidal effects of a tea tree preparation 
(44% terpinen-4-ol) incorporated into silver NPs. The 
authors found that S. aureus cells contained the NPs in 
their cell walls and cell membranes, and these structures 
became detached with a severe damage of the whole 
bacterial cells as viewed by transmissible electron 
microscopy (TEM). Therefore, the antimicrobial effect 
of terpinen-4-ol may be attributed to a series of cellular 
events that would ultimately alter the chemiosmotic 
control of bacterial cells.

Regarding antibiofilm activities, it has been 
shown that different concentrations of terpinen-4-ol, 
reaching as low as MIC/16, were effective to inhibit 
the adhesion of biofilm-forming S. aureus strains to 
polystyrene and glass surfaces [214]. In addition, these 
concentrations inhibited biofilm formation and were able 
to eliminate 73.8–91.2% of the formed biofilms. This 
might be related the mentioned capacity of bacterial 
killing. Furthermore, terpinen-4-ol may possess inherent 
abilities to disrupt the extracellular matrix of bacterial 
biofilms similar to the whole tea tree oil as revealed by 
SEM studies [214], [222]. However, the methodological 
differences in the assessment of biofilm viability should 
be considered while interpreting the favorable effects of 
tea tree oil or its components [222], [223].

In line with these promising effects, it is 
necessary to employ the non-specific antimicrobial 
actions to develop robust anti-MRSA formulations. 
Nonetheless, it is imperative to investigate the possibility 
of developing a resistance to terpinen-4-ol. Interestingly, 
clinical resistance has not been reported and the 
experimental attempts to generate resistant bacteria 
were unsuccessful so far [224], [225]. Conversely, it 
has been shown that the Gram-negative P. aeruginosa 
possesses special efflux pumps that would be able 
expel the active compounds of tea tree oil, including 
terpinen-4-ol, 1,8-cineole, and α-terpineol [226], [227]. 
On the other hand, it is imperative to investigate the role 
of terpinen-4-ol or its major essential oil, tea tree oil, 
on the development of resistance to other antimicrobial 
agents. Hammer and colleagues [228] showed that 
culturing of S. aureus with subinhibitory doses of 
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terpinen-4-ol or tea tree oil induced no significant 
difference in the frequency of resistance to vancomycin, 
mupirocin, or ciprofloxacin. In addition, there were no 
significant differences in the MICs of these antimicrobial 
agents, indicating no changes in the susceptibility 
profiles of the bacteria [228]. Similarly, habituation to 
tea tree oil yielded a slight (nonsignificant) increase in 
MICs of vancomycin, mupirocin, linezolid, and fusidic 
acid, when these antibiotics were tested against MRSA, 
coagulase-negative S. aureus, or methicillin-susceptible 
S. aureus [229]. Therefore, tea tree oil or terpinen-4-ol 
can be effectively used as a topical antiseptic to control 
skin infections by S. aureus, including resistant strains.

Notably, the application of terpinen-4-ol in 
skin infections can be further supported by its anti-
inflammatory effects. It has demonstrated that terpinen-
4-ol reduced the lipopolysaccharide (LPS)-induced 
pro-inflammatory responses elicited by peripheral 
blood monocytes and macrophages [230], [231]. 
More specifically, it reduces TNFα and IL-1, IL-8, and 
prostaglandin E2 [230]. These inhibitory effects are 
primarily mediated by modulating the activation of 
NF-κB or the ERK MAPK pathways [231]. Terpinen-
4-ol was also able to reduce superoxide production 
by monocytes, but not neutrophils, in response to 
LPS [232]. Furthermore, terpinen-4-ol can alleviate 
histamine-induced wheal and flare reaction [233]. 
Given that the parent essential oil has evident tissue 
remodeling activities, such as antiproliferative effects on 
dermal fibroblasts as well as enhancing the expression 
of epidermal growth factor receptor, tissue inhibitor 
of metalloproteinase, and matrix metalloproteinase 
1 [234], it is likely that may exhibit similar properties, 
or at least act synergistically with other oil components, 
to alleviate inflammation. It is therefore possible to use 
terpinen-4-ol as a topical anti-inflammatory agent.

Regarding the clinical aspects, early studies 
showed that tea tree oil can induce weak to moderate 
sensitizing reactions, but the sensitizing potency is 
augmented by oxidation [235], [236]. The oxidized 
products of terpinen-4-ol and α-terpinene are strong 
sensitizers as reported previously [237], [238]. 
However, the application of 5% and 10% terpinen-4-ol 
on the skin of health volunteers and dermatitis patients, 
respectively caused no irritation or sensitization [239].

In sum, terpinen-4-ol has prominent antimicrobial 
activities although the exact mechanism of action on 
S. aureus cells is still unclear. It can be used as a topical 
antiseptic, preferably in combination with other antimicrobial 
agents, to eliminate MRSA colonization and S. aureus skin 
infections. It also possesses tissue remodeling effects 
and anti-inflammatory activities which target the pro-
inflammatory cytokines as well as superoxide production. 
Further studies are required to assess the therapeutic 
potential of terpinen-4-ol in skin inflammatory conditions 
mediated by S. aureus, such as AD and psoriasis.

Citral

Citral is a monoterpenoid aldehyde 
(3,7-dimethyl-2,6-octadienal) found in the essential oil of 
multiple plants, including Backhousia citriodora F. Muell, 
Litsea cubeba, Ocimum basilicum, and Cymbopogon 
citratus [240], [241]. There are two geometric 
stereoisometric forms: citral A (the E-isomer) and citral B 
(the Z-isomer) [242]. Owing to its characteristic aroma, 
citral is used as a flavor enhancer and as a scent in 
perfumes. Citral has also antitumor, antiparasite, and 
antimicrobial effects [243], [244], [245].

The antibacterial activity of citral has been 
demonstrated elsewhere [246], [247]. Systemic 
administration of citral in vivo has led to significant 
reductions of oxidative factors (hydroxyl radicals 
and malondialdehyde) and cytokines (TNF-α, IL-1β, 
IL-6), and this was associated with an increased 
survival of MRSA-infected mice [248]. Experimentally, 
the MIC against MRSA 2071 ranged from 75 to 
150 µg/mL, which was lower than that of other 
antibiotics (>500 µg/mL) [249]. Citral, either individually 
or being integrated into lemon grass essential oil, has 
been associated with significant inhibitory actions 
against MRSA and VRSA isolated from wound pus 
samples [250]. Therefore, it seems that citral has 
antibacterial and anti-inflammatory actions.

Notably, the main mechanism of action of citral 
does not supposedly target bacterial cell wall. This is 
because the difference in the bacteriolysis assays 
showed no significant difference in the optical density 
between citral-treated and non-treated S. aureus cells, 
indicating the lack of extracellular nucleic acids, which 
is inherently observed with bacterial cell rupture [249]. 
Alternatively, citral can significantly inhibit efflux pumps 
as revealed by reduced extrusion of ethidium bromide 
from bacterial cells [249]. Moreover, citral may interact 
with bacterial DNA; hence it forms chimera to inhibit 
the biological activity of DNA as shown by ultraviolet 
spectroscopic analysis [251].

Of note, citral can synergistically interact 
with other antibiotics. For instance, Gupta et al. [249] 
revealed 4-to 32-fold reduction in the MIC values of 
norfloxacin when it was combined with citral against 
six MRSA clinical isolates. Other synergistic actions 
with erythromycin, streptomycin, and penicillin were 
apparent, yet such a synergism involved lower numbers 
of clinical isolates.

Importantly, citral has been found to activate 
transient receptor potential (TRP) ion channels present 
in sensory neurons. Besides its antimicrobial activities, 
citral can induce a sustained inhibition of TRPV1-3 and 
TRPM8 [252]. This might indicate the usefulness of 
citral against allodynia, itch, and other dermatological 
and superficial sensory types of pain. However, citral 
has been reportedly associated with some adverse 
reactions, such as allergic contact dermatitis and 
sensitization [253], [254]. Future large-based studies 
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would possibly unravel additional aspects regarding the 
efficacy and safety of topical citral preparations.

Eugenol

Eugenol is the main constituent of clove 
oil, comprising 45–90% of its essential oil. Eugenol 
is also found in cinnamon (Cinnamomum verum), 
beans, soybeans, and bay laurel [255], [256]. It is 
a phenolic compound (4-allyl-2-methoxyphenol) 
commonly used a preservative and a flavoring agent 
in food industry and the cosmetic field [257]. The 
phytocompound has been a focus of research owing 
to its growing roles in preventing chronic illnesses, 
such as cancer, inflammatory diseases, and other 
conditions [258], [259]. It has pharmacological effects 
on almost all body systems through its comprehensive 
anti-inflammatory, antioxidant, local anesthetic, 
analgesic, and cardioprotective properties [260].

As for MRSA-related conditions, eugenol has 
demonstrated promising results. Generally speaking, 
the MICs of eugenol range between 42 and 665 µg/mL 
against multiple MRSA strains [261], [262], [263]. Besides, 
at sub-inhibitory concentrations, the compound was 
effective against S. aureus biofilms. In particular, 
eugenol-supplemented MRSA samples isolated from 
food handlers exhibited a marked reduction of the 
biofilm mass in a dose-dependent manner compared 
to untreated samples; this was further corroborated by 
light microscopy assays [262]. In addition, bacterial cell 
aggregation and cell-to-cell connection were prevented 
as visualized by SEM [263]. Interestingly, molecular 
docking experiments showed that eugenol can interact 
with sarA, which is a key regulator of biofilm formation 
in S. aureus [262], [264]. It can reduce the expression 
of biofilm-related genes, such as icaD, SEA, and sarA 
genes [263].

It has been also shown that eugenol can 
eliminate established biofilms at the MIC; this effect could 
be mediated via reducing the number of viable S. aureus 
cells, promoting cell lysis, or the disruption of cell-to-cell 
connection. As with other hydrophobic phenolic 
compounds, eugenol would result in disruption of the 
cell membrane, loss of normal shape of the bacteria, 
and reduced cell-to-cell detachment. As a lipophilic 
phytochemical, eugenol can interact with bacterial cell 
wall and cytoplasmic membrane, influence the hierarchy 
of polysaccharides, phospholipids, and fatty acids, disrupt 
the permeability of cell membrane, and ultimately induce 
cell lysis [182]. It is worthy to note that a combination of 
eugenol and carvacrol (at concentrations of 0.02% and 
0.01%, respectively) could act synergistically against 
MSSA and MRSA, and such a combination would reduce 
the established biofilms by 99% [263].

Eugenol has also been tested against 
mupirocin-susceptible and low-level-resistant S. aureus 
strains, revealing an MIC of 240 µg/mL. Furthermore, 
a combination of eugenol and mupirocin exhibited an 

additive antimicrobial effect against mupirocin-resistant 
strains, while antagonistic and inconsistent effects 
were apparent against the susceptible strains [265]. 
These outcomes indicate the importance of eugenol 
in eradicating the colonizing strains which might show 
resistance to mupirocin.

Phenolic compounds

Curcumin

Curcumin is a natural polyphenolic compound 
present in the rhizome of turmeric (Curcuma longa) 
as well as in other Curcuma species [266]. In 
addition to its widespread use in the culinary world, 
turmeric has long been known in Asian medicine 
for its therapeutic properties as an antioxidant, 
anticancer, anti-inflammatory, and antimutagenic 
compound [266], [267], [268]. Similarly, curcumin 
(1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-
3,5-dione) has proven beneficial in pain control and 
the management of metabolic syndrome, inflammatory 
conditions, and degenerative eye diseases [269], [270].

Notably, the medicinal properties of curcumin 
have largely been focused on the anticancer 
activities [271]. Nonetheless, the antibacterial activity 
of the phytochemical was documented as early as in 
1949 [272], when curcumin exhibited promising inhibitory 
effects against Salmonella paratyphi, S. aureus, 
and Mycobacterium tuberculosis. Studies indicating 
inhibition of susceptible and resistant S. aureus 
strains are increasingly reported. For example, Gunes 
et al. [273] have determined MICs against MSSA and 
MRSA at 219 and 217 µg/mL. Similarly, other broth 
microdilution assays revealed MICs ranging between 
187.5 and 500 µg/mL for S. aureus [274], [275].

To further assess the main mechanism of 
action, Mun et al. [276] conducted viability assays, 
western blotting, and morphological TEM studies 
on four clinical MRSA strains exposed to curcumin. 
The authors found that the antibacterial activities of 
curcumin were significantly enhanced by increasing the 
membrane permeability via triton X-100 and Tris; the 
inhibitory effects were further increased by increased 
curcumin concentrations. Furthermore, the active 
botanical compound bound to PGN in a dose-dependent 
manner. TEM images showed damage of bacterial cell 
membrane after the exposure of S. aureus cell to half 
MIC for 8 h as indicated by cytoplasmic disruption and 
separation [276]. Intriguingly, western blot analyses 
showed a significant reduction of PBP2a levels from 
MRSA by the addition of 250 µg/mL curcumin to 
32 µg/mL oxacillin. It seems that curcumin interferes 
with RNA, and thus inhibits PBP2a protein synthesis.

The synergistic activity between curcumin 
and oxacillin has inspired the researchers to further 
investigate the interaction with other antimicrobial 
agents. Curcumin has reduced the MICs of ampicillin, 
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norfloxacin, and ciprofloxacin, and time-kill curves 
revealed marked reduction of the bacterial count 
following 24 h of treatment [277]. Teow and Ali [278] have 
also shown that 25 µg/mL curcumin acted synergistically 
with amikacin and gentamicin. Based on a disc diffusion 
assay using a sub-inhibitory concentration of curcumin 
(50 µg/disc), the diameter of inhibition zones increased 
significantly by 52.6%, 26.6%, and 24.9% for cefixime, 
tetracycline, and vancomycin respectively [279]. In 
additional, the curcumin derivative diacetylcurcumin 
reduced MRSA biofilm survival significantly compared 
to vancomycin via damaging the general architecture 
and interfering with the synthesis of amorphous cell 
clusters [280].

Other therapeutic benefits of curcumin seem 
to provide considerable support to dermatological 
infections. For example, in mice models, daily topical 
application of 1% curcumin gel decreased the severity 
of psoriasis-like inflammatory lesions; this was exerted 
by interfering with the proinflammatory cytokines, such 
as IL-17A and IL-22, and by the inhibition of potassium 
channels of T cells [281], [282]. In the clinical settings, 
oral turmeric has proven effective in reducing erythema, 
induration, and scaling in patients with scalp psoriasis 
compared to a placebo, and it potentiated the anti-
psoriatic activity of topical steroids by reducing IL-22 
and TNF-α levels [283], [284]. In another phase II RCT, 
oral curcumin was also effective in plaque psoriasis, 
without apparent adverse outcomes [285].

From another perspective, curcumin can 
reduce oxidation and thereby promote wound healing. 
A transdermally applied preparation caused a significant 
reduction of hydrogen-peroxide-induced damage to 
fibroblasts and keratinocytes [286], [287]. In additional, 
curcumin promoted the activity of anti-oxidant enzymes, 
such as GSH peroxidase, catalase, and superoxide 
dismutase [288]. Fibroblast proliferation and deposition 
is another important mechanism by which wound 
healing is accelerated by curcumin as shown in 
animal models [289]. During the early proliferation 
phase, curcumin can induce apoptotic effects; thereby 
it eliminates unwanted inflammatory cells from the 
wounds. Finally, it improves wound contraction via 
enhancing the production of TGF-β [289], [290], [291].

Despite these beneficial findings, one of 
the major limitations with curcumin use is its poor 
bioavailability [292]. This is attributable to its poor 
absorption and rapid metabolism and excretion. 
Therefore, several mechanisms have been tested 
to improve the bioavailability of the compound, 
predominantly by interfering with its metabolism. For 
instance, the bioavailability of curcumin can be increased 
by 2000% with the coadministration of piperine, the 
main active component of black pepper, since such a 
combination can influence intestinal drug absorption 
and the drug metabolizing enzymes [293]. For topical 
use, the bioavailability has been augmented via the 
application of specific curcumin-loaded formulations, 

such as oleic acid-based polymeric bandages [289], 
transdermal patches [286], liposomes [294], and 
chitosan NPs [295]. It is therefore plausible to 
investigate the interaction between curcumin and other 
chemical substances which are commonly used in 
topical preparations in order to get an insight into the 
development of therapeutically effective formulations 
used for particular skin infections/conditions.

Epigallocatechin gallate (EGCG)

EGCG is a powerful antioxidant botanical 
compound and a major constituent of catechins 
extracted from green tea (Camellia sinensis). Catechins 
are polyphenolic compounds belonging to the family 
of flavonoids. The antimicrobial activity of green tea 
extract has been demonstrated in the literature. For 
example, the MIC of green tea extract for MRSA was 
0.4 mg/mL, and the activity of the extract against 
the laboratory S. aureus strain ATCC 25923 was 
comparable to that of oxacillin [296]. Thus, aerosolized 
green tea has been suggested for respiratory MRSA 
infections as recommended in case reports and 
RCTs [297], [298], [299]. Intriguingly, green tea has 
exhibited inhibitory activities against β-lactamase, and it 
showed a synergistic effect with β-lactam antimicrobial 
agents against MRSA isolates [300]. These effects are 
largely attributable to the polyphenolic components of 
green tea extract, such as EGCG, epicatechin gallate 
(ECG), epicatechin, and epigallocatechin.

Focusing on EGCG, it has been suggested 
that the anti-adhesive properties of the compound 
may account for its antimicrobial actions [301]. In 
particular, EGCG at its MIC values can interact with 
the bacterial cell wall and interfere with the adhesion 
of skin pathogens to epithelial cells without inducing 
significant changes to the mammalian cells [302]. 
This is because polyphenols exploit macromolecules, 
such as carbohydrates and proteins, and thus they 
interact with specific adhesion structures located on the 
bacterial cell wall or on fimbriae [303], [304].

Importantly, the most prominent antimicrobial 
actions are mainly related to the interference with 
β-lactamase and the reversal of MRSA resistance in 
experimental studies [305]. In essence, modulation of 
resistance is mediated via the gallate moiety of EGCG 
and other polyphenols in green tea extract. Indeed, 
it has been reported that EGCG can reverse the 
resistance of MRSA; such a property was not evident 
in (-)-epicatechin-3-cyclohexylcarboxylate and (‐)‐
epicatechin-3-cyclohexylcarboxylate [300], [305].

As a consequence, the MIC of antibiotics 
against resistant strains could be lowered by EGCG. 
For instance, in addition to the anti-MRSA activities of 
EGCG at an MIC of 100 mg/L, a combination of EGCG 
and ampicillin/sulbactam at subinhibitory doses was 
synergistically effective in a dose-dependent manner 
against MRSA isolated from 28 clinical isolates [306]. 
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More specifically, the MIC50 of the ampicillin/sulbactam 
combination decreased from 32 to 8 and 4 mg/L in the 
presence of 6.25 and 25 mg/L EGCG, respectively [306].

While it was initially thought that MRSA 
reversal is mediated by interfering with the synthesis of 
PBP2a [300], a different mechanism has been proposed 
by Zhao et al. [307] The group found that EGCG 
(25 µg/mL) reversed MRSA resistance to oxacillin, 
ampicillin, methicillin, benzylpenicillin, and cephalexin, 
and it induced a supersusceptibility to β-lactam 
antibiotics in susceptible strains [307]. Therefore, 
the synergistic effect was equally effective against 
β-lactamase producers and non-producers. This way, 
it has been suggested that EGCG is nonspecific to 
MRSA, and it cannot directly modulate the synthesis or 
the production of PBP2a [307].

Such a nonspecific effect was supported by 
several findings. First, the growth of both resistant 
and susceptible strains was similarly inhibited in 
a dose-dependent manner. Second, the induced 
supersusceptibility of susceptible strains to antibiotics, 
such as oxacillin, may emphasize the lack of direct 
relation between EGCG and the mecA gene as well 
as PBP2a. Third, there was an additional synergism 
against MRSA between EGCG and DL-cycloserine, 
which can inhibit D-alanyl-D-alanine synthetase, leading 
to the abrogation of PGN synthesis. This mechanism is 
unlikely related to PBP2a expression. Finally, PBP2a 
mRNA expression and PBP2a production were only 
suppressed by low MICs of ECGC as indicated by latex 
agglutination assays [307].

Collectively, it seems that EGCG acts directly 
and synergistically on PGNs on the bacterial cell wall, 
thereby reducing the tolerance of MRSA to osmotic 
changes. Novy et al. [308] demonstrated similar 
PGN-targeted resistance-modulating effects in a 
combination with oxytetracycline. Synergism was also 
evident in combinations comprising of EGCG with 
carbapenems [309]. In addition, penicillinase production 
from penicillin resistant strains was previously inhibited 
in 21 MRSA strains [310]. Sudano Roccaro and 
coworkers [311] first described a resistance-modulating 
mechanism, in which the presence of EGCG at 
concentrations below its MIC (50 µg/mL) decreased 
the MICs of tetracycline from to against MRSA and 
S. epidermidis resistant strains; the effect was mainly 
related to the inhibition of Tet(K) and Tet(B) efflux 
pumps. This disruption of high-energy efflux pumps 
would favor the dynamic equilibrium toward antibiotic 
influx and eventually increase the accumulation of 
tetracycline inside the bacterial cells.

Therefore, EGCG may be clinically effective 
in eliminating cutaneous and digestive tract MRSA 
infections in combination with β-lactams and 
tetracyclines. However, the administration of sublethal 
doses of EGCG may have clinical implications. 
Bikels-Goshen et al. [312] showed that the exposure 
of four strains of S. aureus to 20 µg/mL of EGCG 

had no effects on bacterial growth rates, but rather 
increased the resistance of the bacteria to cell wall-
targeting antibiotics, including oxacillin, ampicillin, 
and vancomycin. Moreover, EGCG induced the 
expression of stress shock proteins, which would 
ultimately leads to adaptation and increased tolerance 
to heat treatment [313]. Besides, there are significant 
differences in the mean cell wall thickness, indicating 
marked morphological changes in EGCG-exposed 
bacterial cells as visualized by TEM [312].

In contrast, Blanco et al. [314] found that 
subinhibitory doses of EGCG prevented biofilm 
formation in ica-positive staphylococcal strains, which 
have the abilities to construct multilayered biofilms. In 
such experimental study, slime-producing S. aureus 
formed pale grey colonies on Congo red agar plates 
(rather than black colonies), indicating the loss of the 
matrix-producing ability. Interestingly, SEM analysis 
showed that the exposure to EGCG (1/4 MIC) 
prevented polysaccharide secretion, and thus it 
disrupted glycocalyx formation [314]. It is important 
to note that the PGN inhibitory effects of EGCG could 
also influence the initial docking phase of biofilm 
formation by disrupting the interaction between the 
surface to be colonized and the bacterial cell wall [315]. 
Recently, it has been shown that EGCG can exert anti-
amyloidogenic activities, which affect the assembly 
of α-PSM fibrils. The interference with these biofilm-
associated fibers would have a promising potential 
to weaken or disrupt the amyloid matrix in biofilms 
produced by S. aureus [316].

Therefore, the favorable resistance 
modulatory activities as well as the anti-biofilm effects 
of EGCG may provide a strong rationale for further 
investigations concerning the treatment of chronic 
wound infection. These activities would possibly 
add to the established wound healing effects of the 
compound [317], [318], [319]. Topical preparations 
comprising EGCG would be more stable and would 
have better bioavailability because they would not be 
subject to degradation and oxidation by the intestinal 
microbiota [320], [321].

Organosulfur

Allicin

Allicin is a natural organosulphur compound 
present in crushed garlic (Allium sativum L.). Garlic has 
been known for a range of health benefits, including 
the treatment of headache, arthralgia, leprosy, 
tuberculosis, digestive diseases, and epilepsy, as 
well as cardiovascular protection [322], [323]. Cellular 
rupture during garlic crushing converts alliin (under the 
effect of allinase enzyme) to a number of enzymatic 
products named allyl thiosulfinates. Of them, allicin 
(diallyl thiosulfinate) has been considered the major 
active compound. The antimicrobial actions of allicin 
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were demonstrated early in 1944 [324]. Besides, as 
with other allyl thiosulfinates, allicin has antioxidant, 
lipid-lowering, anticancer, and anti-atherosclerotic 
effects [325].

The pure form of allicin is highly volatile, has 
strong odor, and is poorly mixed with water [326]. The 
allicin molecule breaks down within 16 h at 23°C [327]. 
Therefore, in order to stabilize allicin molecules, 
Cutler and Wilson [328] have developed two topical 
formulations based on cold aqueous extraction of allicin 
in a liquid extract and a cream formulation. The authors 
found that the majority of clinical mupirocin-resistant 
S. aureus strains had MBCs for 128 µg/mL allicin, and 
the MIC required to kill all strains was 256 µg/mL.

Interestingly, thiol-specific reactivity has been 
proposed as a potent mechanism of action against 
microbes. That is, allicin can act by S-thioallylations of 
the low molecular weight thiol GSH in chemical reactions 
involving thiol-disulphide exchange [329], [330]. 
Considering the chemical structure and the 
electrophilicity of allicin, this phytochemical is virtually 
highly reactive with sulfhydryl-baring, thiophilic 
molecules, such as GSH and cysteine [331]. This way, 
the S-allyl component of allicin could be exchanged with 
the thiol constituent of a bacterial coenzyme, enzyme, 
or metabolite [332]. In agreement with these findings, 
it has been shown that electrophilic pyridyl disulfides, 
which have similar chemical reactivity to allicin [333], 
could exert bacteriostatic actions against MRSA via the 
interaction with thiophilic enzymes/metabolites [334].

Recently, Loi et al. [335] provided supportive 
evidence, where allicin-induced oxidative and disulphide 
stresses were demonstrated in resistant S. aureus 
strains. Indeed, the oxidative shift in the redox potential 
of GSH as well as the widespread S-thioallylations 
are robust mechanistic antimicrobial pathways. 
However, thiol homeostasis could be regenerated via 
the HypR-controlled disulfide reductase MerA and 
the protective thiol bacillithiol, leading to direct allicin 
detoxification [335]. As such, future investigations 
may reveal the possible implications of these adaptive 
mechanisms to develop anti-allicin resistance.

In addition to the previously mentioned 
antibacterial effects, Leng et al. [336] demonstrated 
that allicin had anti-hemolytic actions in S. aureus 
culture supernatants, indicating effective reductions 
of α-toxin. Intriguingly, these anti-virulence properties 
are particularly exhibited by reducing the expression 
of the AgrA by 6.3-fold [336]. Actually, the application 
of allicin could be optimized for the treatment of toxic 
syndromes mediated by virulent S. aureus. This 
might be potentiated by the use of protein-synthesis-
targeting antibiotics, such as linezolid and clindamycin 
at sub-inhibitory concentrations [337]. In contrast, the 
administration of β-lactam antimicrobial agents at sub-
inhibitory doses can stimulate α-toxin expression via 
enhancing exoprotein synthesis [338].

From another point of view, innovative 
approaches may have significant roles to augment the 
antimicrobial potential of allicin. Sharifi-Rad et al. [339] 
investigated a combination comprising of allicin and 
silver NPs against the MRSA ATCC14458 strain. Based 
on single and combined analyses, silver NPs plus allicin 
had a significant synergistic effect (MIC 0.4 mg/mL) 
compared to either allicin or NPs individually (MICs of 2.2 
or 5.6 mg/mL, respectively) [339]. In addition, a topical 
ointment with the combination applied to experimentally 
infected wounds in mice showed significant inhibitory 
effects as indicated by a significant reduction of the 
colony forming units with ointment use compared to 
either exclusive compounds or a control medium [339]. 
Similarly, allicin provoked the antimicrobial activity of 
chlorhexidine against MRSA when the combination was 
applied to hernia repair materials [340]. In addition, allicin 
potentiated the activity of vancomycin in a prosthetic 
joint infection experimental model [341]. This might raise 
the possibility of biofilm-counteracting effects of allicin. 
In another experiment, Majumdar et al. [342] assessed 
the efficacy of a smart drug delivery system based 
on releasing the active antimicrobial substance with 
increasing concentrations in response to the amount of 
MRSA in the target. The authors showed that an allicin-
containing extract induced significant bacterial cell 
death, which acted in a pH-dependent controlled manner 
(increased bacterial metabolites reduced the pH) [342]. 
Such outcomes indicate the need to investigate the role 
of allicin in RCTs to corroborate the efficacy and safety 
of topical skin formulations in MRSA skin infections. 
These would be preceded by pharmacokinetic studies 
aiming at improving the bioavailability of the compound 
through novel delivery systems.

Single and Combined Herbal 
Formulations in Dermatology

The topical application of specific formulations 
from medicinal plants has grabbed the attention of 
clinicians during the past two decades to overcome 
the rising trend of MRSA resistance. In vitro studies 
investigating the impact of active compounds from 
medicinal plants on MRSA strains obtained from 
clinical isolates showed promising outcomes (Table 2). 
However, human-based studies are still insufficient to 
unravel the clinical benefits of these compounds.

In 2001, Sherry et al. [343] tested the effects 
of a topical formulation of eucalyptus leaf oil extract 
(PT) in two patients with MRSA-infected wounds. In 
one patient, PT cream (1.0 g daily) without antibiotics 
facilitated wound healing completely within 2 weeks, 
and the patient showed no signs of inflammation. The 
second patient received PT liquid (0.5 g daily), showing 
marked reduction in inflammation 5 days after initiation, 

https://oamjms.eu/index.php/mjms/index


 Tirant et al. Herbal Bioactive Compounds for Skin Infections and Inflammatory Conditions

Open Access Maced J Med Sci. 2024 Apr 05; 12(2):Ahead of print 23

with complete wound closure within 3 weeks. Both 
patients showed no clinical symptoms of recurrence after 
12 weeks. This indicates the efficacy of eucalyptus oil.

Further clinical studies were mostly concerned 
with tea-tree oil for MRSA decolonization. Caelli 
et al. [344] have conducted an RCT to assess the impact 
of a tea tree oil intervention formulation comprising 
of a 4% nasal ointment and 5% body wash versus a 
standard therapy including the application of a triclosan 
body wash and 2% mupirocin nasal ointment. The 
authors found a slight, but nonsignificant, improvement 
in the number of MRSA-cleared patients in the tea tree 
oil arm; however, the small number of patients allocated 
to each number (n = 15) might have accounted for the 
lack of significant effects.

In a larger RCT, the efficacy of a tea tree oil 
body wash (5%) was compared to that of a standard 
Johnson’s Baby Softwash to clear MRSA colonization in 
patients admitted to intensive care units [345]. The results 
revealed insignificant differences between the study 
groups in terms of new MRSA colonization, percentage 
of patients colonized, and clinical deterioration indicated 
by the maximum increase in the scores of the sequential 
organ failure assessment scale. Similarly, compared to 
placebo (saline gauze dressing), topical application of a 
preparation of tea tree oil for 4 weeks has accelerated 
MRSA wound healing within 28 days without adverse 
events, and the resistant strains were completely 
eradicated in 87.5% of patients allocated to the active 
intervention group [346]. Notably, the used preparation 
comprised of 10% tea tree oil (of which ≥30% terpinene-
4-ol) and 90% paraffin wax. Besides, tea tree 10% 
cream was equally as effective and safe in clearing 
MRSA colonization as a standard cream preparation 
of mupirocin, chlorhexidine, and sulfadiazine [347]. 
Actually, the comparative findings to mupirocin are 

relatively encouraging since the resistance to such an 
antimicrobial agent is rapidly evolving and there is a 
need to find alternative preparations for decolonization 
and management of MRSA skin infections [348]. Despite 
being encouraging, evidence regarding the combined 
efficacy of tea tree oil components needs to be further 
addressed by more robust RCTs.

Integrative Approaches

The application of integrative medicine 
practices has long been studied in several ways. 
This includes the incorporation of complementary or 
alternative approaches into a wider aspect of treatment 
plans in order to improve health, promote healing, or 
assist in disease treatment [349]. In dermatology, the 
involvement of diagnostic and therapeutic modalities as 
a supplement or a substitute for traditional dermatologic 
practice would produce promising choices by combining 
these recent and old knowledge bases. This could be 
attained by herbal compounds obtained from plant 
preparations.

Decolonization for the prevention of MRSA

In the era of MRSA emergence, it is necessary 
to combat skin infections by multiple strategies. 
Decolonization of vulnerable patients against MRSA 
is an important prophylactic strategy that entails the 
use of suitable antiseptics, including chlorhexidine and 
octenidine. However, as with antibiotics, the extensive 
use of antiseptics has resulted in the appearance of 

Table 2: The effects of herbal compounds on MRSA clinical isolates
Active compounds Source plant Main components Method Outcomes References
Lemon myrtle oil Backhousia citriodora Geranial (51.4%), Neral (40.9%), Citral (4.3%) ADM 0.20% v/v [389]
Extracts Cortex moutan, Cortex phellodendri, 

Flos lonicerae, Rhizoma atractylodis, 
Herba menthae

NA MIC 1 mg/mL [390]

Supercritical carbon dioxide extract Usnea barbata Usnic acid (4% w/w) MIC 1 mg/mL [391]
Essential oil Eucalyptus globulus Eucalyptol (47%) MIC 8.56-85.60µg/mL [392]
Essential oil Juniperus communis NA MIC >2% v/v [393]
Essential oil Juniperus officinalis α-Pinene (39.8%) MIC 20mg/mL [394]
Essential oil Kunzea ericoides α-Pinene (61.6%) MAC 0.2% v/v [395]
Lavender oil Lavandula angustifolia NA MIC 0.5% v/v [393]
Lavender oil Lavandula angustifolia Linalyl acetate (37%), linalool (31%), terpinen-4-ol (15%) MIC 1 mg/mL [396]
Lavender oil Lavandula stoechas α-Fenchone (39.2%) MIC 31.3µg/mL [397]
Essential oil Matricaria recutita Chamazulene (31.5%) and α-bisabolol (15.7%) ADM 26.50mg/mL [398]
Tea tree oil Melaleuca alternifolia Terpinen-4-ol (35.2%), γ-terpinene (22.5%), α-Terpinene (11.4%) MAC 0.35% v/v [395]
Tea tree oil Melaleuca alternifolia Terpinen-4-ol (40%), δ-terpinen (13%) MIC 512–2048mg/L [399]
Tea tree oil Melaleuca alternifolia Terpinen-4-ol (>35%) MIC 0.30–0.63% v/v [400]
Tea tree oil Melaleuca alternifolia NA MIC 0.25% v/v [393]
Tea tree oil Melaleuca alternifolia Terpinen-4-ol (>35%) MIC 0.25% [401]
Tea tree oil Melaleuca alternifolia Terpinen-4-ol (42.8%) and γ-terpinene (18.2%) ADM 0.3% v/v [389]
Essential oil Melaleuca cajuputi 1,8-Cineol (67.6%) MIC 2.5mg/mL [394]
Essential oil Melaleuca cajuputi 1,8-Cineole (55.5%) MAC 0.3% v/v [395]
Essential oil Mentha piperita Menthol (47.3%), menthone (22.2%), 1,8-Cineol (12.1%) MIC 0.6mg/mL [394]
Essential oil Origanum vulgare Thymol (24.7%), p-Cymene (14.6%), carvacrol (14%) ADM 0.13% v/v [184]
Essential oil Rosmarinus officinalis 1,8-Cineole (26.6%), camphene (11.4%), α-pinene (20.1%), MIC 0.03% v/v [402]
Essential oil Thymus vulgaris NA MIC 0.5% v/v [393]
Essential oil Thymus vulgaris Thymol (48.1%), γ-terpinene (15.40%), p-cymene (15.60%) ADM 18.50µg/mL [392]
Essential oil Cinnamomum camphora (Linn.) Presl. Linalool (26.6%), eucalyptol (16.8%), α-terpineol (8.7%) MIC 0.8 mg/mL [403]
Essential oil Stachys viticina Boiss. Endo-borneol (29.1%), eucalyptol (21.3%), and epizonarene 

(7.9%)
MIC 0.039 mg/mL [404]

Root essential oil Chrysopogon zizanioides (L.) Roberty NA MIC 62.5 µg/ml [405]
ADM: Agar dilution method, MAC: Macrodilution method, MIC: Microdilution method, NA: Nonavailable.
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clinical isolates with increased MICs, indicating the 
development of bacterial resistance [350]. Therefore, 
some potentiated therapies comprising of herbal 
treatments combined with antimicrobial agents may be 
efficient.

For example, Hendry et al. [351] tested the 
efficacy of adding eucalyptus oil to chlorhexidine 
digluconate (CHG) against MRSA grown in suspension 
and biofilm. Fractional inhibitory concentration index 
(FICI) assays showed synergistic activities of the 
combination in both the suspension and biofilms. 
Although the main constituent in eucalyptus oil was 
1,8-cineole, the main inhibitory effects of the crude 
oil was generally superior to the main constituent 
alone [351]. This indicates the contribution of other 
components, such as linalool and methyl chavicol, which 
have affected the integrity of the cytoplasmic membrane 
in a synergistic manner. Indeed, such a study revealed 
interesting outcomes, given the poor penetrative 
abilities of alcoholic and aqueous preparations of CHG 
alone. This is because the addition of eucalyptus oil 
can significantly enhance the delivery of CHG into the 
dermis and epidermis and thus could provide promising 
antimicrobial activities [352].

Recently, Kwiatkowski et al. [353] have 
investigated the impact of the essential oil extracted from 
lavender (from Lavandula angustifolia Mill) combined 
with the antiseptic octenidine dihydrochloride (OCD), 
against which efflux pump proteins in S. aureus have led 
to a rapid emergence of antimicrobial resistance [350]. 
Lavender essential oil (LEO) containing high amounts 
of linalool (34.1%) and linalyl acetate (33.3%) provided 
a synergistic effect with OCD against S. aureus ATCC 
43300 and other clinical isolates as revealed by time-
kill curve assays. Besides, subsequent analyses using 
Fourier Transform Infrared Spectroscopy showed 
significant modifications in the bacterial cell wall of 

MRSA cultured in LEO/OCD containing media. Although 
the existing terpene alcohol (linalool) and ester (linalyl 
acetate) had previously exhibited weaker antimicrobial 
activities against MRSA compared to other phenolic 
compounds, such as thymol and carvacrol [354], the 
combined effects of LEO/OCD decreased the mean 
MIC of LEO from 14.86 mg/mL to 1.29 mg/mL [353].

Recently, El-Kalek and Mohamed [355] have 
tested the efficiency of four essential oils and six 
methanol extracts against MRSA specimens isolated 
from the skin, ears, urine, and eyes. While the highest 
antibacterial activities were exerted by lemongrass 
oil (LEGO), T. vulgaris extract, and cardamom oil, the 
FICI values of LEGO and amoxicillin combinations 
ranged between 0.82 and 0.86, indicating robust 
synergistic effects against MRSA M2, M16, and M18. 
Furthermore, TEM images showed swelling of the 
bacterial cell wall and disruption of the cytoplasmic 
membrane. The authors suggested that the lipophilicity 
of LEGO components (from C. citratus), particularly the 
monoterpene alcohol, might have played a significant 
role in penetrating the lipid layer of the cell membrane; 
therefore, they caused intracellular leakage [355]. The 
effects of LEGO have been further corroborated when 
Warnke et al. [356] showed significant differences in 
the zones of inhibition between LEGO (20–29 mm) 
and chlorhexidine (1–10 mm). The inhibitory zones 
were also better, but insignificantly different, than those 
produced by tea tree oil and eucalyptus oil.

Integrative therapies with antibiotics

Over the past few decades, the use of 
antibiotics has been considered less effective in the 
treatment of MRSA infections. The progressive trend 
of resistance against vancomycin and other anti-MRSA 
antibiotics has been associated with limited outcomes 

Table 3: Summary of phytochemicals acting synergistically with antibiotics against MRSA
Source plant Pure compounds Antibiotic Mechanism of action References
Garcinia mangostana L. Alpha-Mangostin ampicillin and minocycline Unavailable [406]
Scutellaria amoena C.H. Wright Baicalin Beta-Lactam Antibiotics Inhibition of β-lactamase [378]
Stephania tetrandra S. Moore Bisbenzylisoquinoline Alkaloids Cefazolin Multidrug efflux pump inhibition [407]
Arctostaphylos uvaursi Corilagin Oxacillin Inhibition of PBP2a expression [408]
Arctostaphylos uvaursi Corilagin Penicillin Inhibition of PBP2a expression [409]
Origanum vulgare Essential oil Tetracycline Efflux pump inhibition [365]
Lippia origanoides Essential oil Amikacin and neomycin Efflux pump inhibition [367]
Mezoneuron benthamianum and Securinega virosa Ethanol and chloroform extracts Norfloxacin Efflux pump inhibition [358]
Daphne genkwa Extract oxacillin Binding to PBP2a [376]
Alpinia officinarum Galangin gentamicin Inhibition of β-lactamase [380]
Lupinus argenteus Isoflavones Norfloxacin NorA efflux pump inhibition [361]
Cytisus striatus Isoflavonoids Erythromycin NorA efflux pump inhibition [410]
Pinus nigra Isopimaric Acid reserpine NorA efflux pump inhibition [411]
Cymbopogon citratus Lemon grass essential oil Amoxicillin Disruption of the bacterial cell membrane [355]
Canarium odontophyllum Methanol extract Oxacillin inhibit cell wall synthesis [370]
Punica granatum Methanolic extract Ampicillin, oxacillin, tetracycline, 

chloramphenicol, and gentamicin
NorA efflux pump inhibition [412]

Ipomoea violacea Oligosaccharides Norfloxacin NorA efflux pump inhibition [362]
Jatropha elliptica Penta substituted pyridine Ciprofloxacin NorA efflux pump inhibition [361]
Camellia sinensis Phenols and flavonoids tetracycline and ampicillin Inhibition of β-lactamase [379]
Sophora species Sophoraflavanone G Vancomycin, Gentamicin, and 

Methicillin
Augments the inhibitory actions on cell wall 
synthesis

[413]

Rosa canina L. Tellimagrandin I Penicillin Inhibition of PBP2a expression [409]
Acalypha wilkesiana The 9EA-FC-B fraction Ampicillin Inhibition of PBP2a expression in the planktonic 

form and biofilm
[374]

Duabanga Grandiflora The F-10 fraction Ampicillin Inhibition of PBP2a expression [375]
PBP2a: Penicillin-binding protein 2a.

https://oamjms.eu/index.php/mjms/index


 Tirant et al. Herbal Bioactive Compounds for Skin Infections and Inflammatory Conditions

Open Access Maced J Med Sci. 2024 Apr 05; 12(2):Ahead of print 25

and increased mortality. It is therefore plausible 
to find integrative substances which could restore 
the effectiveness of these antimicrobial agents by 
reversing their resistance mechanisms. The application 
of herbal preparations is reviewed below according to 
the target resistance mechanisms against which these 
compounds have possibly acted. A summary of these 
phytochemicals is also demonstrated in Table 3.

Inhibition of efflux pumps

Antibiotics and antiseptics could be exported 
from the bacterial cells via specific efflux pumps, such 
as NorA and NoB which account for the resistance 
against norfloxacin, ciprofloxacin, and the antiseptic 
chlorhexidine in MRSA [350], [357]. Medicinal plants 
can modify these resistance mechanisms and thus 
revert the action of antibiotics.

Ethanol extracts of Mezoneuron 
benthamianum and chloroform extracts of Securinega 
virosa potentiated the activity of norfloxacin by a factor 
of 4 [358]. Considering the established resistance 
mechanisms of MRSA against norfloxacin, these 
extracts could potentially have acted via inhibition 
of the efflux pumps. In addition, plants belonging to 
the Berberis spp. produce the antimicrobial alkaloid 
berberine as well as an inhibitor of S. aureus NorA pump 
named 5’-methoxyhydnocarpin (5’-MHC). The latter 
can significantly reduce the MIC of berberine and both 
compounds act as plant chemical defense mechanisms 
against pathogenic organisms [359].

Similarly, isoflavones from Lupinus 
argenteus [360], penta-substituted pyridine from 
Jatropha elliptica [361], oligosaccharides from Ipomoea 
violacea [362], and essential oils from Pelargonium 
graveolens and Zanthoxylum articulatum [363], [364] 
have all synergistic actions with norfloxacin against 
MRSA via the same mechanism. Likewise, efflux pump 
inhibition has been mediated via several other herbal 
remedies, such as the essential oils of O. vulgare 
and Salvia fruticose with tetracycline as well as the 
essential oils of Lippia origanoides with amikacin and 
neomycin [365], [366], [367].

Other integrative therapies have been 
demonstrated in the literature although they have 
not been tested in dermatological preparations. For 
instance, saponins obtained from Panax ginseng 
(Korean red ginseng) showed weak antibacterial 
activities against three MRSA strains (MIC 
100 µg/mL), yet these compounds have synergistically 
acted with kanamycin and exerted additive effects with 
cefotaxime [368]. In another experiment, ursolic acid 
and oleanolic acid isolated from Alstonia scholaris, a 
tropical tree native to Southeast Asia, have induced 
efficacious synergistic effects with tetracycline and 
ampicillin at 1/2 MICs of the herbal compounds [369]. 
These pentacyclic triterpenoids might have exerted 
their potentiating effects via a mechanism different than 

that of the used β-lactam antimicrobials because of the 
structural dissimilarities between them. Similarly, the 
methanol extract from Canarium odontophyllum Miq. 
(native to the tropical rainforests in Southeast Asia) was 
effectively combined with oxacillin, causing an eightfold 
reduction of the antibiotic inhibitory concentration [370]. 
Besides, the same extract has provided an additive 
effect with vancomycin. Additivity, defined as a relative 
improvement in the antibacterial activity when the 
concentration of either active compound has been 
increased, can be clinically relevant although concerns 
about the toxicity of high concentrations may still be 
apparent. Interestingly, synergism between substances 
occurs when they act via different mechanisms of 
action, while additivity takes place when the compounds 
exert the same mechanism of action [371], [372]. This 
suggests that the methanolic extract acts by inhibiting 
cell wall synthesis, which is the same mechanism of 
vancomycin action.

Effects on modified target sites

Modifications of the target site are one of the 
most common mechanisms by MRSA. This would 
reduce the affinity of bacterial cells for antimicrobial 
agents. Resistance to β-lactams is mostly conferred 
by complete replacement of the target site (PBPs) 
by the acquisition of PBP2a. Plant active compounds 
have been implicated in modulating the resistance 
via this mechanism. For example, a bioactive fraction 
(F-10) from Duabanga Grandiflora has shown effective 
inhibitory outcomes against MRSA ATCC 43300 in 
combination with ampicillin, which were significantly 
different than those exhibited by the antibiotic or the 
herbal compound alone [373]. This yielded FICI indices 
ranging between 0.18 and 0.31 using 1/4 to 1/32 MIC of 
the F-10 fraction. Further analyses showed attenuated 
PBP2a expression with using the F-10 fraction alone 
and a total inhibition of protein expression when a 
combination of subinhibitory concentrations of F-10 
and ampicillin had been used. It is possible that 
the F-10 fraction has interfered with the regulatory 
genes of mecA transcription, namely mecI, mecR1, 
and mecR2, which has eventually led to blockage of 
PBP2a synthesis [373]. Some essential phytochemical 
found in the F-10 fraction, such as flavonoids, tannins, 
glycosides, and sterols, might have accounted for the 
resistance modulatory action; thus, such a fraction may 
be further tested in future preparations against MRSA.

The same mechanism of action could be 
targeted by a combination of ampicillin and the 
ethyl acetate extract of Acalypha wilkesiana. More 
specifically, the 9EA-FC-B fraction from such an extract 
has reduced the MIC of ampicillin by 32-fold against 
MRSA, and a significant synergistic action was shown 
compared to either compounds alone [374]. This 
resulted in the inhibition of PGN synthesis through 
blocking PBP2a production in MRSA. Interestingly, 
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the same fraction has proven effective in precluding 
biofilm formation by MRSA via inhibiting the initial cell 
attachment and reducing the produced PBP2a in the 
biofilm matrix [375].

In another recent study, Kuok et al. [376] tested 
the anti-MRSA activities of four medicinal plants used 
in the Chinese traditional medicine: Daphne genkwa, 
Verbena officinalis, Magnolia officinalis, and Momordica 
charantia. The authors showed significant synergistic 
actions between the D. genkwa extract and oxacillin 
(FICI value of 0.38). Additional in silico molecular 
docking investigations revealed robust binding affinities 
and interactions between the flavonoid tiliroside in 
D. genkwa and specific residues in PBP2a. This 
interaction may account for the observed synergy and 
underscore the importance of further investigations.

The influence of herbal compounds 
on modified target sites can also involve those 
modifications implied by enzymatic alterations. 
Macrolide resistance is a clear example of this 
type, where enzymatic methylation of the ribosome 
23S-rRNA leads to changes in the macrolide binding 
site. The enzyme adenine-N6-methyltransferase, 
which is encoded by the erm gene family, could be the 
main target of two plant extracts (from Alnus incana 
L. fruits and Geranium pratense L. rhizomes), leading 
to modulating the resistance to erythromycin [377]. 
Presumably, active compounds present in these 
plant extracts have either reduced the expression of 
erm genes or blocked specific active locations on the 
resistance-mediating enzyme.

Effects on the drug-modifying enzymes

The production of enzymes that degrade 
or modify antimicrobial drugs is another example 
of bacterial resistance. This could be mediated by 
β-lactamases, which act by the hydrolysis of β-lactam 
antibiotics, such as penicillin and cephalosporins. 
Extracts and herbal compounds isolated from C. sinensis 
(green tea) have been found to interfere with the activity 
of β-lactamase [300]. The flavonoid baicalin (extracted 
from Scutellaria amoena) has also exhibited significant 
inhibitory activities via interfering with β-lactamase 
[378]. As such, some herbal bioactive compounds might 
be synergistically used with other antibiotics.

For example, Aqil et al. have tested the efficacy 
of ten medicinal bioactive compounds extracted from 
Indian plants on clinical isolates of β-lactamase-
producing MRSA [379]. Of these, an extract from 
C. sinensis had potent antimicrobial activities (MICs 
of 1.8–7.5 mg/mL), and it showed synergism with 
ampicillin and tetracycline. Other β-lactamase-
targeting herbs have also yielded synergistic effects 
with tetracycline, including Lawsonia inermis, 
Terminalia chebula, Punica granatum, and Terminalia 
belerica. In an antimicrobial susceptibility assay, Lee 
et al. [380] found that the MICs of galangin, a flavonoid 

obtained from the Korean herb Alpinia officinarum, 
ranged between 62.5 and 125 µg/mL, whereas those 
of gentamicin were 1.9–2000 µg/mL. The combined 
effects of time and antibacterial concentrations were 
synergistic against MRSA clinical isolates (FICI 0.25). 
However, the authors failed to conclude the major 
mechanism of action by which the synergism has 
occurred. The fact that galangin had prevented the 
action of β-lactamase produced by Stenotrophomonas 
maltophilia [381] and the interaction which had been 
previously reported between gentamicin and β-lactam 
antibiotics [382] may all explain a possible effect of 
gangalin on β-lactamase. Such activities need to be 
addressed in future experimental studies.

Combination Therapies

Some combinations of herbal compounds were 
effective in reducing the burden of resistance of MRSA. 
Tawfiq et al. [383] have shown that a combination 
comprising of the stem bark methanol extracts of 
Faidherbia albida and Psidium guajava was synergistically 
effective against clinically resistant isolates from boils. 
Those extracts contained considerable proportions of 
flavonoids, alkaloids, and tannins, which have acted 
against multiple targets. That is, the impact of tannins 
was evident since they have had MIC of 0.78 mg/mL 
against MRSA clinical strains, and they downregulate 
44 genes encoding 30S and 50S MRSA proteins [384]. 
On the other hand, alkaloids act against a wide range 
of molecular targets, such as disruption of the outer 
membrane and influencing cell division [385].

Based on the most effective herbal preparations, 
Yarnell and Abascal [386] have suggested comprehensive 
formulations for cutaneous and systemic MRSA 
infections. For mild or early skin infections, the authors 
presented a special formula comprising of 25% tea tree 
oil (M. alternifolia), 25% Santalum spicatum essential oil, 
25% O. vulgare oil, 20% Rosmarinus officinalis oil, and 
5% absorption enhancer. This could be applied 2–3 times 
daily in a base of honey or in a cream formula containing 
A. sativum (30 mL) as a base cream. Additional tinctures 
may be added to the cream containing resistance-
modulating phytochemicals (such as C. sinensis). 
Patients with more severe MRSA topical infections can 
apply these preparations more frequently along with 
taking fresh cloves of garlic orally several times per day.

Safety Aspects of Herbal Remedies

Given that most of the conducted studies 
of herbal remedies have involved microbiological 
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investigations without clinical considerations, little is 
known about the possible adverse events that may 
emerge with their use, either topically or systemically. 
The adverse events of phytochemicals applied to the 
skin in preclinical studies are reviewed in [239].

However, data from clinical evidence showed 
acceptable safety profiles. Caelli et al. [344] reported 
that five patients (out of 15) who had received an IF 
of tea tree oil therapy experienced mild burning and 
swelling of nasal mucosa. In another RCT comparing 
the efficacy of tea tree oil versus standard treatment 
using chlorhexidine, mupirocin, and sulfadiazine to clear 
MRSA carriage, the application of the plant oil was well-
tolerated, producing no adverse events [347]. However, 
Blackwood et al. [345] revealed that 1.03% of patients 
assigned to a decolonization regimen of tea tree oil (5%) 
body wash experienced body rash and they withdrew 
from the study compared to no reported adverse events 
in patients who had received Johnson’s baby softwash.

Concluding Remarks and Implications

Health-care professionals strive to develop 
novel therapies relying on effective antimicrobial 
agents to combat the progressively emerging MRSA 
infection. In the dermatological practice, the use of 
efficacious preparations is compounded by the abilities 
of antimicrobial compounds to penetrate the skin 
layers. Several herbal compounds have been widely 
investigated in the literature, providing promising 
outcomes. They have induced exclusive antibacterial 
effects or enhanced skin antisepsis in conjunction with 
traditional antiseptic/antibiotic agents. The antibacterial 
effects of active phytochemicals were exerted via 
different mechanisms, including the disruption of fatty 
acid synthesis in the cell membrane, the interference 
with the proton gradient, and binding to the PGNs in 
the cell wall. Effective combinations of these active 
metabolites in essential oils or plant extracts have 
been documented, where the antibacterial activities 
were apparent on multiple targets. Interestingly, plant-
derived compounds have proven effective in modifying 
the antimicrobial resistance of MRSA through targeting 
NorA efflux pumps, PBP2a expression, or bacterial 
enzymes, allowing traditionally ineffective antibiotics 
to be reutilized. Finally, there are notable in-vitro 
and in-vivo effects of herbal compounds on MRSA 
biofilm formation, preformed biofilms, wound healing, 
and inflammation. These would not only indicate 
the usefulness of plant-based therapies on the 
virulence mechanisms of MRSA infections, but also 
on the co-associated chronic inflammatory conditions, 
such as AD and psoriasis.

The use of such herbal remedies would have 
several benefits. First, intuitively, the antibacterial 

metabolites of plants represent an integrative part of the 
chemical defense strategy against the diverse microbial 
population in the surrounding environment; therefore, 
these compounds are expectedly efficacious against 
MRSA as well as other pathogenic microorganisms. 
Second, there is a plethora of chemical compounds that 
can be applied topically or used systematically, providing 
a wide variety of chemicals that could be therapeutically 
effective. Third, the obtained preparations would create 
a cheaper alternative of the current antimicrobial 
preparations, which had been clinically limited by 
the development of bacterial resistance. Fourth, 
the reported synergism between various herbal 
metabolites within essential oils or extracts would have 
a promising clinical relevance; such that the inhibitory 
concentrations of active chemicals could be reduced 
and hence the safety aspects of could be reserved. 
Fifth, the applicability of herbal metabolites to other 
areas of medicine, such as cancer, might open novel 
ways to their multi-targeted approaches.

However, the application of these herbal 
compounds may have several limitations. There is 
a lack of robust RCTs which compare their efficacy 
and safety against established preparations. In 2014, 
a Cochrane systematic review showed no conducted 
RCTs concerning the role of Chinese herbal medicines 
in the treatment of SSTIs [387]. This might be supported 
by the lack of widely used plant-derived preparations for 
topical skin infections, particularly in patients infected 
with resistant bacterial strains. Although many of the 
botanical compounds reviewed in the current work 
have been used as supplements as immune system 
enhancers and nutritional supplements, none of these 
natural compounds have been approved by the FDA.

The applied methodology in antimicrobial 
screening may pose another limitation. The reviewed 
studies have mostly relied on phenotypic screening 
methods, such as broth microdilution and agar 
dilution. The inherent limitations of these methods 
when multiple active compounds are used could 
have led to false negative results; such that, the 
true antimicrobial compounds could have not been 
identified [388]. Furthermore, regional differences 
in extraction methods, raw plant composition, and 
instrumental variations may all lead to wide variations 
in the obtained outcomes. From another point of view, 
the solubility and bioavailability of natural botanical 
compounds may reduce their potential expansion as 
antibacterial agents in dermatology. In essence, the 
delivery of active phytochemicals to the skin need to be 
optimized by technological advances, such as NPs and 
microemulsions, and these approaches require further 
validation for clinical use.

Therefore, future investigations are needed to 
assess the benefits of established anti-MRSA botanical 
compounds loaded into nanocarriers on randomized 
patient groups with various types of SSTIs, considering 
skin tolerance and the clinical efficacy of these 
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compounds. This would in turn help develop guidelines for 
SSTI treatment based on reliable evidence and will assist 
in reducing the associated burden of topical infections and 
their potential invasive abilities to other organ systems.
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