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Abstract
BACKGROUND: An important issue in modeling categorical response data is the choice of the links. The commonly 
used complementary log-log link is inclined to link misspecification due to its positive and fixed skewness parameter. 

AIM: The objective of this paper is to introduce a flexible skewed link function for modeling ordinal data with some 
covariates. 

METHODS: We introduce a flexible skewed link model for the cumulative ordinal regression model based on Chen 
model. 

RESULTS: The main advantage suggested by the proposed links is the skewed link provide much more identifiable 
than the existing skewed links. The propriety of posterior distributions under proper and improper priors is explored 
in detail. An efficient Markov chain Monte Carlo algorithm is developed for sampling from the posterior distribution. 

CONCLUSION: The proposed methodology is motivated and illustrated by ovary hyperstimulation syndrome data.

Introduction

When you face categorical response data, you 
initially and unconsciously think about logistic or probit 
regression to model. Other commonly used models are 
the student t link and complementary log-log model 
for modeling binary outcome data. The usual way to 
model the binomial response is to use a generalized 
linear model, where model the latent probability of 
“success” by a linear function of covariates through a 
link function [1]. However, these popular links do not 
always provide the best fit for a given data set. Chen 
et al. (1999) used the rates at which the probability of a 
given binary response approaches 0 and 1 to describe 
a link [2]. By their notation, the logit and the probit links 
are symmetric link functions since the response function 
p(x) approaches 0 at the same rate as it approaches 1, 
so the links do not always provide the best fit available 
for a given dataset, however. In this case, the link could 
be misspecified, which can yield substantial bias in 
the mean response estimates [3]. On the other hand, 
the complementary log-log (cloglog) link is positively 
skewed with the response curve approaching 0 fairly 

slowly but approaching one quite sharply. However, the 
cloglog link has a fixed negative skewness. As a result, 
it lacks both the flexibility to let the data tell how much 
skewness should be incorporated and the ability to 
allow for positive skewness [4]. In short, binomial data 
might often be better modeled with flexible link functions 
that allow for both positive and negative skew and that 
allow the data to determine the amount of skewness 
required.

Several authors have proposed different 
link functions. Stukel (1988) suggested a class of 
generalized logistic models for modeling binary data, 
but, in the presence of covariates, Stukel’s model 
yields improper posterior distributions for many types 
of noninformative improper prior, including the improper 
uniform prior for the regression coefficients [5], [6]. 
Aranda-Ordaz (1981) proposed two separate one-
parameter models for additional flexibility in the logistic 
model [7]. Guerrero and Johnson (1982) used Box-Cox 
transformation on the odds ratio to form a more flexible 
class of model [8]. Jones (2004) proposed a family of 
flexible distributions based on the distribution of order 
statistics [9]. Using a latent variable approach of Albert 
and Chib (1993) [10], Chen et al. (1999) proposed a 
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class of skewed link models, where the underlying 
latent variable has a mixed-effects model structure [2]. 
However, the model proposed by Chen et al. (1999) has 
the limitation that the intercept term is confounded with 
the skewness parameter. Kim et al. (2008) proposed 
a class of generalized skewed t-link models using 
a latent variable approach, which achieves proper 
posteriors for regression coefficients under uniform 
priors [6]. Unfortunately, the range of the skewness for 
generalized skewed t-link is limited due to a constraint 
on the shape parameter required for the identifiability 
of the model. More recently, Wang and Dey (2010) 
propose the generalized extreme value link function to 
allow more flexible skewness controlled by the shape 
parameter, but the standard logistic and probit links are 
not among the special cases of this family [11].

In this article, we generalize the Chen model 
to a class of skewed link models, including intercept 
for ordinal response data and apply it to ovary 
hyperstimulation syndrome (OHSS) data.

The rest of the paper is organized as follows. 
We introduce the OHSS data in Section 2. In Section 3, 
we propose a general class of skewed link functions for 
ordinal outcome data using the latent variable approach. 
Section 4 discusses the prior specification and posterior 
proprieties of the parameter in the proposed model 
under a fully Bayesian framework. Section 5 clarifies 
some computational issues in the model as well as the 
criteria for model comparisons. Several comprehensive 
simulation studies are reported in Section 6 with 
detailed discussions. Finally, in Section 7, we fit the 
proposed model on the OHSS data. We conclude our 
paper in Section 8 and all the proofs of the theorems 
are deferred to the Appendices.

Method

First, we establish a general notation. Suppose 
that (yi1,…,yiJ) be binary indicators of the response for 
subject i, where

Yi=j~Bernolli(πj (xi))

	 ( )
J

j i
j 1

x 1
=

π =∑
	 πj (xi)=P(Yi≤j)–P(Yi≤j–1)

	 g(P(Yi≤j))=αj+β*’ xi� (1)

Let Xi=(xi1, xi2,…, xip)’ be the corresponding 

p-dimensional vector of covariates, let β β βt
'
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be a p-dimensional vector of regression coefficients 
and, let {αj} be increasing in j. Each cumulative link has 
its own intercept. This model has the same effects β*’ 
for each link.

Suppose that –∞=αj<αj<...<αj=+∞ are cut 
points of a continuous scale. Based on the latent 
variable approach of Albert and Chib (1993), an ordinal 
regression model can be described as follows. Let Yi
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are symmetric and |με*|≥|δ*| and F is a cumulative 
distribution function. We suppose zi~G is the cumulative 
distribution function of a skewed distribution and 
independent of εi

* .
The model has several nice properties. First, 

the underlying latent variable has a mixed-effects model 
structure. Second, δ is the skewness parameter and, 
when G has support of R+ and the intercept is known, 
the model is positively skewed if δ > 0 and negatively 
skewed if δ < 0. Third, the model reduces to symmetric 
link model when δ = 0 or G is a degenerate distribution 
at 0. Fourth, it facilitates the easy implementation of 
the Gibbs sampling algorithm. However, the model 
has the limitation that the intercept and δ in (5) are 
confounded with each other. One way of handling this 
problem is to exclude the intercept from the model, 
as done in Chen et al. (1999). Without an intercept in 
the model, δ plays a dual role. For example, when G 
has R+ as its support and δ is negative, we may not 
be able to tell whether this negative value comes from 
a negative intercept or from the negative skewness of 
the link. In addition, this approach may lead to a loss in 
goodness-of-fit. Another possible solution is to leave 
an intercept in the model but fix δ = 1, but then we may 
lose flexibility in controlling the amount of skewness 
in the link.

To overcome the identifiability problem in 
the model in (5), we propose the following skewed 
generalized t-link model. We begin with the following 
model:

	 Y Y µ µ
i
' i

*
'

*'

i
' i

*

* * *

= = =
µ

β β
µ µε ε ε

, , � (3)

After reparameterization, the proposed link 
model takes the form:
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Finally, the probabilities for Yi≤j can be written 
as follow:

	 P Y j P Y P x zi i
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Special case

We consider a special case which showing the 
marginal distribution of Yi

'  is skewed normal when εi
'  is 

standard normal and zi is half-standard normal.
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The last equation is a characteristic function of 
skewed normal.

Where Y SN xi
' '

i
' '~ ( , , )β δ δ1 2+

The prior and posterior distributions

The likelihood function for the model is given by:
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Following Gibbs sampling, we should define a 
Bayesian framework for hypothetical data which the 
outcome has four categories and having a couple of 
independent variables. First of all, using a simple 
transformation on Yi

'  residuals will be normalized. 

Therefore, it does not need estimating µ'
2 .
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We assume that δ’, β’, and α are independent 
a priori. Thus, the proper prior for the parameters are 
defined as follows.

δ›~unif(–1,1)
β›~Np (0,kIp), k=a known constant
α=(α1, α2, α3)~N3 (0,kI3)
We also considered positive standard half-

normal and normal for z and F, respectively.
Hence, the posterior distribution was obtained 

in bellow:
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Let τi=1 if Yi=j otherwise =∞. Let X denote the 
n×P known design matrix with rows Xi

'  having full 
column rank associated with all n observations and 
define X* as the matrix with rows  i i

'X , where p is the 
dimension of β.

Theorem: Suppose prior distribution is improper 
for, p(β)∝1, and thefollowing conditions are satisfied:

(C1) X is of full rank.
(C2) There exists a>0 and ∈Rn such that 

X*'
a = 0 .

	 (C3) (αj)
p–(αj–1)

p<∞
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and p(α) would be proper, then the posterior 
is proper (the integral of the likelihood times the prior 
is finite).

Although the analytical evaluation of the joint 
posterior distribution of (α, β’, δ’, h, z) given in (9) does 
not appear possible, the random-effects structure of 
the skewed link model allows us to develop an efficient 
Markov chain Monte Carlo sampling algorithm to 
sample from this joint posterior distribution. For ease 
of presentation, we consider G equal exponential 
distribution only as the Markov chain Monte Carlo 
sampling algorithms for other choices of G are similar.
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Analysis of the data

We consider data from a randomized controlled 
trial (RCT) study of women randomly assigned to 
one of two treatment groups Albumin or Cabergoline, 
n = 138, which is a subset of the data published in 
Tehraninejad et al. [12]. The ordinal response variable 

(y) is OHSS, which takes the values 0, 1, and 2 and 3, 
where 0 denotes that the OHSS has not occurred and 
1–3 indicates the severity of OHSS (mild, moderate, 
severe). We consider six factors: Treatment group, 
number of MII, HCG dose, ascites, HCT (hematocrit), 
and insemination. All variables are continuous except 
treatment group which is binary, taking the values 
0 and 1, where 1 denotes Albumin and 0 indicates 
Cabergoline. In addition, 69 and 56 patients developed 
OHSS in Albumin and Cabergoline groups, respectively. 
In Markov chain Monte Carlo sampling, we standardized 
all covariates.

We use the DIC measure proposed by 
Spiegelhalter et al. [13] to compare ordinal regression 
models under different links. Let θ denote the collection 
of all parameters involved in the model under 
consideration. For example, for the skewed link model 
in (2), we have θ = (α, β’, δ’, h, z). Then,

	 DIC = D (θ)+2pD� (10)
where D (θ) is a deviance function and θ = E (θ|y, 

X) is the posterior mean of θ. In (10), pD is the effective 
number of model parameters, which is calculated as pD 
= E {D (θ)|y, X}−D (θ). For the proposed skewed link 
model, we take the deviance function to be of form D 
(θ) = −2 log p(y|X, β, δ, ν1), where p(y|X, β, δ, ν1) is the 
likelihood function based on the observed data given in 
Guerrero and Johnson [8]. In Cowles and Carlin [14], 
D (θ) is a Bayesian measure of lack of fit or adequacy 
and 2pD is the complexity penalty term. The smaller the 
DIC value, the better the model fits the data. The other 
properties of the DIC can be found in Spiegelhalter 
et al. (2002). Note that it is important to integrate out 
all latent variables in the deviance calculation, as this 
yields a more appropriate penalty term 2pD.

Table  1 shows the values of DIC for six 
covariate-based models under symmetric and skewed 
links. With the model, the effective number of model 
parameters pD is about 6 for all cases. For example, 
the values of pD are 6.25 when F is normal and G = E, 
6.12 when F is Cauchy and G = negative exponential 
(NE) and 5.69 when F is normal and G is degenerated 
at zero.

Table 1: OHSS data. Values of DIC for models with all sets of 
covariates under symmetric and skewed links

DICGF
701.9
696.7

E
HN

Normal

702.2
702.0

E
HN

Logistic

695.2
691.9

E
HN

Cauchy

723.6-Complementary log-log
Covariates (TG, Acite, no.MII, Insemination, dose HCG, HCT).

We can see some interesting patterns in the 
values of DIC in Table 1. For any set of covariates, the 
skewed link model and G = NE fits the data best. Except 
for the probit link, a negatively skewed link fits the data 
better than the positively skewed and symmetric links 
within each class of Cauchy links. When F is normal, 
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the DIC values for different G’s are very similar under 
the models that include the six covariates. For any given 
G, the proposed link achieves a better fit than the probit 
and Cauchy links. Within the class of the proposed link, 
the models that include the treatment group greatly 
improve the fit for both the symmetric and skewed 
links over the models with HCG dose. When ascites is 
included in the model, the number of MII leads to much 
further improvement under the symmetric link but not 
much under the skewed links. The symmetric logit link 
with the covariates fits the data much better than the 
negatively skewed link with the covariates. Therefore, 
it is important that the choice of links should always be 
done in conjunction with the selection of covariates.

Table 2 shows the posterior means, the posterior 
standard deviations, and the 95% highest posterior 
density intervals of the parameters of the regression 
model with covariates treatment group, number of 
MII, dose of HCG, ascites, HCT, and insemination 
under the symmetric probit link and the skewed probit 
link. Except for the treatment group and ascites, the 
posterior estimates of all regression coefficients are 
positive, which implies that the cumulative probability 
of OHSS is an increasing function of the number of MII, 
dose of HCG, HCT, and insemination. In addition, all six 
covariates are significant under both links, as all interval 
estimates fail to contain 0. Note that, under the skewed 
probit link model, the posterior means of δ is 0.43.

Table 2: OHSS data. Posterior estimates under symmetric and 
proposed skewed link models

95% HPD IntervalStd DevEstimateVariableModel
(0.30, 4.41)
(2.07, 3.74)

0.99
0.38

2.25
2.82

Intercept 1
Intercept 2

Probit link

Ref
(-7.34, -2.65)1.21

Ref
-5.01

Trt Group
Albumin
Cabergoline

(0.04, 0.21)0.050.12No.MII
(0.77, 3.02)0.591.90Dose HCG

(-6.11, -2.59)0.89-4.48Ascites
(0.20, 0.57)0.090.38HCT
(0.04, 0.19)0.040.12Insemination
(0.31, 4.49)
(2.06, 3.89)

1.10
0.43

2.49
3.08

Intercept 1
Intercept 2

Skewed probit link

(-7.05, -2.45)1.29
Ref

-4.89

Trt Group
Albumin
Cabergoline

(0.04, 0.20)0.050.13No.MII
(0.80, 3.00)0.621.94Dose HCG
(-6.01, -2.3)0.94-4.03Ascites
(0.21, 0.59)0.100.41HCT
(0.03, 0.24)0.050.13Insemination
(0.12, 0.78)0.150.43

Std Dev, standard deviation; Trt: Treatment; HCT: Hematocrit; HPD.

In all the computations, there are 150,000 Gibbs 
samples, but we only used 30,000 iterations, obtained 
from every 5th  iteration, to compute all quantities of 
interest, using a burn-in of 2000 iterations. The computer 
codes were written in R 3.4.4 with double precision 
accuracy. The convergence of the Gibbs sampler 
was checked using several diagnostic procedures, as 
recommended by Cowles and Carlin [14]. Approximate 
convergence is reached after 2000 iterations.

Discussion

This article has presented a class of new 
skewed link models for analyzing ordinal response 
data with covariates. Chen et al. suggested that an 
asymmetric link model for binary outcomes may be 
more appropriate than symmetric link model when 
the number of l’s is much different than the number of 
0’s [2]. In this paper, the outcome is ordinal and there 
has not been any considerable evaluation in this regard. 
In the example, the data were generated from the 
asymmetric complementary log-log model. We showed 
that the skewed logit model with a negative skewness 
parameter six fits the data better than the symmetric 
logit model. However, the counts of l’s and 0’s only 
give an indication for the choice of links, and the other 
factors, such as the distribution of covariates, may also 
affect the choice of links for a given dataset. Although 
the proposed skewed link model does not include the 
complementary log-log link model, our large-scale 
simulation study has shown that the complementary log-
log link model can be well approximated by a skewed 
probit model with a half-normal distribution for G and a 
skewness parameter roughly equal to 0.55. Compared 
to the complementary log-log link model, the advantage 
of the proposed skewed link model is that it allows more 
flexibility to model skewness; that is, the skewness 
can be determined by the data. There are, however, a 
few aspects that warrant further discussion. The most 
important issue is the choice of F and G in the model 
defined by Chen et al. [2]. In this article, we took F to 
be a normal or logistic cdf and G to have the density of 
a standard half-normal cdf. In practice, the choice of F 
is usually restricted to a standard cdf, such as a normal 
or logistic, whereas there are many plausible choices 
of G. The choice of G corresponding to a half-normal 
cdf is analytically tractable and easily implementable 
from a computational perspective. Nonparametric 
mixture models such as Dirichlet process mixture 
models can be implemented in modeling F as well as 
G. Some related work in this direction has been done 
by Newton et al. [15], Basu  and Mukhopadhyay [16]. 
Following, one can develop model diagnostic strategies 
for modeling ordinal response data. In addition, a more 
general skewed link model in this regard could be 
produced.
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Proof: Let ε1,…,εn be independent random 
variables with common distribution function F. We have
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Let z*= (τ1z1,…, τnzn)’ and α=(α1,…,αJ–1) using 
Fubini’s theorem and a result of Lemma 4.1 of Chen and 
Shao (2001) that there exists a constant K depending only 
on X such that ‖–β‖≤K‖–u‖ whenever –X* β≤–u, we have
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The last statement could be finite if:
(αj)

p–(αj–1))
p<∞ and p(α) would be a proper prior.


