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Abstract
Inflammation and oxidative stress is both two important key players in the development, enhancement, and 
maintenance of both nociceptive and neuropathic pain. They are almost invariably involved in pain-related diseases, 
such as all-cause low back pain, diabetic neuropathy, neurodegenerative diseases, myocardial ischemia, cancer, 
and various autoimmune disorders, among others. They act synergistically and their presence can be beneficial, 
yet detrimental to neurons and nerves if they are in overdrive state. Meanwhile, anthocyanin, a group of flavonoid 
polyphenols, is very common in nature and can be easily derived from fruits and vegetables. Accumulating evidence 
has shown that anthocyanin possesses potent anti-inflammatory and anti-oxidant effects through numerous 
mechanisms and that its proof-of-concept in ameliorating various pathology of disease states have been extensively 
documented. Unfortunately, however, the empirical evidence of anthocyanin for alleviating pain has been very 
minimal to date, despite its potentials. Herein, we discuss the basic properties of anthocyanin and its relevant pain 
mechanisms which could become potential targets for pain management using this natural compound.
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Introduction

Pain is a universal feeling innately presents in 
almost every human being. Naturally, pain is designed 
to protect our body from various harmful insults, 
yet pain can often be problematic during persistent 
pathological states, such that seen in the majority of 
diseases. Further complicating matters, abnormal 
processing of pain signals either in the periphery or in 
the central nervous system (CNS) in the presence of 
ongoing noxious insults can lead to the development 
of neuropathic pain. Neuropathic pain is difficult to 
manage due to multiple issues, including inadequate 
diagnosis, high complexity, and less understanding 
of the mechanisms involved, inappropriate treatment 
selections and outcome reporting, and inadequate 
comorbidity management [1]. In fact, the limited options 
for neuropathic pain have led to the surge of opioid 
addiction and overdose epidemic in the U.S [2]. Given 
the account of the extremely common prevalence of 
pain (i.e., more than one-third of Americans suffer from 
acute or chronic pain [3]) and the desperate needs for 
novel pain therapeutic strategies, it is worth to take a 

look on an abundantly available natural substance 
with strong anti-inflammatory and anti-oxidant 
properties such as anthocyanin (ANC). ANC has 
been studied extensively over the past decades and 
has been proven to either mitigate or alleviate a vast 
array of diseases, including infections (e.g., common 
colds, and urinary tract infections), cardiometabolic 
and degenerative diseases (e.g., hypertension, 
and myocardial infarction), and to autoimmune 
disorders (e.g., ulcerative colitis, and systemic lupus 
erythematosus) [4], [5], [6]. Extensive studies have 
proven that ANC exerts a clinically significant effect 
as an anti-inflammatory and anti-oxidant against those 
aforementioned diseases. Given its potential protective 
effects toward inflammation and oxidative stress, ANC, 
thus, is also potential for the treatment of pain, including 
nociceptive and neuropathic pain. In fact, ANC has been 
shown to reduce inflammation-induced pain behavior 
in animal study with similar efficacy as to NSAID, as 
well as demonstrating proof-of-concept prevention and 
treatment for diabetic neuropathy [7], [8]. We, therefore, 
would like to discuss the relevant aspects of ANC and 
its potential use to be incorporated in the management 
of pain.
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ANC’s baseline characteristics

ANC is a group of flavonoid polyphenols 
regarded as the most abundant water-soluble pigments 
of plants on earth. ANC is derived from two Greek words 
which mean red blue [9]. According to its name, ANC 
gives multiple pigments to many fruits, flowers, and 
other vegetation’s, ranging from red, blue, and orange, 
to purple [10]. ANCs are naturally found as glycoside 
and bound to sugar groups, thus are also known as 
anthocyanidins [11]. There are six types of widely 
spread and readily available anthocyanidins, which 
are arguably of importance to human diet, comprises: 
Cyanidin, delphinidin, petunidin, peonidin, pelargonidin, 
and malvidin (Figure 1) [9], [10]. In addition, glycosylation 
is essential to increase anthocyanidin’s molecular 
stability and water-soluble capacity [12].

Figure 1: Different types of anthocyanin molecular structure with its 
associated pigment (adapted from Pojer et al. [9] and Bowen-Forbes 
et al. [16])

ANC’s molecular structure and color are 
greatly influenced by pH changes. For instance, it is 
red to orange in color with eight conjugated double 
bond-carrying cations under very acidic pH (i.e., 
1–3) [13], [14], it turns into quinodal blue on pH 4 [10], 
becomes colorless and form a chalcone at pH 5–6 [9], 
and ultimately turns to blue-purple with quinodal base 
at pH 7–8 [15] [16].

ANC has been extensively studied and further 
processed to become natural food additives [17], as well 
as food supplements for health-related purposes [18]. 
In fact, there is plenty of valid evidence supporting 
the wide-range beneficial effects of ANC in promoting 
health through various organ systems with numerous 
molecular mechanisms. For instance, it has been 
shown through laboratory and epidemiologic studies 

that ANC consumption can lower the risk of multiple 
degenerative diseases, ranging from ischemic heart 
disease to cancer, and helps alleviating generic pain 
due mainly to its anti-oxidant, anti-inflammatory, and 
immunomodulation properties.

ANC-rich dietary sources can be easily 
found in the environment, thanks to its common 
availability. Among those with highest content are 
(comprising but not limited to) bilberries (Vaccinium 
myrtillus) with 405 mg of glucoside-type ANC/100 g, 
elderberries (Sambucus nigra) with 794.13 mg of 
glucoside-type ANC and 462.96 sambubioside-type 
ANC/100 g, chokeberries (Aronia melanocarpa) 
with 557.67 mg of galactoside-type ANC/100 g, and 
billberries (V.  myrtillus) with 405 mg of galactoside-
type ANC/100  g, among others [9], [19], [20]. Given 
its widespread availability, abundant contents, relative 
affordability, and well-known health promoting effects, 
ANC merit further studies and perhaps, to some 
extent, to be incorporated into the treatment of various 
diseases of which it has been proven to have protective 
and/or alleviating effects. In this review, we focus to 
discuss the pharmacokinetics and pharmacodynamics 
of ANC, especially for its ability to reduce acute and 
chronic pain transmission.

ANC’s pharmacokinetics (absorption, 
distribution, metabolism, and excretion)

ANC has been demonstrated to be rapidly 
absorbed, that is, it can be detected in the portal 
and systemic blood plasma within 6–20 min post-
ingestion  [21], [22]. Interestingly, it can be absorbed 
intact, regardless of its molecular sizes and 
structures or its attached acylated components, 
although recent evidence seems to confront these 
findings  [23], [24], [25], [26], [27], [28], [29], [30]. 
The time to reach maximum plasma concentration 
(Tmax) of ANC varies, depending on the types of 
active substance, as well as the dietary source of 
it. In general, based on animal studies, the Tmax 
ranges from 15 min (as seen in bilberries, and 
elderberries with cyanidine 3-glucoside), 30 min (as 
seen in blackcurrants with cyanidine 3-glucoside and 
cyanidine 3-rutinoside, and 4–8-week-blueberries), 
an hour (as seen in dry marrion blackberries with 
3-glucoside), and to 2 h (as seen in delphinidin 
3-rutinoside) [9], [24], [23], [31]. It was proposed that 
the rate and extent of its absorption depend on the 
structure and composition of glycine, sugar moiety, 
and its acylation components  [31], [32], [33], [34]. It 
was generally presumed the more complex of an ANC 
structure, the less rate for it being absorbed [35].

The systemic bioavailability of ANC was reported 
to be relatively low, with animal studies varied between 
0.26% and 1.8% [34], [36], [37], [38], [39], [40], [41]. Some 
data suggested an estimated range of bioavailability 
between less than 1 and 2%, with only trace amount 
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of the substance detected in organs [42]. This finding 
was supported by the use of radioactive labeling of 
cyanidin 3-O-glucoside (Cy3G) fed to the mice which 
showed minimal accumulation of the traced substance 
outside the gastrointestinal tract tissue (i.e., only 0.76% 
of radioactivity was detected), suggesting that Cy3G 
was poorly absorbed by other organs, despite high 
accumulation in GI tract (44.5%) [43]. However, it was 
suggested that ANC’s bioavailability could be much 
greater when taking into account of the pre-systemic 
metabolism, such as Phases I and II metabolism, 
conjugation, microbe-assisted metabolism, as well as 
enterohepatic recycling [42], [44].

ANC undergoes specific bodily activities which 
varied between organs it passes. For instance, the 
exposure of saliva to ANC in the mouth could degrade 
approximately 50% of its total amount as a combined 
result of oral microbes’ enzymatic activities, high 
temperature, and salivary protein bindings [42], [45]. In 
addition, it also experienced several processes which 
results in modified ANC structure. For example, oral pH 
exposure of 6.78 leads to a significant transformation of 
native ANC to chalcone (which was reported to be up 
to 30% from total ANC content), or its deglycosylation 
by oral microbes transform it into aglycones [42], [46].

It is suspected that ANC was significantly 
absorbed in the stomach as opposed to the small intestine. 
The notion was based on the observation that in situ 
gastric administration of ANC glucoside and galactoside 
on rats can readily be observed in the blood plasma in 
the form of malvidin 3-glucosidase after only 6 min post-
administration [21]. ANC absorption in humans has also 
been confirmed within minutes of its ingestion [47]. In 
fact, ANC can be found in portal and systemic circulation 
through translocation activities using bilitranslocase, 
an organic anion carrier that can be found both in the 
stomach and liver [21], [48], [49], [50], [51]. Due to the 
nature of highly acidic gastric content (pH between 1.5 
and 4), ANC is stabilized as well as found in the forms 
of quinodal as well as the flavylium species which 
are eligible to be transported to the liver by means of 
bilitranslocase [9], [42].

ANC can also be absorbed from small intestine 
through various transport mechanisms. Some of them 
were sodium-dependent glucose co-transporter-1 or 
other glucose-associated transporters and intestinal 
bilitranslocase [42], [49], [52]. It had been reported that 
ANC absorption was greater in the jejunum (roughly 
55% from total content) followed by duodenum, 
although to a smaller extent (i.e., 10%), with no 
observable absorption through ileum or colon [53]. In 
total, small intestine was estimated to be responsible 
for up to 7.5% absorption of ingested ANC, a 3–7-fold 
higher than the estimated bioavailability of ANC [9], [54]. 
The size of the molecule also matters for absorption. 
ANC, being a large water-soluble molecule, should be 
transported by means of active diffusion, as opposed 
to its aglycone version (anthocyanidin) which is known 

to be hydrophobic, thus can passively diffuse across 
the enterocytes [9], [55], [56].

In addition to being absorbed in the small 
intestine, ANC also undergoes metabolism, for 
example, being hydrolyzed to aglycone by the action 
of various intestinal enzymes, such as β-glucosidase, 
β-glucuronidase, and α-rhamnosidase [9], [57], [58]. 
The purpose of the transformation is suspected to ease 
the transport of these molecules. ANC also undergoes 
methylation by catechol-O-methyl transferase 
(COMT), an enzyme responsible for the degradation 
of catecholamines [26], [59], [60]. It occurs in the 
kidney tubular epithelial cells, as well as in the vascular 
endothelial cells, after the release of ANCs in the 
bloodstream [61].

ANC then reaches the liver wherein it 
undergoes various metabolic processes, including 
hydroxylation and glucuronidation through Phases 
I and II metabolisms [28], [33], [42]. However, the 
extent of ANC metabolism by cytochrome P450 
was unknown, but it was assumed to be related to 
the hydroxylation of nonreactive carbons [42], [62]. 
Whereas, phase II metabolism consists of conjugation 
and glucuronidation, with the latter being assisted by 
Uridine 5’-diphospho - (UDP) glucoronosyl transferase 
and UDP dehydrogenase enzymes [42], [58], [63].

ANC also undergoes sulfation by phenol 
sulfotransferase (SULT1) enzyme which can be found 
in the small intestine, liver, and platelet [38], [64], [65]. 
The resulting sulfoconjugate formation of ANC (in this 
case: Cyanidine and pelargonidin) can readily be found 
in human urine after ingestion of ANC-rich dietary 
sources [38], [66].

Although ANC absorption was deemed next to 
none in the large intestine, the organ plays an important 
role in enterohepatic recycling of bile-containing 
ANCs [39]. Native ANC can be readily detected in rat’s 
bile after 20 min of its ingestion [22]. It is also interesting 
to note that bile can undergo a recycling process for 
more than 20 times, suggesting a prolonged transit time 
of ANC in the body, along with its potential extended 
Phase II metabolism [42]. Given the evidence that 
ANC was found in bile, it is prudent to assume that its 
excretion was done through urine and feces. Indeed, 
a human study using blueberry juice demonstrated 
that only 4% of native ANC content was found in the 
urine, with the rest of it was found in the forms of its 
metabolites [67]. A study using radioisotope-labeled 
cyanidine 3-glucoside also found that approximately 
44% of ANCs were elimited by means of urine, breath, 
and feces [68]. The study also found that ANC was 
degraded into various metabolites, such as phenolic, 
hippuric, and phenylacetic acids. This is in accordance 
with another finding in which more than 371 ANC 
metabolites can be detected in the urine [69].

As mentioned previously, organ uptake of 
ANC was relatively small. A study using rats fed by 
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blackberry (Rubus fruticosus L.) known for its rich 
ANC content (i.e., 14.8 mmol/kg diet) compared with 
those of control diet for 15 days was shown to have 
highest accumulated ANC in the jejunum (605 nmol/g), 
followed by kidney (3.27 nmol/g), liver (0.38 nmol/g), 
and brain (0.25 nmol/g) [22]. A greater amount of 
ANC accumulation in the kidney was reported by the 
administration of 500 mg/kg of cyanidine 3-glucoside, 
that is, 700 nmol/g, whereas in the prostate gland was 
found to be roughly 400 nmol/g [40]. Another study 
using mice fed with 0.5% bilberry extracts for 2 weeks 
demonstrated highest ANC accumulation in the liver 
by 173 pmol/g wet weight of tissue [70]. Moreover, this 
comprises for up to 51.5% of the total ANC distribution 
in the body.

Pathophysiology of pain and its relevant 
targets for ANC

Pain is defined as an unpleasant sensory and 
emotional experience that is commonly associated with 
actual or potential tissue damage [71]. Based on its 
neurophysiological mechanism, pain can be classified 
as nociceptive and non-nociceptive. Nociceptive 
pain is elicited by noxious stimuli (i.e., mechanical, 
temperature, and chemical) to the peripheral tissue 
in the body. Whenever the threshold for the stimuli 
is lowered and/or the magnitude of noxious stimuli 
increases, sensitization occurs [72], which, in turn, 
transmits the pain impulse to the dorsal horn of the spinal 
cord to be further modulated and processed into the 
thalamus and higher cortical function, respectively [73]. 
On the other hand, the most relevant non-nociceptive 
pain is neuropathic pain. Neuropathic pain is defined 
as ongoing pain after injury to the central or peripheral 
nervous system (PNS) (including but not limited to 
trauma, metabolic imbalance, ongoing viral infections, 
and exposure to chemotherapies) [72]. Neuropathic 
pain is thought to result from abnormal somatosensory 
processing in the central and PNS. There are several 
underlying mechanisms, comprising aberrant activation 
of transducers and membrane instability (due to 
biophysical changes of ion channels) induced by the 
previous nerve injury.

The pathophysiology of pain is very broad 
and complex; therefore, due to space constraints and 
relevancy, we focus our discussion on the potential 
prospects of ANC in pain intervention, especially linked 
to inflammation and oxidative stress.

Pro-inflammatory cytokines and chemokine

Inflammation has long been recognized to 
play key roles in the occurrence and maintenance of 
various pathological pains [74]. Inflammation may 
occur following tissue injury by obnoxious stimuli, that 
is, through mechanical, thermal, or chemical exposure. 
Inflammation is marked by the production of various 

cytokines and/or chemoattractant proteins by the 
peripheral nerves [74], spinal cord [75], the dorsal root 
ganglion (DRG) [76], cutaneous source [77], resident 
or recruited macrophages (including astrocytes and 
microglia) [78], mast cells [79], endothelial cells [80], 
and Schwann cells [81] (Figure 2). In addition, cytokines 
can be delivered to the DRG and dorsal horn of spinal 
cord by means of retrograde axonal or non-axonal 
mechanisms, thus further extending its coverage [74].

Figure  2: The pathophysiology of neuropathic pain (a) pain is 
transmitted by means of transduction, conduction, transmission, 
and modulation, before finally conceived as pain stimulus by brain 
(perception), (b) various immune cells take roles in these phases, 
including glial activation in the PNS and central nervous system, (c) 
various substances and receptors are involved in pain transmission 
and modulation, including ATP and ROS and its receptors (TRPA1, 
TRPV1, and purinergic receptors), which were augmented by pro-
inflammatory cytokines during inflammation, all of which could be 
inhibited by ANC at the level of peripheral nerve and dorsal root 
ganglion, and (d) second-order neuron (some picture materials 
were taken and modified from the library of science and medical 
illustrations by sommersault 18:24, licensed under CC BY-NC-SA 
4.0, materials are available under Public License)

Among those cytokines, the most critical 
group being pro-inflammatory cytokines. There is 
accumulating evidence demonstrating the involvement 
of various pro-inflammatory cytokines in the initiation, 
exacerbation, and maintenance of pathological pain, 
for example, interleukin 1β (IL-1β). It is commonly 
synthesized and secreted by the recruited and activated 
macrophages in the vicinity of inflamed area and even 
in the DRG neurons [82]. IL-1β has been proven to 
exert hyperalgesia on in vivo administration [83]. 
Furthermore, inhibition of IL-1 receptor by an antagonist 
was able to attenuate hyperalgesia and nerve injury-
induced allodynia [84], [85]. In addition, IL-1β was also 
responsible to increase certain neuropeptide and lipid 
compound productions which are strongly associated 
with pathological pain and inflammation, such as 
substance P and prostaglandin E2 (PGE2) [86], [87].

Another example is IL-6. This cytokine has 
pleiotropic effects with regard to nerves and pain. IL-6 
plays an important role in CNS axonal regeneration, 
but also can be destructive during inflammatory 
period  [88], [89]. IL-6 also activated astrocytes and 
microglia, two resident glial cells which possess 
several critical interplays with neurons during either 
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physiological or pathological states [90]. Indeed, 
IL-6 immunoreactivity was observed in the dorsal 
and ventral horns of rats following nerve injury (e.g., 
sciatic cryoneurolysis/SCN), whereas its intrathecal 
administration could mimic and potentiate pain behavior 
after SCN [91]. In addition, spinal nerve lesion on IL-6 
knockout mice demonstrated delayed response of 
mechanical allodynia [92], suggesting that IL-6 may 
contribute to the development of neuropathic pain. On 
the other hand, increased PGE2 levels were shown 
to increase the secretion of IL-6 from injured nerve, 
while the administration of selective PGE2 receptor 4 
antagonist (EP4) and protein kinase C (PKC) inhibitor 
attenuated this effect, suggesting that PGE2 may 
increase IL-6 secretion (or even production) by the 
recruited macrophages and resident glial cells in an 
inflamed area by means of PKC pathway and EP4 
receptor [93].

IL-6 also plays an important role in cancer pain. 
An animal study with implanted tumor cell demonstrated 
an increased level of IL-6 mRNA expression and another 
study confirmed elevated levels of IL-6 following tumor 
cell implantation [94]. The mechanism of IL-6-induced 
cancer pain was thought due to trans-signaling pathway 
in the DRG, thus inducing its hyperexcitability which in 
turn upregulates transient receptor potential vanilloid 
channel type 1 (TRPV1) through Janus-activated kinase 
(JAK)/Phosphoinositide 3-kinase (PI3K) signaling 
pathway [95]. 

Tumor necrosis factor-alpha (TNF-α) is another 
critical cytokine in the pathophysiology of inflammatory 
pain. It was predominantly secreted by microglia 
under the influence of interferon gamma (IFN-γ) during 
neuroinflammatory events. Intraplantar injection of 
TNF-α had been shown to induce mechanical and 
thermal hyperalgesia. TNF-α bound to TNF receptor 
1 (TNFR1) and TNFR2, both of which found in both 
neurons and glial cells [96], which in turn activated NF-κB 
following peripheral nerve injury [93]. Furthermore, 
the administration of TNF-α antagonists was shown 
to attenuate inflammation in human intervertebral 
disk cells and hyperalgesia from two independent 
studies  [83], [97]. In addition, TNF-α was thought to 
play a role in the neuropathic pain by increasing Ca2+-
permeable AMPARs insertion in the spinal cord neurons 
which, in turn, induced mechanical allodynia [98]. It was 
also shown that TNF-α upregulated IL-6 expression in 
the DRG on binding with TNFR1 through nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-κB) 
activation [93]. It is also interesting to note that TNF-α 
induced Wallerian degeneration on nerve injection, as 
well as demonstrated the appearance of neuropathic 
pain behaviors [74].

Besides pro-inflammatory cytokines, 
chemoattractant cytokines (or also known as chemokines) 
also play a critical role in the modulation of pain. This 
is especially true for chemokine (C-C motif) ligand 2 
(CCL2) (previously known as monocyte chemoattractant 

protein 1/MCP-1), a chemokine which acts to recruit 
and regulate migration and infiltration of monocytes, 
neutrophils, and glial cells [99]. CCL2 and its receptor 
(CCR2) are upregulated in peripheral nerve injury as well 
as other cases, including neuroinflammation, or CNS 
trauma [74]. CCR2s were identified in DRG neurons and 
an animal model lacking these receptors was shown 
to be protective from developing mechanical allodynia, 
whereas a persistent upregulation of CCR2s in DRG 
and peripheral nerve was seen following injury  [74]. 
These findings suggest that CCL2 is likely involved in 
mediating nociceptive and chronic neuropathic pain, 
as well as present in various other neuroinflammatory 
conditions. It is also relevant to note that CCL2-CCR2 
interaction was shown to induce hypersensitivity in a 
demyelinating neuropathic pain in a time-dependent 
manner, suggesting that chronic pain should be staged 
as different molecular interplays and mechanisms take 
place over variable timing periods [72].

ANC has been able to suppress the production 
of multiple aforementioned pro-inflammatory cytokines 
and chemokines, including IL-1β, IL-6, TNF-α, and 
CCL2, as well as inhibit its corresponding receptor 
(i.e., G-coupled protein receptor/GPCR and CCR2). 
In addition, ANC was also demonstrated to inhibit ATP 
production, ameliorate ROS in the event of oxidative 
stress, and suppress glutamate (Glu) release from 
inflamed neurons. These multifaceted mechanisms 
were relevant in the pathophysiology of nociceptive 
and neuropathic pain, thus explaining its mechanism of 
action for this pathological event (discussed further in 
section 2.3.4).

Glial activation in CNS and PNS

Two types of resident glial cells in the CNS, 
i.e., microglia and astrocytes are activated by various 
neuropeptides and neurotransmitters secreted from 
nearby neurons. Under normal physiological conditions, 
glial cells are important by acting as a physical 
support for neurons, improving synaptic transmission 
efficacy, preserving tissue integrity during nerve injury, 
facilitating neuronal ionic exchange, and continuously 
communicating with neurons to modulate neuronal 
transmission [90]. However, during inflamed states, 
the corresponding neurons may secrete EEA, PGEs, 
substance P (SP), ATP, and nitric oxide (NO), all of 
which induces glial cell activation. Those activated glial 
cells in turn are recruited to the injury site by the role of 
the previously described chemokines (esp. CCL2) and 
secrete various pro-inflammatory cytokines, including 
IL-1β, IL-6, and TNF-α [74].

In addition to pro-inflammatory cytokines, 
activated glial cells also increase PGEs production 
through increased cyclooxygenase (COX) enzymes 
activity [100]. The resulting PGEs, in turn, promote 
positive feedback to the dorsal root neurons to increase 
NO production. Interestingly, activated glial cells 
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also release NO under the influence of α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid receptors 
(AMPARs) and metabotropic glutamate (mGluRs), as 
well as responsible in the production of ATP [90].

NO has been well-demonstrated to play a role 
in dorsal horn neurons sensitization during inflammatory 
tissue damage and primary afferent fiber (PAF) injury 
by means of cyclic guanosine monophosphate (cGMP) 
formation and PKG-mediated phosphorylation of 
specific membrane associated proteins (MAPs) [90]. 
In addition, NO was reported to increase nociception 
by transported retrograde into the presynaptic PAF 
terminals and release glutamate, SP, and calcitonin 
gene-related peptide (CGRP) via cGMP.

PGEs are also critical in the pathological pain 
state. Prostaglandin G2 and H2 are synthesized from 
arachidonic acid in which its processes are catalyzed 
by COX enzymes [101]. In general, COX-2 enzyme is 
thought to be responsible in generating a large amount 
of prostaglandin H2, which, in turn, converted into PGE2 
by prostaglandin E synthase (PGES) and –synthase 2 
(PGES2) [102]. In fact, COX-2 existence predominates in 
the spinal cord, especially in regions receiving nociceptive 
inputs, such as laminae I, II, and X [90]. PGE2 binds to 
its receptors (EP2, EP3, and EP4) and are coupled 
to G-protein coupled receptor (GPCR) alpha-s which 
results in adenylate cyclase stimulation and increased 
cyclic adenosine monophosphate (cAMP) levels with 
subsequent protein kinase A (PKA) activation [103]. PGE2 
signaling is thought to increase peripheral nociceptors 
responsiveness through capsaicin receptor (TRPV1) and 
tetrodotoxin-resistant sodium channel SCN10A [104], in 
which its activations are responsible to increase excitability 
of peripheral nociceptors and facilitate the propagation of 
nociceptive impulses along the peripheral nerve.

Increasing evidence has demonstrated the 
role of p38 mitogen-activated protein kinase (MAPK) 
activation in the event of nociceptive and neuropathic 
pain [105], [106], [107]. MAPK plays a crucial role in the 
generation of pain due to its ability to be activated by 
several microglial receptors, as well as to regulate many 
inflammatory mediators important in pain facilitation. 
For example, p38 MAPK pathway was activated 
following spinal nerve ligation and the administration of 
its antagonist was proven to prevent allodynia [108]. In 
addition, minocycline, which is known for its microglial 
activity inhibitor, was shown to elicit its action through 
p38 MAPK pathway with the resulting pain attenuation 
in various pathological states [109]. In neuropathic pain 
model, activated microglia by ATP was shown to release 
brain-derived neurotrophic factor (BDNF), wherein it 
was involved in the shifting of neuronal anion gradient 
in the event of neuropathic pain [110].

Purinergic pathways and its relations to pain

Purinergic pathways have been well-documented 
to be involved in both nociceptive and neuropathic 

pain transduction, conduction, and transmission, along 
with its apparent physiological roles in hollow organs. 
Purinergic pathways involve purinergic receptors which 
exist in several different types and are found in peripheral 
nociceptive sensory neurons in the DRG, trigeminal, 
nodose, and petrosal ganglia [111], [112].

Purinergic receptor nomenclature is defined by 
the type of the activating cotransmitters, with P1 and 
P2 receptor family being activated by adenosine and 
ADP/ATP, respectively [113]. The P2 receptor family 
is further divided into two subtypes, P2X and P2Y, by 
means of pharmacological classification [114] and the 
mechanisms of signal transduction [115]. P2X subtypes 
are those with ligand-gated ion channel receptors, 
whereas P2Y subtypes are those with G-protein 
coupled receptors (GPCRs) [113], [115].

Under normal physiological conditions, 
purinergic pathway is involved in various organ 
signaling. For instance, distended urinary bladder 
caused epithelial cells to release ATP which readily 
bound to the purinergic receptor P2X3 and assisted 
the normal voiding reflex. Another instance was the 
involvement of both P1 and P2 receptor families in the 
intestinal peristalsis regulation, as well as its serotonin 
secretion [116], [117]. Other purinergic signaling was 
found on uterine cervical dilation during late pregnancy 
as mediated by ATP release and subsequent interaction 
with P2X3 receptors, as well as in the lung’s vagal 
sensory fibers which play a role in airway’s smooth 
muscle hyperactivity during asthma and chronic 
obstructive pulmonary disease [118], [119].

Regarding nociceptive stimuli, it was proposed 
that the pain transduction involves the sensitization 
of P2X3, P2X2/3, P1A2, and P2Y1 receptors in the 
sensory neurons found in the peripheral nociceptive 
terminals of cutaneous region and other organs 
by the released adenosine and/or ATP/ADP from 
sympathetic nerves, mechanoreceptors (i.e., Merkel 
cell), vascular endothelial cells, and even cancer cells. 
The binding, in turn, generates nociceptive impulse 
and conducted to the first order neuron in the dorsal 
column of spinal cord through DRG, then continue to 
the thalamus and somatosensory cortex after once 
again modulated by purinergic receptors (P2X2, P2X4, 
and P2X6)-ATP interaction. It was also proposed 
that purinergic receptors upregulation was positively 
associated with TRPV1, suggesting their functional 
interaction and subsequent sensitization of nociceptive 
sensory neurons which underlies the development of 
mechanical hyperalgesia [113], [120], [121].

In fact, P2X3 receptors were found to be 
expressed in the cutaneous sensory nerve fibers and 
the subsequent binding of ATP and α,β-methylene ATP 
can activate the Aδ and C fiber nociceptors [122], [123]. 
It was proposed that ATP also mediates the upregulation 
of P2X2 and P2X3 receptors in the DRG during cutaneous 
inflammation and subsequently contributes to a more 
effective nociceptive sensitization  [113], [124]. In 
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addition, purinergic mechanism is also involved even in a 
disease with autoimmune etiology such as inflammatory 
bowel disease (IBD), wherein the noxious stimuli arise 
from the intrinsic immune system. It was found that 
P2X3-immunoreactive neurons were significantly higher 
in myenteric plexus of inflamed colon as opposed 
to normal control [125]. Interestingly, other types of 
purinergic receptors (P2Y6 and P2X7) were also found 
to be strongly expressed and upregulated in the resident 
CD4+ and CD8+ T cells in the medullary thymus and 
spleen of IBD cases and subsequent administration of 
P2X7 receptor antagonist decreased NF-κB activation in 
lamina propria immune cells, as well as downregulation 
of pro-inflammatory cytokine production in colon tissues 
and put murine colitis into halt [126], [127]. These 
findings suggest that purinergic signaling mechanisms 
are not only limited to the peripheral nociceptive sensory 
neurons but also activated in various immune cells in 
the event of inflammation, which almost invariably 
occurs during nociceptive sensitization. In the heart, 
P2X3 as well as adenosine (A1 and A2) receptors were 
important in the nociceptive transmission through 
nodose ganglion afferent neurons during myocardial 
ischemia [128], [129]. Moreover, the P2X7 and P2Y2 
receptors in the heart were found to be upregulated and 
downregulated, respectively, in the event of ischemia-
reperfusion injury, suggesting the harmful role of P2X7 
and protective effect of P2Y2 purinergic signaling 
pathway [130]. Purinergic and adenosine receptors 
(P2X3, P2X2/3, P2Y2, and A1 subtype) were also found 
in the articular joints of the temporomandibular [131], 
knee [132], [133], and ankle [134], anatomical locations 
that are often be problematic and associated with 
combined mechanical and inflammatory nociceptive 
sensitization.

Purinergic signaling also plays a major role 
in neuropathic pain. Several receptors including P2X4, 
P2X7, and P2Y12 receptors expressed by the activated 
microglia have been linked to the development of 
neuropathic pain. ATP was suspected to play a role 
through binding with these receptors [135]. One 
mechanism for neuropathic pain signaling modulated 
by purinergic receptors is through the synthesis and 
release of BDNF and disinhibition of pain transmission 
activity by neurons located in the lamina I [136]. The 
involvement of BDNF was also confirmed by the 
attenuation of mechanical hyperalgesia-induced 
neuropathic pain in the absence of P2X4 receptors [137]. 
Interestingly, activated P2X4 receptors require calcium 
ion and p38 MAPK pathway for the synthesis and 
release of BDNF from microglia [138], and that this 
mechanism also applied to the long-term potentiation 
(LTP) induction of C-fiber by ATP in the dorsal horn of 
spinal cord [139].

It is also well noted that P2X7 receptors which 
are commonly expressed in resident glial cells also 
contribute to neuropathic pain, particularly through 
inflammation [140]. ATP dependent-activated P2X7 
receptors were known to upregulate pro-inflammatory 

cytokines, mainly IL-1β [141], [142], TNF-α [143], and 
IL-6 [144]. IL-1β and TNF-α productions were increased 
through p38 MAPK pathway, whereas the underlying 
mechanism of IL-6 upregulation is still unclear [143], [144]. 
These findings reiterate the importance of inflammation-
mediated nociceptive and neuropathic pain and that to 
successfully manage pathological pain; we shall always 
take inflammation into account.

The anti-inflammatory properties of 
anthocyanin

ANC derived from various dietary sources 
has been studied extensively, particularly with regard 
to its anti-inflammatory effects. ANC extracted from 
red raspberries has been demonstrated to suppress 
COX-2, IL-1β, and IL-6 expression, as well as reducing 
NO synthesis (through inhibited expression of iNOS) 
in RAW264.7 macrophages [145]. Its subsequent 
administration to a mouse model with colitis was 
shown to ameliorate the associated weight loss and 
cellular damage. ANC exerts its anti-inflammatory 
effects through inhibiting NF-κB, p38 MAPK, JNK, and 
Akt signaling pathways [146],  [147], [148], [149]. In 
addition, ANC is also a strong COX enzyme inhibitor. 
The COX inhibitory capacity was even comparable 
to NSAIDs such as ibuprofen or naproxen at certain 
concentrations [150]. In fact, ANC derived from red sweet 
cherry water was shown to inhibit COX enzymes by 
80–95% at 250 μg/mL [151]. Furthermore, ANC appears 
to have an increased tendency toward COX-2 rather 
than COX-1 inhibition. ANC derived from black soybean 
seed coats has been shown to inhibit UV-induced 
COX-2 expression  [152]. Similarly, ANC-derived purple 
sweet potato also reduced the expression of COX-2 
and iNOS expression in rats with liver injury [153]. This 
is perhaps due to the heavy involvement of COX-2 
in various pathological states, such as ischemia-
reperfusion injury  [154], intestinal inflammation [155], 
and tumor [156], [157]. Fortunately, both nociceptive 
and neuropathic pain also have a strong connection 
with COX-2 as its mediators [158], [159], [160], thus the 
ability of ANC to inhibit COX-2 and relieve both types 
of pain would be greatly appreciated. Predictably, strong 
COX-2 inhibition results in reduced PGE-2 production 
and release [152],  [161], [162], hence, abridging the 
inflammation and nociceptive sensitization.

The resulting inhibition of inflammatory 
pathways by ANC was supposedly demonstrated by 
reduced pro-inflammatory cytokines production and 
secretion. Indeed, ANC derived from soybean seed 
coat was shown to inhibit TNF-α expression through 
NF-κB-dependent pathway [163], whereas ANCs-
rich extract from bilberry was shown to reduce mRNA 
levels of iNOS, TNF-α, IL-1β and IL-6, and reduce 
protein levels of iNOS, TNF-α, and NF-κB [164]. In 
addition, ANC metabolites also reduced IL-6 and 
VCAM-1 levels in oxidized LDL challenged vascular 
endothelial cells [165].
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It is also worth noted that ANC-rich black 
elderberry administration to hyperlipidemic mice was 
shown to reduce CCL2 serum levels [166]. Purified 
ANC supplementation for 24 weeks could reduce 
plasma CCL2 levels by approximately 11% [167]. 
Similarly, delphinidin 3-sambubioside and delphinidin 
downregulated MEK1/2-ERK1/2 and NF-κB signaling 
pathway and lead to decreased IL-6, TNF-α, and 
MCP-1 (also known as CCL2) levels [168]. Reduction 
in chemokine levels, thus, can potentially reduce 
resident glial activation and prevent the exacerbation 
of inflammatory nociceptive sensitization. Indeed, the 
combined suppression of pro-inflammatory cytokines 
and chemokine gene expression, production, and 
release of strawberries-derived ANC extract has been 
shown to ameliorate reactive astrogliosis, delay disease 
onset, and extend survival in mice with amyotrophic 
lateral sclerosis (ALS) [169]. Moreover, ANC can 
also block glutamate-induced AMPK activation [170], 
suggesting that ANC may act indirectly in mitigating 
excessive neuronal excitations.

The various mechanisms of anti-inflammatory 
actions elicited by ANC should, therefore, be readily 
demonstrated on a clinical basis. Indeed, a double-
blind RCT of tart cherry drink administration before 
long distance running was shown to reduce muscle 
pain significantly among runners when compared to 
those who did not consume it [171]. A double-blind 
randomized controlled trial (RCT) assessing the efficacy 
of cherry juice to osteoarthritis (OA) patients also 
demonstrated the same outcome, which is a significant 
reduction of both pain score and highly specific 
C-reactive protein (hsCRP) inflammatory marker 
among treatment group [172]. To be specific, ANC has 
been demonstrated to attenuate inflammation-induced 
thermal hyperalgesia, mechanical hyperalgesia, and 
edema in rat model, with similar efficacy to indomethacin 
at its highest dose (400 mg/kg BW) [173].

Finally, the direct involvement of ANC on 
purinergic receptors with regard to pain attenuation 
has yet to be investigated because purinergic receptors 
have gained accumulating evidence and important 
roles in both nociceptive and neuropathic pain, and that 
its inhibition by ANC seems plausible. 

Oxidative stress

Oxidative stress is a condition wherein there 
is an imbalance between the amount of free radicals 
and antioxidants. The imbalance can be in the form 
of excessive free radicals in the presence of relatively 
inadequate antioxidants. Under normal physiological 
states, aerobic metabolism as a consequence of 
various mitochondrial enzymes produces free radicals 
in the form of reactive oxygen intermediates and 
nitrogen species (RNI). These are also produced 
through ultraviolet, ionizing radiation, and air pollution 
exposures [174]. In addition to these, the electron 

transport chain activity in mitochondria also generates 
reactive oxygen species (ROS) [175]. All of those 
molecules belong to free radicals. A free radical has a 
free electron on its external orbit and always attempts 
to find another electron to stabilize itself. Hence, a 
free-radical may forcefully take an extra electron from 
nearby biomolecules [174].

Another example of ROS generation is through 
the activity of nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidases, cell membrane enzyme 
complexes to produce ROS which involves in cellular 
signaling and tissue homeostasis (Figure  3). The 
enzymes were expressed in the neurons, astrocytes, 
and microglia. Under abnormal states (e.g., infections), 
NADPH oxidases can be highly activated (especially 
NADPH oxidase 2/NOX2 in the CNS), thus resulting in 
high levels of ROS which is associated with oxidative 
stress and neurodegeneration [176].

Figure 3: The generic roles of mitochondrial ROS in cell death (a) 
mitochondrial electron transport chain and a series of chemical 
reaction to generate ATP lead to ROS (O2−) accumulation. (b) In 
addition, external environment can become another source of free 
radicals, such as the involvement of COX and NO, with the latter 
being associated with the production of peroxynitrite. (c) Free radicals 
(mostly ROS) in the presence of imbalance endogenous antioxidant 
enzymes (primarily SOD), will induce oxidative stress, all of which 
injures cell and causes cellular death through various mechanisms, 
including mitochondrial DNA (mtDNA) mutations and deletions 
with subsequent mitochondrial dysfunction, lipid peroxidation, and 
release of cytochrome c to the cytoplasm. (d) ROS also induces 
mitochondrial permeability transition pore formation, an opening in 
the mitochondrial outer membrane facilitating the efflux of calcium 
ions and ATP into the cytoplasm, leading to cellular death. (e) ANC 
directly suppresses ROS production from various sources, as well 
as inhibits other molecules with pro-ROS formation such as NO and 
COX. It also boosts endogenous antioxidant levels (e.g., SOD and 
GSH) to neutralize ROS. All of them ultimately result in reduced 
oxidative stress and protects cells from necrosis and/or apoptosis. 
(Some picture materials were taken and modified from the library of 
science and medical illustrations by sommersault 18:24, licensed 
under CC BY-NC-SA 4.0, materials are available under Public 
License)
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The existence of a free radical may be omitted 
on an individual basis, but it can be problematic when 
massive free radicals appear simultaneously over a 
prolonged period of time, which is usually found during 
oxidative stress. Oxidative stress can be detrimental 
to the cells and tissues because free radicals damage 
all of the cellular components (including organelles, 
lipids, proteins, and DNA), inducing apoptosis. This is 
especially relevant for neurons in the CNS in which they 
contain high levels of polyunsaturated fatty acids, thus 
is prone to cellular damage [177]. It is also important to 
note that mitochondrial DNA is more vulnerable to ROS 
than the nuclear DNA, thus mitochondrial dysfunction 
may result in more ROS production [178].

Even worse, oxidative stress can initiate 
an inflammatory cascade wherein the surrounding 
cells, including neurons and resident glial cells, to be 
activated and further produce various pro-inflammatory 
molecules, along with increased production of more 
free radicals. The activation of glial cells by means of 
toll-like receptors has been shown to induce the release 
of various pro-inflammatory cytokines and ROS at the 
same time [179]. On chronic activation of these glial 
cells, they are known to secrete more superoxide which 
can react to NO (which is also produced by glial cells) 
to generate peroxynitrite which has been shown to 
be detrimental to neurons [177]. Moreover, NF-κB, a 
protein complex responsible for the activation of glial 
cells, is also a strong inducer of NOX2 and inducible 
NO synthase/iNOS (an enzyme that catalyzes NO 
production), thus also responsible to the generation of 
ROS and subsequent cellular damage [180]. On the 
other hand, as previously described, NF-κB was also 
responsible for the upregulation of COX-2 enzyme, 
thus increases PGEs production, and subsequently 
elevates the superoxide levels as a byproduct of PGEs 
production, further damaging the cells [177]. This 
positive feedback can maintain a vicious cycle with linear 
increase in its magnitude with regard to inflammation 
and tissue damage, thus initiating, maintaining, and 
increasing the intensity of nociceptive stimuli.

The folie à deux actions between oxidative 
stress and inflammation also affect the pathophysiology 
of pain in various pathological states. For example, they 
have been linked as a culprit for diabetic neuropathy, 
wherein a chronic persistent hyperglycemic state 
induced peripheral nerve damage, increased 
accumulation of advanced glycation end products and 
activated various inflammatory pathways [181]. Another 
example is cancer that metastasize to bone was 
known to upregulate glutamate release responsible 
for cancer-induced bone pain and attenuation of its 
release could reduce the pain [182]. In addition, cancer 
chemotherapy has also been identified to produce 
oxidative stress and inflammation, further complicating 
cancer treatment through peripheral nerve damage 
and the resulting neuropathy [183]. Oxidative stress 
is also thought to contribute to the development of 

osteoarthritis by inducing telomere instability, replicative 
senescence, and chondrocyte impairment in the 
affected cartilage  [184]. Furthermore, oxidative stress 
also triggers an inflammatory state and thus, initiating 
nociceptive stimulation in OA as predicted [185].

Furthermore, ROS has been shown to induce 
and maintain central sensitization in the spinal cord 
through the regulation of N-methyl-D-aspartate and 
AMPARs and its downstream effect of LTP [186], [187]. 
ROS also activated TRPA1 and TRPV1, ion channels 
known to involve in membrane depolarization 
and consequent nociceptive sensitization in the 
spinal cord, in chronic pain after spinal cord injury 
(SCI) [72], [188], [189], [190]. Similarly, hydrogen 
peroxide (H2O2), a product of cellular respiration, has 
been demonstrated to modulate synaptic plasticity and 
affecting the release of calcium ions in the interneurons 
of spinal cord dorsal horn neurons with the consequent 
nociceptive sensitization [188], [191], [192], [193]. 
Interestingly, nociceptive pain like capsaicin-induced 
hyperalgesia was shown to cause superoxide 
accumulation and concomitant reduction of antioxidant 
superoxide dismutase (SOD)-2 activity [194], 
suggesting a direct causative link between oxidative 
stress and antioxidant imbalance with the generation of 
nociceptive and neuropathic pain.

The anti-oxidant properties of anthocyanin

ANC exerts potent antioxidant activities. Its 
antioxidant potential depends on its chemical structure and 
the subsequent hydroxylation, methylation, acylation, and 
glycosylation patterns [195], [196], [197]. ANC has potent 
superoxide- and peroxynitrite-scavenging activities [198]. 
It, therefore, also inhibits lipid peroxidation  [199]. It 
was reported that different ANC variants exert different 
magnitude of antioxidant capacities. Accordingly, ANC’s 
antioxidant power can be ranked as follows (from 
strongest to weakest): Delphinidin, petunidin, malvidin 
(equals to cyanidin), peonidin, and pelargonidin [9], [198]. 
On raw foods (e.g., in vegetables, and fruits), ANCs 
were commonly found alongside with other compounds, 
such as Vitamin C and phenol, thus enabling them to act 
synergistically as antioxidants [200].

It was proposed that ANC acts through both 
direct and indirect mechanisms. It has a direct free-
radical scavenging activity because it can donate the 
electron to the reactive free radicals, thus stabilizing 
it [9]. In fact, ANC can bind with superoxide, singlet 
oxygen, peroxide, hydrogen peroxide, and hydroxyl 
radicals  [201], [202], [203], [204], [205]. Whereas 
indirectly, it increases in vivo endogenous antioxidant 
activities, such as increasing intrinsic SOD and 
glutathione peroxidase gene expressions and 
levels or reducing ROS formation through inhibiting 
NADPH oxidase [206], [207]. These comprehensive 
mechanisms ergo reduce as well as neutralize various 
free radicals.
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Clinically, ingestion of ANC derived from 
blueberries was shown to increase serum antioxidant 
status in human subjects [208], [209]. Likewise, 
administration of cyanidin 3-glucoside to rats was 
shown to reduce thiobarbituric acid reactive substances 
(TBARS) and protection against lipid peroxidation 
amidst no elevation of endogenous antioxidants. 
This study, therefore, is in accordance with the direct 
free-radicals scavenging mechanisms of ANC [210]. 
Furthermore, ethanol and water extract of purple sweet 
potato (PSP) had been demonstrated to suppress 
malondialdehyde levels in cell culture medium [211]. 
PSP is known for its ANC-rich content [212], whereas 
malondialdehyde, similar to TBARS, is the most 
frequently used biomarker for oxidative stress in the 
presence of various diseases [213].

There has been no direct study which links 
ANC with its potential ability to reduce free radicals 
in the event of inflammatory pain. However, some 
evidence can be used to infer several notions. First, 
ANC has specific neuroprotective mechanisms 
against antioxidants. ANC was shown to be protective 
against apoptosis of mitochondrial oxidative stress-
induced cerebellar granule neurons through 
increased glutathione (GSH) levels, inhibiting lipid 
peroxidation and cardiolipin oxidation, and prevention 
of mitochondrial fragmentation [214]. Second, ANC is 
permeable to viable neurons. It was shown that ANC 
metabolites can prevent ROS formation on both the 
cellular membrane and cytosol of human neuronal cell 
line, suggesting that it can be up taken by neurons 
in the CNS and PNS [215]. Indeed, ANC was shown 
to readily penetrate blood–brain barrier [216], [217] 
and could be identified in the cortex, cerebellum, 
hippocampus, and striatum of rats fed daily with 2% 
blueberry for 10 weeks [218]. Third, ANC can act 
centrally to attenuate CNS demyelination, reduce 
inflammation, and scavenge free radicals. ANC 
can be detected in the peripheral interstitial fluid 
and its administration to ethidium bromide-induced 
pontine demyelination rat models has been shown 
to restore the Na+/K+ ATPase pump activities of these 
cells (suggesting protection against demyelination), 
reduce pro-inflammatory cytokines (IL-1β, IL-6, TNF-
α, and IFN-γ) levels, and combat oxidative stress 
by increasing SOD levels [219]. Fourth, ANC can 
act in the PNS as it was demonstrated to promote 
myelination in the peripheral nerve through increase 
Sirt2 protein known to involve in myelination in mouse 
embryonic Schwann cell culture model [220].

If we take a look at these notions, it is prudent 
to assume that ANC could attenuate both nociceptive 
and neuropathic pain through its neurotrophic and 
neuroprotective mechanisms against direct noxious 
insults, free radicals, and inflammation. In fact, it is 
known that central as well as peripheral demyelination 
is associated with pain due to direct nerve injury or 
prolonged immobilization [221]. Thus, the fourth and 

fifth notion could actually serve a template model 
in which in vivo ANC might attenuate nociceptive 
and/or neuropathic pain. In fact, administration of 
pelargonidin, a subtype of ANC, has been proven 
to alleviate chemical and thermal hyperalgesia and 
reduce ROS formation in streptozotocin-induced-
diabetic rat models [222]. The last study is technically 
a proof-of-concept of ANC’s capability in alleviating 
pain.

Conclusion

Inflammation and oxidative stress precipitate 
and maintain of both nociceptive and neuropathic pain. 
The mechanisms are pleiotropic, including activation 
of inflammatory pathways leading to increased 
production and secretion of various pro-inflammatory 
cytokines and chemokines, upregulation of nociceptive 
receptors and its associated transcription factors, as 
well as specific interaction with certain receptors and 
pathways, such as purinergic pathway (particularly 
for neuropathic pain). Oxidative stress also plays a 
major role in the pathophysiology of both pain types. 
ANC’s protective effects against inflammation and 
oxidative stress had been described meticulously in 
this review and shown to exert multiple simultaneous 
actions against these pathological events. In fact, 
the proof-of-concept study had been translated into 
meaningful clinical impacts toward the treatment of 
several pathological pains. Given its excellent safety 
profile and the nature of its massive anti-inflammatory 
and anti-oxidant properties, ANC should be further 
investigated in more clinical settings for treating 
various nociceptive and/or neuropathic pain originated 
from multiple diseases.

A potentially useful approach would be to 
incorporate ANC as an adjunctive treatment along 
with currently accepted medication regimens and to 
compare it with the conventional medication alone in 
the setting of RCT whenever possible. The currently 
available data favors the promising results of such 
studies, and if it is proven so, the benefits would not only 
limited to alleviating the pain but also to ameliorate, if 
not accelerating recovery, against the primary disease 
itself.
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