The Rare Five Finger Pectoralis Nerves: A Case Report

Adegbenro Omotuyi John Fakoya¹*, Michelanthony Lee Rosado-Velazquez², Kirthana Sugunathevan², Kai Anika Prophete², Surpreet Kaur Khunkhun², Emilio Aguinaldo², Abayomi Gbolahan Afolabi¹, Thomas McCracken¹

¹Department of Anatomical Sciences, University of Medicine and Health Sciences, Basseterre, St. Kitts and Nevis; ²Medical Student, University of Medicine and Health Sciences, Basseterre, St. Kitts and Nevis

Introduction

The brachial plexus is a complex network of nerve tissue in the human body that has been reported to vary from person to person. We describe a very rare variation of the brachial plexus found on a routine cadaveric dissection. On the left side of the chest, we identified two lateral pectoral nerves arising from the lateral cord and innervating the pectoral major muscle; two medial pectoral nerves (MPNs) arising from the medial cord that innervates both pectoral muscles and a communicating branch that connects the lateral and MPN. In addition, this communicating branch had a nerve that innervated the pectoralis minor muscle. Knowing the variations of branching of the pectoral nerves is critical when performing any medical procedure in the pectoral region, such as plastic breast reconstruction surgery after modified radical mastectomy in breast cancer, removal of the pectoral muscles, anesthetizing the brachial plexus, or axillary dissection.

There are previous studies that have reported many different variations of the LPN and MPN with regard to where they arise from the brachial plexus (Table 1). There are also reports on how the LPN and MPN traverse through the pectoral muscles (Table 2). However, there is an interesting anomalous connection of the pectoral nerves that have not been mentioned in the past literature, which is mentioned in our case report. Thus, we present a case of two LPN and MPN coming off the lateral and medial cord, respectively, with a communicating branch.

Case Presentation

Medical students at the University of Medicine and Health Sciences in St. Kitts and Nevis performed a routine cadaveric dissection of a 70-year-old Caucasian male in the anatomy laboratory. This dissection revealed two LPN branching from the lateral cord which innervated the PMM (Figure 1). Similarly,
there was two branches of the medial pectoral nerve arising from the medial cord of the brachial plexus. One of the branches directly innervated the PmM while the other directly innervated the PMM without piercing the PmM (Figure 1). There was also a communicating branch that innervated the PMM (Figure 1). The LPN was found lateral to the thoracocervical trunk while the MPN was found medial to it. The MPN also crossed the axillary artery to form the ansa pectoralis with the LPN (Figure 1).

Discussion

The brachial plexus is one of the five spinal plexuses, which is responsible for the motor and sensory and sympathetic supply for the upper limbs [16]. In its origin, the brachial plexus is a somatic nerve plexus that arises from C5 to C8 nerve roots, then forms trunks, divisions, cords, and branches [5].

The discovery of this variation in our cadaver coincides with other studies that showed the MPN piercing the PmM, as a single trunk in 76%, and as dividing branches in 34% specimens [6].

At present, in MRM procedures, there are various sites used to administer anesthesia. One common site for post-operative analgesia includes the usage of the pectoral nerves. Zhao et al. (2019) evaluated the analgesic efficacy of the PECS block post-radical mastectomy and found that pectoral nerve block is effective as it reduces the need for post-operative rescue analgesia [17]. Even though there are controversies regarding efficacy, understanding the anatomy and locations of the pectoral nerves along with its variants is crucial in understanding how anesthesia can be administered for common procedures.

Aside from nerve blocks, on performing breast augmentation surgery, understanding the anatomy and variations of the MPN and LPN are important as any injury to these nerves can result in total denervation of the PMM [18].

Figure 1: Dissection showing the variation of the left pectoral region. The axillary artery (AA) in red, left pectoralis major muscle (PMM) in purple, left pectoralis minor muscle (PmM) in green, two lateral pectoral nerves (LPN), two medial pectoral nerves (MPN), a communicating branch (CB) in blue, and a nerve of the communicating branch (NCB).

Table 1: Summary of reported literature of the pectoral nerves branching pattern variants

<table>
<thead>
<tr>
<th>Authors</th>
<th>Branching pattern variant</th>
<th>Year discovered</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee</td>
<td>- C5, C6, C7 gave rise to LPN 50% of the time</td>
<td>2007 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- C6, C7 gave rise to LPN 5% of the time</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- LPN from AD</td>
<td>2014 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- MPN from MT</td>
<td>2014 6</td>
<td></td>
</tr>
<tr>
<td>Shetty, et al.</td>
<td>- LPN from AD</td>
<td>2014 7</td>
<td></td>
</tr>
<tr>
<td>Kg and Saniya</td>
<td>- LPN from AD+MT</td>
<td>2016 8</td>
<td></td>
</tr>
<tr>
<td>Goel, et al.</td>
<td>- LPN from AD</td>
<td>2017 9</td>
<td></td>
</tr>
<tr>
<td>Tigga, et al.</td>
<td>- LPN from AD</td>
<td>2012 10</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Summary of reported literature of anatomical variants in PMM and PmM innervations

<table>
<thead>
<tr>
<th>Authors</th>
<th>Innervation variation</th>
<th>Year discovered</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoffman and Elliott</td>
<td>MPN courses through the PmM to innervate the lower half</td>
<td>1987 11</td>
<td></td>
</tr>
<tr>
<td>Rai, et al.</td>
<td>- Three pectoral nerves were seen to supply PMM only</td>
<td>2008 12</td>
<td></td>
</tr>
<tr>
<td>Provencher, et al.</td>
<td>- The PMM is supplied primarily by the LPN, which originates from the C5-6 roots. It supplies the clavicular portion of the muscle</td>
<td>2010 13</td>
<td></td>
</tr>
<tr>
<td>Mehta, et al.</td>
<td>- The MPN also supplies a portion of the inferior segment of the muscle. This nerve exits at C5-T1 as a single branch, coursing posterior to the subclavian artery. It makes an upward right angle around the lateral thoracic artery joining with the middle pectoral nerve, which has a divided course with 75% of it piercing through the PmM and 25% coursing around the lateral portion of the PmM before innervating the PMM</td>
<td>2012 14</td>
<td></td>
</tr>
<tr>
<td>David, et al.</td>
<td>- The MPN innervates solely the lower PMM</td>
<td>2019 15</td>
<td></td>
</tr>
</tbody>
</table>

Furthermore, understanding the anatomical variants can help surgeons avoid complications such as capsule formation around breast implants, which has been implicated as causing compression of the medial and LPN under the PMM. If a patient presented with an anatomical variation similar to what was reported in the cadaver, the surgeon can better place the breast implant to reduce the amount of pain or discomfort felt from capsule formation.

Supportive research additionally shows the anatomical relationship between the LPN and MPN and its variations can be studied to help surgeons easily identify where the MPN exits. This location is known to be an intraoperative location at the end of the lateral thoracic artery. Once the location has been identified, the location, length, and amount of motor axons of the inferior pectoral nerve can be useful in procedures involving the reinnervation of the musculocutaneous nerve in upper brachial plexus injuries [20].

In addition, understanding the anatomical variants can help surgeons to localize nerve injuries and lesions to the PMM and PmM with a high degree of accuracy [27].

A limitation to the study was that Sihiber’s technique was not used to determine the innervation pattern (Figure 1). Sihiber’s staining technique would better clarify as it allows visualization of the nerve distribution within soft tissues without extensive dissection [21]. However, this technique would still fail to provide the ability to trace where the NCB originated. A different technique could be used to define the neural circuit of the NCB in vivo [22].

Conclusion

The brachial plexus is known to have many variations, and it is crucial to describe rare variations to reduce the risk of iatrogenic injuries during surgery. In our study, we had two LPNs piercing the PMM, two MPNs individually piercing PmM and PMM, and an NCB piercing the PmM. These anomalies have not been mentioned before in literature. Our anomaly impacts surgical procedures such as brachial plexus blockade, mastectomies, and more as discussed. Although our study did not find the origin of NCB, further study can investigate a technique that could be used to find the origin of NCB in vivo.

References


