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Abstract

Traumatic brain injury (TBI) is one of the leading causes of death and disability, which affects millions of people globally 
with a significant economic burden. The inflammatory reactions and immune system activity play a significant role in 
the severity development of secondary brain injury (SBI) after a TBI event. Neutrophils, platelets, and lymphocytes 
are involved in these inflammatory reactions and have potential in reflecting the severity level of SBI that occurred 
post-TBI. Some recent studies have shown that the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte 
ratio (PLR) can be used as a potential biomarker for determining the severity of an inflammatory reaction, including 
SBIs in post-TBI. However, the results of NLR and PLR in TBI patients in daily medical practice are still not fully 
utilized. This review summarizes the neutrophil’s, platelet’s, and lymphocyte’s role in SBI, also the NLR and PLR 
potential as a marker of the severity of the SBI process in TBI cases.
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Introduction

Traumatic brain injury (TBI) is one of the leading 
causes of death and disability, which affects millions of 
people globally with a significant economic burden [1]. 
It can lead to impaired cognitive and physical functions 
that can be suffered by the patients for the rest of their 
life. Those problems may cause the patients to spend 
costs and efforts because they require prolonged 
treatment and rehabilitation to recover their disability [2]. 
Therefore, comprehensive initial management is 
needed, which includes the biomarker examination that 
can predict the severity of secondary brain injury (SBI) 
in TBI patients. Thus, the effectiveness of the TBI’s 
treatment can be increased, and the progression of the 
SBI in TBI cases can be prevented.

TBI is an injury caused by the external 
mechanical force to the cranium and its intracranial 
components, thus alters the brain structures and 
functions [3]. The pathologic processes that occur in 

the TBI consist of the primary and SBI [4]. Primary brain 
injury is caused by the exposure of mechanical force 
to the brain tissue, which leads to axonal damages, 
vascular damages, and glial cells damages. A SBI is 
caused by the occurrence of the inflammatory cascades 
that are initiated by the release of various inflammatory 
factors and neurotransmitters from the damaged 
neuronal and glial cells in the brain [5].

SBI is sensitive toward the treatment, and 
its processes can be prevented. SBI is an essential 
therapeutic window and can determine whether the 
development and recovery of the TBI are good or 
bad [5]. The increase in the systemic inflammatory 
response can be reflected from increased inflammatory 
cells, such as neutrophils, or the increase in the level of 
the inflammatory biomarkers, such as C-reactive protein 
(CRP) and erythrocyte sedimentation rate (ESR) [6], [7]. 
CRP and ESR are already commonly used to monitor 
the progression of inflammatory diseases, but these 
laboratory examinations have not been routinely 
done in traumatic patients. Moreover, CRP and ESR 
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examinations are also not always available in every 
hospital.

On the other hand, the neutrophils, platelets, 
and lymphocytes count can be obtained through a 
complete blood count (CBC), which is more routinely 
done compared to the CRP and ESR laboratory 
examinations in the traumatic patients. The CBC 
examination is used primarily to monitor the bleeding 
that occurs due to trauma through the hemoglobin’s 
and hematocrit’s level. The CBC test is also available 
in every hospital, even in some rural areas. A CBC test 
is undoubtedly a cheaper and more available laboratory 
examination in daily medical practice [8].

Some recent studies have shown that the 
neutrophil-to-lymphocyte ratio (NLR) is very easy 
to be measured and can act as a predictor of clinical 
outcomes from cancer, cardiovascular, and stroke 
diseases [9], [10], [11]. Besides NLR, the platelet-to-
lymphocyte ratio (PLR) can also act as a potential marker 
for determining the severity of an inflammatory reaction 
[7]. Moreover, a study found that NLR and PLR are 
positively correlated with high sensitivity CRP (hs-CRP) 
and ESR in patients with autoimmune inflammatory 
disease, such as Takayasu’s Arteritis [7]. However, the 
predictive value of NLR and PLR in TBI cases is still 
unclear and has not been extensively explored.

Theoretically, NLR and PLR have the potential 
to be used as a marker of the severity of the SBI process 
that occurs in TBI. However, the results of NLR and PLR 
in TBI patients in daily medical practice are still not fully 
utilized. This review will summarize the neutrophil’s, 
platelet’s, and lymphocyte’s role in SBI, also the NLR 
and PLR potential as a marker of the severity of the SBI 
process in TBI cases.

Methods

This article used a literature review method. 
Journals from various accredited and online-based 
sources such as PubMed and Google Scholar 
database are collected using the following keywords: 
NLR, PLR, TBI, SBI, inflammation, neutrophil, platelet, 
and lymphocyte. A total of 110 articles relevant to the 
topic were included and reviewed for the analysis and 
synthesis process.

Results and Discussion

SBI

SBI begins immediately after the primary brain 
injury and can trigger a series of events that cause 

cerebral edema, cerebral ischemia, and even death or 
persistent vegetative condition [12], [13]. The immune 
system activity and inflammation response have been 
proved as the crucial factors in initiating and developing 
the SBI processes to a more severe state post-
TBI [14], [15]. Cells such as neutrophils, astrocytes, 
and microglia are involved in the acute inflammation 
reactions post-TBI [16].

Under physiologic conditions, the brain is an 
organ that has special immunity due to the presence of 
blood-brain barrier (BBB), a limited number of antigen-
presenting cells (APC), and a few apparent lymphatic 
vessels [17]. However, TBI can cause direct damage to 
the BBB, which allows the entry of massive amounts of 
peripheral APCs, as well as activation of microglia in the 
damaged brain [4], [18]. In addition, the latest research 
shows another new passage through the lymphatic 
blood vessels in the central nervous system’s (CNS) 
meninges for the peripheral immune cells to enter the 
brain’s tissue back and forth [19]. All of these things can 
interfere with the balance of the CNS’s immune system 
environment, which can cause communication between 
the peripheral immune system and the CNS in TBI [20].

The damaged blood vessels will cause the blood 
to come out of the blood vessels, thereby disrupting the 
blood supplies and BBB integrity in the brain’s tissue. 
The damaged neurons and glial cells also can induce 
an inflammatory cascade response by releasing various 
inflammatory factors and neurotransmitters post-TBI. 
Processes that can occur in the SBI include aggravate of 
the BBB damages, change in the blood flow (ischemia, 
bleeding), neuroinflammation, dysfunction of the 
metabolism in the brain’s tissue (edema and hypoxia), 
and cell damage (oxidative stress, excitotoxicity, 
production of free radicals, and apoptosis/necrosis of 
the neurons) [5].

Neutrophil’s roles in SBI

Neutrophils are the primary component in the 
innate immune system that plays an essential role in the 
acute inflammation against pathogens and can cause 
tissue damages indiscriminately [5]. Due to the role of 
the BBB, there are only a few amounts of neutrophils that 
can be found in the brain’s parenchyma [21]. However, 
pathological conditions such as trauma, bleeding, 
ischemia, and infection can cause an increase in the 
number of neutrophils that enter the brain’s tissue [17].

External factors, such as trauma and stress, 
as well as internal factors, such as granulocyte-
macrophage-colony stimulating factor (GM-CSF) 
and granulocyte-CSF (G-CSF), can modulate the 
neutrophil’s activity [22], [23], [24]. These factors will 
make the neutrophils undergo the differentiation and 
maturation processes, which include the changes in 
the level of expression of the neutrophil’s membrane 
proteins that are very crucial for neutrophils to sense 
the infection or danger signals; thus neutrophils 
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are able to move toward the target tissue and 
phagocytose the tissue debris [5]. These factors also 
increase the expression of various granule proteins 
in the neutrophils which are useful to eliminate the 
pathogens such as matrix metalloproteinases (MMPs), 
neutrophils elastase (NE), myeloperoxidase, and 
neutrophils gelatinase-associated lipocalin [25], [26]. 
The accumulation of neutrophils to eliminate pathogens 
through phagocytosis and degranulation processes 
is the first line of the immune system (innate immune 
system), but it can aggravate the tissue damages and 
SBI if too excessive [5].

The damaged brain’s parenchyma post-TBI can 
release inflammatory cytokines such as tumor necrosis 
factor (TNF)-α, interleukin (IL)-1β, CXCL1, CXCL2, 
and CXCL5, which further activate the neutrophils 
and endothelial cells and facilitate the migration of the 
neutrophils into the CNS parenchyma [27], [28]. TBI also 
induces vascular damages in the brain, including the BBB. 
The activated neutrophils will accumulate in the damaged 
cortical and the disrupted BBB area within 12-h post-
TBI, then migrate to the surrounding brain parenchyma 
within 24-h post-TBI [18]. The activated neutrophils can 
damage the tight junction and permeability of BBB by 
degrading the zonula occludens-1, vinculin, occludin, 
and β-catenin, which are very important for maintaining 
the integrity of BBB [5]. The NE and MMPs released by 
neutrophils can interfere the cadherin-cadherin bond, 
degrade the neurovascular structures and dysregulate 
the BBB, thus induce the hyper-permeability of the 
BBB [29], [30], [31], [32]. The activated neutrophils also 
release free radicals such as reactive oxygen species 
(ROS) and nitrous oxide, which induce the direct oxidative 
damages and disrupt the arrangement of claudin-5 and 
occludin in the endothelium, thus impair the integrity of 
BBB [33], [34]. The BBB damages due to neutrophils 
activity will facilitate the immune cell’s recruitment 
into the brain parenchyma to fight against pathogens. 
However, it can also aggravate brain damages and SBI 
at the same time.

Neutrophils are also involved in the process 
of cerebral edema post-TBI. Cerebral edema is a 
state caused by the excessive fluid accumulation in 
the intracellular or extracellular spaces of the brain’s 
tissue, which causes expansion or swelling of the 
brain’s tissue in a limited skull cavity. It can increase the 
intracranial pressure, interfere with the brain’s perfusion 
and oxygenation, and contribute to a more severe 
ischemic injury post-TBI [35]. Neutrophils are tightly 
related to cerebral edema in the SBI process post-TBI. 
The BBB damages, which are caused by neutrophils 
activity, enable the protein and intravascular fluid to 
enter and accumulate in the extracellular space of the 
brain’s parenchyma, thus lead to cerebral edema [36]. 
In addition, granules that released by neutrophils such 
as elastase, lipoxin, and azurocidin can increase the 
vascular permeability, thus can also aggravate the 
cerebral edema [37], [38].

The activated neutrophils can also contribute 
to the imbalance between cerebral oxygen delivery and 
cerebral oxygen consumption in SBI post-TBI because 
they will consume more oxygen to produce and release 
the NADPH oxygenase-related molecules, hydrogen 
peroxide superoxide, and antibacterial proteins such as 
defensins and cathelicidin for maintaining its phagocytic 
function [4], [18], [33], [39]. Changes in the volume and 
rate of the cerebral blood flow and the arterial oxygen 
content post-TBI can interfere with the oxygen delivery, 
causing the injured area of the brain to experience a 
more hypoxic condition [5]. A previous study showed 
that the expression of NFkB and hypoxia-inducible 
factor-1α could be induced by the low oxygen levels, 
which cause prolonged neutrophils survival and their 
activation [40]. Meanwhile, neutrophils themselves can 
also cause overproduction of ROS by the autocrine 
IL-17 pathway, which can aggravate the SBI due to 
ROS [41]. In addition, the clinical outcome of TBI 
patients is also correlated with the duration and severity 
of cerebral hypoxia that occurs in the SBI process [42]. 
Thus, the more neutrophils that activated in SBI post-
TBI, the more cerebral hypoxia will occur, and the worse 
clinical outcome post-TBI will be.

Another crucial role of neutrophils in SBI 
is involved in the neuroinflammation process. 
Neuroinflammation is an inflammatory response in the 
CNS due to the reaction of brain cells and peripheral 
immune cells toward a stimulus or injury. Even though 
this response occurs to protect the CNS from damages 
and infections, neuroinflammation is also an essential 
mechanism to initiate the SBI process post-TBI [5]. 
Neuroinflammation due to TBI is characterized by 
the activated glial cells, leukocyte recruitment, and 
increased inflammatory cytokines regulation in the 
brain [43].

TBI can activate the microglia, which then 
induce the activation of endothelial cells and the 
peripheral leukocytes recruitment into the brain’s 
tissue [44]. The activated microglia post-TBI will 
rearrange the expression pattern of their receptors and 
also release essential inflammatory mediators that are 
powerful for recruiting and activating neutrophils such 
as IL-1β, IL-6, CXCL1-5, CXCL8-10, and TNF-α [45]. 
Moreover, neutrophils themselves can also release 
molecules such as MMP9, lipocalin 2, and ROS, to 
mutually activate the microglia in an amplification 
cascade manner [46], [47], [48].

Astrocyte is also a glial cell that is the main 
constituent of the CNS. Astrocytes are essential for 
maintaining the CNS homeostasis and contributing 
to the integrity of BBB [5]. In TBI, neutrophils and 
astrocytes are closely linked and respond to each 
other to the cytokines that are released. Astrocytes 
are an essential source of cytokines such as IL-6, 
MMP2, MMP9, GM-CSF, CXCL1, CXCL2, CCL2, and 
chemokines containing glutamate-leucine-arginine 
motive [49]. Cytokines such as CXCL1, CXCL2, and 



 Kusuma et al. NLR and PLR in Secondary Brain Injury

Open Access Maced J Med Sci. 2020 Oct 19; 8(F):272-282. 275

GM-CSF can increase the BBB disruption, increase 
the leukocyte recruitment, and initiate the inflammatory 
process [50], [51], [52]. IL-1β and TNF-α can inhibit 
the uptake of glutamate by astrocytes, thus aggravate 
the neuroinflammation [53]. Based on these data, 
neutrophils and astrocytes have an essential role in 
the neuroinflammation process as the primary source 
of cytokines and also exacerbate the inflammatory 
cascade reciprocally [5].

The activated neutrophils are able to release 
various chemokines and molecules that can affect 
the process of SBI (Table 1) [5]. After the danger 
signal disappeared, neutrophils are still challenging 
to be immediately stopped because they can also 
strengthen their activation through the autocrine 
mechanisms [56], [69], [70]. This process makes 
the neutrophils have the potential to indiscriminately 
damaged the brain’s tissue and aggravate the SBI in 
TBI. Thus, to minimize the tissue damages after the 
digestion process of the pathogens by the neutrophils, 
most of the neutrophils are phagocytosed or inhibited 
by lymphocytes [5].

Table 1: Various chemokines and molecules released by the 
activated neutrophils that can affect the process of SBI

Name Effect Reference
IL-1α Associated with BBB damage and neuronal death [54]
IL-1β Induces neuronal death directly [54]
IL-9 Exacerbates the excitotoxic brain damage [55]
IL-18 Induces brain damage and induces neutrophils to secrete 

inflammatory cytokines
[56]

IL-23 Causes brain damage and neurological deficits [57]
CXCL1 Recruits neutrophils to the injured brain [58]
CXCL2 Facilitates the chemotaxis of polymorphonuclear leukocytes 

(PMN), peak in 4-h post-TBI
[59]

CXCL3 Facilitates the migration of neutrophils through the epithelial 
barrier

[60]

CXCL5 Increases microglia activation and BBB damage disrupt 
myelination

[61]

CXCL8 Helps neutrophils to infiltrate the brain parenchyma [62]
M-CSF Increases microglia activation [63]
TNF-α Induces astrocytes to secrete IL-6 and IL-8, mediates the 

PMN neurotoxicity directly
[64]

ROS Increases BBB dysfunction, causes neuronal cell death and 
microglia activation

[33]

MMP9 Damages BBB integrity, increases neutrophils infiltration and 
PMN neurotoxicity

[65]

MPO Reflects the neutrophil infiltration in the brain tissue [66]
Cathepsins Causes cell death through programmed cell necrosis and 

the mitochondrial apoptotic pathway
[67]

NE Induces acute neuronal death and cellular stress [68]
TBI: Traumatic brain injury, SBI: Secondary brain injury, BBB: Blood-brain barrier, CSF: Colony-stimulating 
factor, MMP: Matrix metalloproteinases, NE: Neutrophils elastase, MPO: Myeloperoxidase, TNF: Tumor 
necrosis factor, IL: Interleukin, ROS: Reactive oxygen species.

Platelet’s roles in SBI

As mentioned previously, the immune system 
activity and the inflammatory response have been 
proven to play an important role in the initiation and 
development of the SBI process post-TBI to a more 
severe level [14], [15]. Not only neutrophils, astrocytes, 
and microglia but also platelets, which play an essential 
role in the immunomodulatory and inflammatory 
process, are involved in the acute inflammatory reaction 
post-TBI [8], [16], [71].

Thrombopoiesis process is regulated by 
thrombopoietin and other various inflammatory 
cytokines, such as IL-1, IL-3, IL-6, GM-CSF, and 

TNF-α [72], [73]. Thrombopoietin is produced by 
the parenchymal and sinusoidal endothelial cells 
in the liver, and its production is increased in the 
presence of IL-6, which level also increased in the 
neuroinflammation processes post-TBI [45], [49], [74]. 
Platelets can also induce the release of inflammatory 
cytokines and interact with various cells, including 
neutrophils, macrophages, and T-lymphocytes, that 
will have an impact on the initiation or exacerbation of 
the inflammatory process [75], [76]. Therefore, the high 
number of platelets can reflect an increased release of 
inflammatory cytokines and platelet activation, which 
lead to increased inflammatory response and worsened 
SBI post-TBI [77].

Platelets play an active role in the inflammatory 
process [7]. Several other factors are also responsible 
for the platelet activation and the release of platelet’s 
pro-inflammatory and prothrombotic molecules such 
as systemic inflammation and oxidative stress [78]. 
Inflammatory cells and bioactive molecules, such as 
IL-6 and CRP, can change the morphology and reactivity 
of platelets released from the bone marrow [79]. In the 
presence of stressor conditions, such as trauma, there 
is a positive correlation between thrombopoietin, ploidy 
from the platelet’s progenitors, platelet’s functional 
activity, and high platelet’s count [80]. It is often seen 
in the inflammatory disorders, where an increased 
thrombopoiesis causes an increased number of platelets 
in the circulation, and a high number of very reactive 
large platelets migrate to the sites of inflammation [81].

A higher platelet’s count can reflect the level of 
the ongoing inflammatory process and can also become a 
marker of the ongoing destructive inflammatory response 
and prothrombotic status, because of some inflammatory 
mediators can stimulate the proliferation of megakaryocytes, 
thus resulting in thrombocytosis [8]. A positive correlation 
was also found between the acute phase reactants and pro-
inflammatory proteins (CRP, TNF-α, IL-1, and IL-6) with an 
increased platelet’s count in the inflammatory conditions [82], 
[83]. Many studies about chronic inflammation from arthritis 
have found that there is an increase in platelets activation 
[84], [85]. The evidence of experimental and clinical 
researches also showed that there are some involvements 
of platelet-derived compounds in the inflammatory diseases 
such as systemic lupus erythematosus (SLE), rheumatoid 
arthritis (RA), and other related thrombotic complication 
diseases [86], [87], [88].

In vascular diseases, such as atherosclerosis, 
platelets can interact with leukocytes and are considered 
as the central factor in the pathophysiology of vascular 
inflammation. The increased circulating platelet mass 
can be caused as a consequence of the presence of 
chronic inflammation. The activated platelets do not 
only produce growth factors such as platelet-derived 
growth factor and transforming growth factor-β but also 
release chemokines that have an essential effect on the 
vascular inflammation, thus triggering thrombosis [89]. 
Platelets have intracellular thromboxane A2 and 
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procoagulant surface proteins such as P-selectin and 
glycoprotein IIIa, so they have the potential to cause 
thrombosis if they are overactivated [90]. In addition, 
inflammation by itself can induce the occurrence of 
procoagulant processes and facilitate embolization, 
which is one of the leading causes of death [75].

Lymphocyte’s roles in traumatic injury

In response to the physiological stresses, such 
as a traumatic injury, the body will release more cortisol 
hormone, which if the level is high, it can cause lymphopenia 
[91]. The higher the physiological stress level, the higher 
the cortisol level, thus, the lower the lymphocyte’s count 
in the body. In contrast, the higher lymphocyte’s count 
represents a more precise immune response and a more 
stable inflammatory pathway [92]. In cancer diseases, 
lymphocytes are responsible for the programmed cell 
death or apoptosis process [93]. Lymphocytes reflect 
a more controlled inflammatory pathway, and the 
lymphocytes-mediated apoptosis is less destructive to the 
surrounding cells compared to other models of cell death 
due to uncontrolled inflammation [8]. Therefore, the lower 
the lymphocyte’s count post-TBI can reflect an increasingly 
destructive effect of the inflammatory response, which 
leads to a worsened SBI post-TBI.

NLR

NLR is a reflection of the degree of the 
inflammatory response (neutrophils) and immune 
status (lymphocytes), which shows an increase 
in the recruitment of inflammatory cells and the 
release of inflammatory cytokines when NLR level 
increases [94], [95]. Neutrophils are recruited into the 
site of injury in the brain within 1-h post-TBI and are 
able to release inflammatory mediators that can induce 
neuronal death and SBI [96], [97]. The increase in the 
peripheral neutrophils amount can increase the BBB 
damage, brain’s tissue damage, and neuronal cell 
death, which then further aggravating the inflammatory 
reactions and brain tissue damage, thus increasing the 
severity of SBI [98].

NLR can be obtained from the CBC laboratory 
examination, is very easy to be measured, and can act 
as a predictor of clinical outcomes from cardiovascular 
diseases, stroke, and cancer [9], [10], [11]. Several 
studies have also found that high levels of NLR are 
associated with autoimmune diseases such as RA, 
SLE, psoriasis, ulcerative colitis, Sjogren’s syndrome, 
and Behcet’s disease [99], [100], [101], [102], [103].

A study found that a high NLR level in patients 
with spontaneous intracerebral hemorrhage (sICH) is 
significantly associated with the incidence of in-hospital 
mortality and mortality on the 90th-day [95]. It also found 
that the NLR level above 7.5 in patients with sICH had 
statistically significant potential for predicting the poor 
clinical outcomes (a Modified Rankin Scale from 3 to 

6 was considered a poor outcome) and mortality [95]. 
Another study found that intracerebral hemorrhage 
patients with NLR level above 7.35 are associated with 
poor short-term survival (30-day mortality) and had a 
higher rate of intraventricular hemorrhage (hyperdense 
intraventricular signal not attributable to calcification or 
choroid plexus from computed tomography [CT]-scan 
images), ICH volume (from CT-scan images, calculated 
using ABC/2 formula), and lower GCS score compared 
to the intracerebral hemorrhage patients with NLR level 
7.35 or lower [11]. In some other studies, they found that 
the NLR level can also be used as a prognostic factor 
to predict the clinical outcome (using Glasgow Outcome 
Scale/GOS score) and mortality of TBI patients in the 
6th-month and 1st-year post-TBI, where a high NLR 
level is associated with poor clinical outcome (GOS 
score 1–3) in TBI patients [104], [105], [106]. Moreover, 
a study found that NLR is positively correlated with 
hs-CRP and ESR in patients with Takayasu’s arteritis, 
which is an autoimmune inflammatory disease [7]. 
Thus, NLR has the potential and can be used as a 
promising inflammatory biomarker in predicting the 
severity of SBI post-TBI.

PLR

PLR can be used as a potential marker 
for determining the severity of an inflammatory 
reaction because platelets play an important 
role in the immunomodulatory and inflammatory 
processes [7], [71]. PLR is useful as a prognostic marker 
of the inflammatory response of several diseases such 
as intracranial hemorrhage, pulmonary embolism, 
cardiovascular diseases, cancer, and inflammatory 
diseases [77], [85], [107], [108], [109].

A study found that in intracranial hemorrhage 
patients, PLR is more superior in predicting the 
neurological outcome (using GCS at hospital 
discharge and Modified Rankin Scale at 6-month as 
the short-term and long-term neurological outcomes) 
and is more accurate in reflecting the severity of 
inflammatory reactions compared to the number of 
platelets or lymphocytes count alone [77], [110]. It 
also found that intracranial hemorrhage patients with 
a high PLR level, when admitted to the intensive care 
unit room, are significantly associated with a worse 
patient’s GCS at hospital discharge [77]. Another 
study found that Takayasu’s arteritis patients and 
patients with an active Takayasu’s arteritis have a 
higher PLR level compared to the healthy patients 
and patients with Takayasu’s arteritis in remission [7]. 
It also found that a high PLR level had been proved as 
an indicator of an increased inflammatory response 
associated with Takayasu’s arteritis [7]. Moreover, it 
is also found that PLR is positively correlated with 
hs-CRP and ESR in patients with the autoimmune 
inflammatory Takayasu’s arteritis disease [7]. 
Thus, PLR also has the potential and can act as an 
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inflammatory biomarker in reflecting the severity of 
SBI in TBI patients.

Summary

SBI is caused by the occurrence of the 
inflammatory cascades, immune system activity, and 
inflammation response post-TBI. Neutrophils, platelets, 

and lymphocytes are involved in the SBI inflammatory 
reaction post-TBI. In the neuroinflammation process of 
the SBI, neutrophil’s, and platelet’s count will increase; 
meanwhile, the lymphocyte’s count will decrease. 
These processes can increase the NLR and PLR level, 
which in turn indicate a higher neuroinflammation 
process, BBB damages, cerebral edema and hypoxia, 
and cellular damages (oxidative stress and apoptosis/
necrosis of the neurons), so they have an impact on a 
higher severity level of the SBI process post-TBI post-
TBI (Figure 1). Thus, the higher the NLR and PLR level, 
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Increased severity of secondary brain injury
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1. Neutrophil’s count
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Figure 1: The mechanism of secondary brain injury involving the neutrophil’s, platelet’s, and lymphocyte’s role
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the higher the severity level of the SBI. Further studies 
need to be done to provide more evidence about NLR 
and PLR in reflecting the severity of the SBI post-TBI.
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