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Abstract
BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has affected many countries with increasing 
morbidity and mortality. In the absence of an effective vaccine and medication, chloroquine may be a potential choice.

AIM: This study aims to explore the role of the possible antiviral effects of chloroquine against SARS-CoV-2.

MATERIALS AND METHODS: A systematic search of studies relating to the antiviral effects against coronaviruses 
was conducted between January 1, 1990, and up to May 26, 2020, for relevant studies using PubMed, Scopus, and 
Google Scholar.

RESULTS: A total of 174 articles were initially identified. Ninety-seven papers were removed for failing to address the 
aim of the study. Seventy-seven full-text articles were retrieved for eligibility analysis. Ten studies focused on general 
inhibition of viral replication, ten evaluated its effects on angiotensin-converting enzyme 2, 19 addressed the effects 
on alkalizing the cellular pH, 25 concentrated on the immunomodulatory effect, two assessed the potential effects on 
sialic acid, and 24 explored the therapeutic outcome.

CONCLUSION: Chloroquine has promising antiviral effects on SARS-CoV-2 at different levels.
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Introduction

In December 2019, a cluster of reported chest 
infections among citizens in Wuhan, China, that were 
caused by a newly isolated β-coronavirus, which was 
initially named “2019 Novel Coronavirus” (2019-nCoV) 
on January 12, 2020, by the World Health Organization 
(WHO). While the WHO officially named the disease 
coronavirus disease 2019 (COVID-19) on February 11, 
2020, the International Committee Coronavirus Study 
Group suggested naming it “Severe Acute Respiratory 
Syndrome Coronavirus 2” (SARS-CoV-2) on the same 
day [1]. Human-to-human transmission of SARS-
CoV-2 was observed mainly in close direct contact, a 
recent history of travel to Wuhan (72.3%) and among 
healthcare workers (3.8%) [2]. In contrast to COVID-19, 
SARS infection was relatively high among healthcare 
workers (33–42%), and almost similar contact rate (62–
79%) [3], [4]. On March 12, 2020, the WHO declared 
COVID-19 to be a global pandemic and Italy was 
identified as the second most affected country with a 
higher case fatality rate (CFR) [5]. A week later, over 
100 countries reported positive cases of COVID-19 with 
increased morbidities and mortalities [6]. Surprisingly, a 
recent time-delay adjusted estimation indicates that the 
COVID-19 CFR reached 20% in Wuhan compared to 
the cumulative number of deaths (5.6%) [7]. The rapid 
spread of the disease to the pandemic level, higher rate 

of morbidity and mortality, exhaustion of health facilities 
in the affected countries, non-availability of a vaccine, 
non-availability of approved medications for COVID-19, 
and previous reports of antiviral effects of chloroquine 
suggest chloroquine as a potential treatment option to 
modify the nature of the disease. The in vitro antiviral 
activity of chloroquine was observed in the late 1960s [8]. 
Recently, there has been a growing body of evidence 
during the COVID-19 pandemic that shows the antiviral 
efficacy of hydroxychloroquine alone or in combination 
with other medications [1], [9], [10], [11], [12].

The anti-inflammatory and immunomodulatory 
actions of chloroquine analogs have been 
reported in the treatment of viral infections and 
their pathologies [13]. Both chloroquine and 
hydroxychloroquine can negatively affect the 
growth of many different members of human 
coronavirus [14], [15]. Recently, a higher efficacy 
was reported in an in vitro study, favoring the control 
of SARS-CoV-2 infection [16]. Chloroquine analog in 
combination with other antiviral drugs is considered an 
effective option for therapy for viral diseases to avoid the 
interaction of P-glycoprotein and multidrug-resistance 
associated proteins in these viruses, which extrude 
medications from the cells and cellular organelles [17]. 
The results of chloroquine use in various in vitro 
studies demonstrated its effect on cellular pH [18], 
and it inhibits replication of several DNA and RNA 
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viruses [19] and interferes with terminal glycosylation 
of the cellular receptor angiotensin-converting enzyme 
2 (ACE2) [20]. Hence, chloroquine was recently used 
in the management of COVID-19 during the current 
pandemic outbreak [1], [9], [10], [11], [12]. Chloroquine 
has long been used as an antimalarial and anti-
inflammatory agent. It has a reasonable degree of 
safety at a low price. For these reasons, we decided 
to conduct this study to explore the possible antiviral 
effects of chloroquine and the possible mechanism of 
action to improve our understanding of this drug and 
shed light on it for potential future studies.

Materials and Methods

A systematic search of studies relating to 
chloroquine’s antiviral effect against coronavirus 
was performed between January 01, 1990 and up to 
May 26, 2020 using PubMed, Scopus, and Google 
Scholar. We used combinations of the following search 
terms: “Chloroquine,” “hydroxychloroquine,” “antiviral 
action,” “mechanism” safety” efficacy” “COVID-19,” 
and “SARS-CoV-2.” The preferred reporting items for 
systematic review and meta-analysis guidelines were 
adopted, as illustrated in Figure  1 [21]. The electronic 

database search yielded 174 articles. Ninety-seven 
studies were removed for not addressing the aim of the 
study, duplication, lacking a proper citation, and not being 
within the period decided beforehand. Titles and abstracts 
were assessed to identify eligibility for full screening. 
Studies that employed acceptable quantitative and/or 
qualitative methods, including randomized controlled 
trials, observational studies (such as cross-sectional, 
experimental, and interventional studies), review articles, 
ideas, editorials, letters to the editor, and opinions were 
included in the study. All articles focusing on the potential 
possible antiviral effects of chloroquine, the mechanism 
of action and therapeutic outcomes were eligible for 
inclusion. Then, all relevant studies were selected and 
full-text manuscripts retrieved for assessment. The clinical 
opinions were critically appraised using the recommended 
checklist by McArthur et al. (2015) to focus on relevant 
articles [22]. The studies were grouped according to 
the primary aims, focusing on viral replication inhibition, 
chloroquine’s action on ACE2, alkalization at the cellular 
level, chloroquine immunomodulatory effects, effects on 
sialic acid, therapeutic trials and studies that addressed 
more than one item. This enabled grouping of articles that 
focused specific targets and issues relevant to the study 
objectives and facilitated the retrieval of information.
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Figure 1: Flow chart of the study selection
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Results

A total of 174 articles were initially identified. 
Ninety-seven studies were removed for not addressing 
the aim of the study, duplication, lack of proper citations, 
and poor use of language. After screening titles and 
abstracts, 77 full-text articles were retrieved for eligibility 
analysis. Ten studies focused on general viral replication 
inhibition [14], [19], [20], [21], [22], [23], [24], [25], [26], 
[27], ten evaluated its effects on ACE2 [13], [15], [28], 
[29], [30], [31], [32], [33], [34], 19 addressed the effects 
on alkalizing the cellular pH [13], [15], [31], [32], [33], 
[35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45], 
[46], [47], [48], 25 concentrated on chloroquine therapy 
as an immunomodulator [13], [16], [26], [37], [49], [50], 
[51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61], 
[62], [63], [64], [65], [66], [67], [68], [69], two assessed 
the potential effects on sialic acid [70], [71], 24 articles 
explored the therapeutic outcome [1], [5], [15], [16], [20], 
[35], [68], [69], [72], [73], [74], [75], [76], [77], [78], [80], 
[81], [82], [83], [84], [85], and nine addressed more than 
one target [13], [15], [16], [26], [31], [32], [35], [33], [37].

Discussion

The review of articles indicates that chloroquine 
has broad-spectrum antiviral activities at different sites and 
levels. These properties have caused many researchers to 
conduct studies and explore their potential effects. Some 
studies have focused on the general inhibition of viral 
cycle replication without illustrating details. Chloroquine, 
widely promoted as an antimalarial and autoimmune 
disease drug, was recently shown to have a potential 
broad-spectrum antiviral effect that interferes with the 
viral replication cycle [23], [24]. This was supported by 
the outcome of many in vitro studies that documented the 
inhibitory effect on the replication of some coronaviruses 
in epithelial lung cell cultures [25], [26], a recombinant 
HCoV-O43 coronavirus [27], and MERS-CoV [86]. A 
recently published study pointed to the extended inhibitory 
effect on several DNA and RNA viruses, including most 
human coronaviruses [19]. In addition, many experimental 
studies on coronavirus proved that chloroquine had a 
negative effect at the replication level [14], [19], [20]. 
However, one study reported ambiguous outcomes [87].

ACE2 is another target for chloroquine’s 
antiviral effect. ACE2 is found in the lower respiratory 
tract of humans and is a cell receptor for SARS-CoV that 
is responsible for its replication and pathogenesis [28]. 
The virion glycoprotein on the surface of coronavirus 
uses the ACE2 receptor on the surface of human cells 
as a recognition site to gain access and facilitate both 
cross-species and human-to-human transmission [29], 
[35]. Bronchoalveolar lavage fluid is used to diagnose 
COVID-19 when the presence of ACE2 is indicated 
in the lower respiratory tract [30]. In in vitro studies, 
chloroquine appears to interfere with terminal 
glycosylation of the cellular receptor ACE2 to inhibit 
virus-receptor binding and ultimately abrogate the 

infection [13], [31]. Chloroquine’s potent anti-SARS-CoV 
effects in vitro have been documented in many clinical 
trials [15], [35], [32], [33]. ACE2 as a site of recognition 
for coronavirus raises concerns about its interaction with 
ACE inhibitors and the outcome of coronavirus disease. 
However, a recently published study confirmed that 
ACE inhibitors do not inhibit ACE2 because ACE and 
ACE2 are different enzymes, and no data suggest that 
ACE inhibitor or Angiotensin II Type 1 receptor blocker 
therapy facilitates coronavirus entry by increasing ACE2 
expression in both animal and human subjects [34].

Chloroquine can negatively affect a pre-
entry step of the viral cycle by interfering with viral 
particles binding to their cellular cell surface receptor 
by blocking quinone reductase 2, which facilitates the 
biosynthesis of sialic acids. Sialic acids are present on 
cell transmembrane proteins as important components 
of ligand recognition [70], [71]. Interference with sialic 
acid biosynthesis might represent part of chloroquine’s 
broad antiviral spectrum against coronaviruses that 
depend on sialic acid moieties as receptors [71].

Changing the intracellular pH is chloroquine’s 
greatest potential antiviral effect because coronavirus 
replicates in acidic environments. In fact, coronavirus cell 
entry is achieved through the endolysosomal pathway that 
depends on a certain internal pH [36]. Increasing endosomal 
pH promotes chloroquine as a potential powerful antiviral 
agent. This will affect the transduction of pseudotype viruses 
decorated with SARS-CoV spike protein and will affect 
terminal glycosylation of the cellular receptor ACE2 [15], 
[32], [33], [35]. This may be explained by chloroquine’s ability 
to diffuse spontaneously and rapidly across the membranes 
of cells and organelles to acidic cytoplasmic vesicles such 
as endosomes, lysosomes, or Golgi vesicles to alter their 
pH [13]. This will disturb the activity of several enzymes, 
including those essential for proteolytic processing and post-
translational modification of viral proteins, which will prevent 
the fusion of the virus to the cell membrane [37], [38], [39]. Its 
effect may extend to inhibit some vital steps, such as nucleic 
acid replication, glycosylation of viral proteins, new virus 
particle transport, virus assembly, virus release to achieve 
its antiviral effects [39], and other as-yet poorly understood 
antiviral activity mechanisms [31], [39].

Chloroquine analogs prevent viral entry and 
replication processes into the cytoplasm of susceptible 
cells by neutralizing acidic pH in endosomes to abrogate 
the infections [37], [40], [41], [42], [43], [44] because low 
pH is essential for fusion of the virus and endosomal 
membranes to release the viral SARS-CoV genome 
into the cytosol [45]. In non-human coronaviruses, the 
intracellular site of coronavirus budding is influenced 
by the localization of its membrane M proteins that 
accumulate in the Golgi complex beyond the site of virion 
budding [46]. This was supported by a recent report that 
showed that the C-terminal domain of the MERS-CoV M 
protein contains a trans-Golgi network localization signal 
[47]. In addition, it affects the virus maturation process by 
impairing the proper maturation of the viral protein [48].



� Musa. Potential Antiviral Effect of Chloroquine Therapy Against Sars-Cov 2 Infection

Open Access Maced J Med Sci. 2020 Sep 20; 8(T1):184-191.� 187

Chloroquine is an antimalarial and autoimmune 
disease medication. Its immunomodulatory effects 
encourage scientists to evaluate its performance on 
viruses. It enhances the immune response by promoting 
the export of soluble antigens into the cytosol of dendritic 
cells and directing human cytotoxic CD8+ T cell responses 
against viral antigens [49]. Furthermore, it organizes the 
cross-presentation of non-replicating virus antigens by 
dendritic cells to CD8+ T-cells migrated to lymph nodes 
at the site of infection and ultimately establishes a broad 
protective immune response [50]. Chloroquine inhibits 
nanoparticle endocytosis by resident macrophages; this 
effect is dose related [51], [52]. Furthermore, chloroquine 
prevents the fusion of lysosomes, which is likely to interfere 
with upstream endocytic trafficking by blocking the 
effective transport between cellular organelles and the cell 
membrane [53]. However, one study reported no potential 
effect of chloroquine on primary human monocyte-derived 
macrophages and dendritic cells in MERS-CoV infection 
[53]. Chloroquine is a well-known immunomodulatory 
drug that can mediate an anti-inflammatory response 
[37]. This effect has been observed in the treatment of 
viral infections and associated pathologies [13], [16]. 
Consequently, chloroquine analogs block the release 
of several cytokines, chemokines, or mediators that are 
blamed for the severity of viral infections. Therefore, 
inhibition of endosomal acidification by chloroquine 
therapy may be promoted as a potential therapeutic 
target for viral infections and associated pathologies. 
Cytokines, chemokines, and the activities of several host 
endosomal proteases depend on endosomal-lysosomal 
acidification [54], [55].

One of the cytokines strongly implicated in viral 
pathologies is tumor necrosis factor-a (TNF-α), which 
activates macrophages to potentiate the production of 
mediators that facilitate both the permeability and infectivity 
of endothelial cells [56], [57]. Chloroquine’s key effect is 
its prevention of macrophage activation and inhibition of 
TNF-a secretion from various cells at clinically relevant 
concentrations [13], [37], [58] inhibition of TNFα mRNA 
expression [59], [60], [61] and reduction of interleukin (IL-1 
and IL-6) cytokines that are released from monocytes 
and macrophages [62]. Chloroquine also adopts another 
pathway to inhibit TNFα production by disrupting cellular 
iron metabolism [63]. Moreover, it blocks the conversion 
of pro-TNF into soluble mature TNFα molecules, which 
modifies the immune response [64]. Chloroquine analogs 
enhance immune activation in viral infection and reduce 
systemic T cell activation [65], [66]. Chloroquine inhibits 
IL-1β mRNA expression in T helper-1 (THP-1) cells and 
reduces IL-1β production [58]. Likewise, it affects the 
immune system through cell signaling and regulation of 
proinflammatory cytokines by inhibiting phosphorylation 
of p38 mitogen-activated protein kinase in THP-1 cells 
and caspase-1 [59]. Viruses frequently require the 
phosphorylation step to replicate [26], [67].

Chloroquine blocks toll-like receptor-mediated 
activation of plasmacytoid dendritic cells and myeloid 

differentiation primary response gene 88 signaling through 
three pathways. First, it decreases the levels of the 
downstream signaling molecules IL-1 receptor-associated 
kinase 4 and IFN regulatory factor 7. Second, it inhibits 
IFN-a synthesis and blocks the negative modulators of 
T-cells such as indoleamine 2,3-dioxygenase. Third, it 
promotes downstream signaling of programmed death-
ligand 1 [68]. Clinically, both hydroxychloroquine and 
chloroquine have immunomodulatory effects that impair 
the increase in immune factors that cause a cytokine storm, 
which is followed by multiorgan failure and potentially 
death. Therefore, early treatment with chloroquine can 
abort or modify these serious complications [41], [69].

Many clinical trials have assessed the therapeutic 
efficacy of chloroquine against coronavirus. In an in vitro 
study, chloroquine had broad-spectrum antiviral effects in 
the control arm of SARS-CoV-2 infection [16]. Likewise, 
in a mouse model, it maintained a higher efficacy against 
coronavirus [15], [72]. Interestingly, chloroquine showed 
potent inhibitory effects on the treated primate cells 
before and after exposure to the virus, which shows 
both prophylactic and therapeutic advantages [31]. At 
present, many clinical trials are testing chloroquine as 
anti-COVID-19 therapy [73]. Chloroquine was recently 
promoted as a potential possible option for treating 
patients diagnosed with novel coronavirus pneumonia 
with a successful treatment rate, shortened hospital stay, 
and improved patient outcome. The recommended dose 
of chloroquine phosphate tablets was 500 mg twice per 
day for 10 days for mild, moderate, and severe cases of 
novel coronavirus pneumonia, providing that patients had 
no contraindications [74]. Preliminary reports from China 
suggest that approximately 100 infected patients treated 
with chloroquine experienced a more rapid symptomatic 
and radiological lung computed tomography improvement 
in addition to a shortened hospital stay and recovery 
period compared with control groups [1], [74], [75], [76]. 
This would reflect the first successful story for the use of 
chloroquine in humans to treat an acute viral disease and 
supports research into its potential as a therapy option 
during the current COVI-19 outbreak [77]. Based on this 
promising result, chloroquine has been included in the 
list of trial drugs in the guidelines for the diagnosis and 
treatment of COVID-19 released by the National Health 
Commission of the People’s Republic of China[74], [76]. 
In addition, the Dutch Centre of Disease Control and 
the Italian Society of Infectious and Tropical Disease 
(Lombardy section) recommend chloroquine for patients 
with COVID-19 [5], [20]. In light of the urgency, the absence 
of a vaccine and effective medications and the pressure 
health-care systems face to save lives during the COVID-
19 pandemic, many countries, including the United 
States and France, have suggested using chloroquine 
to manage patients with COVID-19 under certain 
circumstances [77], [78], [79], [80]. In a small sample 
size study that recruited 36 subjects, hydroxychloroquine 
therapy was significantly associated with a reduction in viral 
load and viral shedding period and worked synergistically 
with azithromycin against COVID-19 [81]. Likewise, 
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another study, evaluating 80 cases with a mild presentation, 
demonstrated rapid clearance of the virus and shortened 
the mean hospital stay to 5 days with combination therapy 
of hydroxychloroquine and azithromycin: Progressively 
negative results of nasopharyngeal PCR assay for the 
virus were documented at day 7 (83%) and day 8 (93%). 
In addition, 97.5% of virus cultures from patient respiratory 
samples were negative on day 5 [77]. Similarly, chloroquine 
prevented exacerbation of pneumonia with radiological 
improvement and shortened the course of the disease [1]. 
Interestingly, in an in vitro study on SARS-CoV-2, a similar 
synergistic effect was obtained in combination therapy 
of hydroxychloroquine and azithromycin, as both reduce 
the acidity of the lysosome to impair viral replication [83]. 
Chloroquine efficacy may support the observational 
thought that COVID-19 infections are highly pandemic 
in countries where malaria is the least pandemic and are 
the least pandemic in nations where malaria is highly 
pandemic [10]. On the other hand, hydroxychloroquine 
therapy for patients with COVID-19 infection was 
associated with a high risk of QT prolongation, and 
greater changes in QT were observed with concurrent 
treatment with azithromycin [84], [85] and drug-induced 
torsades de pointes [85]. Hydroxychloroquine should 
be avoided in patients with glucose-6-phosphate 
dehydrogenase deficiency to prevent hemolytic anemia. 
Both hydroxychloroquine and chloroquine have narrow 
therapeutic indices for chloroquine and are associated with 
gastrointestinal symptoms, retinopathy, deafness/tinnitus, 
and life-threatening toxicity (cardiomyopathy, arrhythmias, 
and methemoglobinemia) [88]. Recently published data, 
pointed to increase frequency of ventricular arrhythmias 
associated with chloroquine therapy for COVID 
-19infection [89]. Hence, vigilance and cardiac monitoring 
are recommended to balance the risks and benefits.

Limitations of the study
This study was conducted by one researcher 

and used only PubMed, Scopus, and Google Scholar 
databases and timeframes, and some valuable data 
were not included. Another limitation is related to the 
article selection criteria that were used.

Conclusion

Chloroquine has a broad-spectrum range of 
documented antiviral activities and immunomodulators, 
which is supported by recent limited fruitful clinical trials 
in humans. In addition, it has a long history of use, 
anti-inflammatory advantages, safety in reasonable 
dosages, and low price. Its antiviral effects should be 
further assessed in large clinical trials in the near future.
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