Role of Inflammatory Cytokines in Obese and Nonobese Diabetic Children

Enas R. Abdelhamid1, Alyaa H. Kamhawy1*, Hanaa H. Ahmed2, Mones M. Abu Shady1, Rasha Eladawy3, Amr S. Megawer4, Yasmine M. Amrousy5

1Department of Childhealth, Medical Research Division, National Research Centre, Giza, Egypt; 2Department of Hormones, Medical Research Division, National Research Centre, Giza, Egypt; 3Department of Pediatric, Research Institute of Ophthalmology, Giza, Egypt; 4Department of Pediatric, Faculty of Medicine, Ain Shams University, Cairo, Egypt; 5Department Clinical Pathology, Faculty of Medicine, Helwan University, Cairo, Egypt

Abstract

BACKGROUND: Obesity is an expanded health problem worldwide and it is blamed for a startling rise in type 1 diabetes (T1DM), the interaction between obesity, autoimmune processes, and glucose homeostasis is a growing field of study.

AIM: This study was undertaken to predict the role of the inflammatory cytokines (interleukin [IL]-17 and IL-10) as biomarkers in early screening for obesity and T1DM and to determine the relation of inflammatory cytokines with diabetic complications especially nephropathy.

SUBJECTS AND METHODS: The target group consisted of 92 children with type 1 diabetes children who were diagnosed according to the criteria provided by American Diabetes Association Diabetic; cases were divided into two groups, Group 1 (overweight and obese diabetics) and Group 2 (normal weight diabetic children). The levels of serum IL-17 and IL-10 were assayed in these children by an enzyme-linked immunosorbent assay. Serum triglycerides (TG) and cholesterol levels were measured as well as urinary microalbumin level was estimated for detection of nephropathy.

RESULTS: Diabetic overweight and obese children exhibited significantly 3.8 folds more at risk to be bad glycemic control than diabetic children with normal body mass index (BMI). Furthermore, overweight and obese diabetic children displayed significantly 15 times more at risk of having nephropathy than diabetic children with normal BMI. Low serum level of IL 10 and high level of IL 17 showed a significant association with high BMI in diabetic children. High HBA1c, low IL10, and long disease duration were significantly considered as predominant risk factors for diabetic nephropathy in diabetic children.

CONCLUSION: The obtained data from these investigations proved that overweight and obese children have a low serum level of IL-10 and high serum IL-17 levels. The relationship between IL-10/IL-17 can be applied as a good marker for the inflammatory state and these inflammatory interleukins can be employed as biomarkers in early screening for obesity and T1DM. Furthermore, these interleukins can be utilized as a predictor for early diabetic complications, particularly nephropathy.

Introduction

Overweight and obesity in children are growing global health issues. Obesity is defined as an excessive accumulation of fat that occurred due to entertaining a lot of calories than the body can consume. They have emerged as one of the major global health problems. In fact, previous studies have estimated that more than 2 billion adults worldwide are overweight (body mass index [BMI] ≥25 kg/m\(^2\)), and 671 million of them are clinically obese (BMI ≥30 kg/m\(^2\)) [1]. Accordingly, it was suggested that more than 51% of the population all over the world will be obese by 2030 [2].

Excessive weight gain leads to severe complications such as hypertension, diabetes, atherosclerosis, and hyperlipidemia, which have been defined as “metabolic syndrome.” However, only half of the obese patients with BMI from 30 to 50 kg/m\(^2\) had metabolic disorders [3].

Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized as multifactorial disorders attributable to T cell-mediated destruction of the pancreatic β cells caused by the interaction between inherited and ecological factors [4]. It accounts for 80–90% in diabetic children and adolescents [5] and its incidence was 387 million in 2014, and a raise of approximately 205 million new cases are expected to occur by 2035 [6]. Some of the diabetic patients are asymptomatic, particularly in children with absolute insulin insufficiency who may undergo polyphagia, polydipsia, polyuria, blurred vision, and weight loss. Uncontrolled diabetic individuals may cause stupor, coma, and ketoacidosis or nonketotic hyperosmolar
syndrome that may lead to death [7], DM1 is strongly related to chronic low-grade inflammation, which is largely presented in obese individuals, it is related to the fact that, in obese individuals, visceral white adipose tissue (AT) is characterized by hyperplasic and hypertrophic adipocytes, with infiltration of inflammatory macrophages, endothelial cells activation, and fibrosis. Another important factor is the phenomena called inflammaging, which consists of the positive regulation of the chronic low-grade inflammatory. Thus, high levels of pro-inflammatory cytokines like IL-17 combined with the reduction of anti-inflammatory cytokines, like IL-10, lead to an imbalance in the inflammatory composition of the innate and acquired immune system and have been related to the development and maintenance of several chronic diseases like T1DM [8].

Diabetic nephropathy occurs in 30% of people with T1DM, mostly in post adolescents. Albumin excretion rate increases until frank albuminuria occur which may result in renal failure [9].

Cytokines are extracellular proteins of low molecular weight that acts as immune response mediators. They perform in highly complex pathways that regulate the inflammatory process, and they are essential to conduct response to the lesion site. Obesity is associated with low-grade chronic inflammation. Indeed, AT in obese individuals are the former site of progressive infiltration by pro-inflammatory immune cells, which, together with increased inflammatory adipokine secretion, induce adipocyte insulin resistance. IL-17 and IL10 cells are part of obese AT infiltrating cells and are likely to be promoted by adipose [3].

Low-grade chronic inflammation and stimulation of the innate immune system are identified to be strongly linked to the pathogenesis of DM [10]. Pro- and anti-inflammatory cytokines have been suggested to be implicated in the events of diabetes [11]. Previous reports revealed that definite pro- and/or anti-inflammatory cytokines are able to interfere with insulin-responsive glucose uptake and stimulate insulin resistance [12]. IL-10 and IL-17 have been found to be connected with the pathophysiology of DM1; however, their interplay in the modulation of diabetogenic T-cells remains unknown.

IL-10 plays a central role in regulating immune response and limiting inflammation. IL-10 suppresses inflammation through various mechanisms, including inhibition of the synthesis of pro-inflammatory cytokines such as IL12 and TNFα through suppression of p65 NF-kB and c-Rel activity in macrophages [13]. IL-10 is also important in the downregulation of the release of reactive oxygen species and nitrogen intermediates, regulation of antigen presentation capacity and immune tolerance [14], and suppression of proliferative and cytotoxic T cell responses [15].

IL-17 was discovered as cytotoxic T-lymphocyte associated antigen 8 in 1993 [16].

After 10 years, it was identified that the cellular source of this cytokine is Th17 cells [17]. Th17 cells are likely to play a major role in the propagation of inflammation and in the immunometabolism, which can be easily modified with a hypercaloric diet as it was mentioned before that the hypercaloric diet induces enrichment of pathogenic Th17 cells, in several metabolic organs [18]. However, data obtained from human T1DM studies and mouse models suggest the involvement of Th17 in the pathogenesis of this disease [19].

This study was intended to explore the mechanism behind the role of IL-10 and IL-17 in inflammation associated with obesity in diabetic children. Furthermore, the study was extended to find out the possibility of utilizing these cytokines as early predictors for T1DM complications, particularly nephropathy.

Subjects and Methods

Between October 2019 and March 2020, 92 diabetic children (T1DM) attending the Unit for Pediatric Diabetes and Endocrinology, Children Hospital, Ain Shams University, were selected for this study. The study group of T1DM children was diagnosed according to the criteria provided by the American Diabetes Association. The parents gave informed consent and children of 10 years of age or older signed their informed consent by themselves after full explanation of the aim of the work, plan of action and blood as well as urine sampling, the protocol of the study was approved by the Ethics Committees for Medical Research of the National Research Centre, Egypt. The diabetic children age ranged between 5 and 15 years were divided into two groups: 34 overweight and obese diabetics (Group 1) and nonobese diabetics (Group 2). All anthropometric parameters have been obtained using standardized equipment and following the recommendations of the International Biological Program [20]. Obesity was considered when BMI exceeded 95th percentile while overweight was considered when BMI was from 85th to 95th percentile and other normal weight diabetic children [21]. Assessment of BMI was done using categories reported by the World Health Organization (WHO) Child Growth Charts Standards for age and sex [22].

Participants were excluded for any of the following reasons: The presence of other chronic or inflammatory disease, drugs or medications (other than insulin), presence of known renal disease or systemic disease, or acute infection at the time of testing.

Laboratory and clinical data

The background information of subjects such as age, gender, weight, height, daily dose of insulin injection, disease duration, and family history of diabetes was recorded. Furthermore, detailed medical history and physical examination were carried out. Disease
duration was defined in this study as the day of the initial
diagnosis of diabetes to the day of blood collection.

Samples collection for biochemical analysis
From each child, 5 ml of fasting blood samples
were withdrawn; 4 ml were collected in a vacuum tube
free from EDTA for separation of serum, and 1 ml was put
in another tube with anticoagulant for determination of
glycated hemoglobin. Serum samples were separated
using a cooling centrifuge (4°C) at 1800 × g for 10
min and stored at −20°C until analysis. Triglycerides
and cholesterol were quantified using colorimetric
 techniques on Synchron Cx7 (Beckman Instruments
Inc., Brea, California, USA) [23]. Glycated hemoglobin
was measured in whole blood colorimetrically using a
kit obtained from Biosystems (Spain) according to the
method of Roberts et al. [24].

According to the manufacturer’s protocol,
IL-10 and IL-17 were assayed by employing the Human
cytokine ELISA set. IL-10 ELISA kit was purchased
from SinoGeneClon Biotech Co., Ltd., China, for the
quantitative determination of Human IL-10 concentrations,
Catalog No: SG-10271. IL-17 ELISA kit was purchased
from SinoGeneBiotech Co., Ltd., China, for the
quantitative determination of Human IL-17 concentrations,
Catalog No: SG-10278. For random urinary microalbumin
measurement, an early morning midstream urine
specimens were used. The cloudy samples were
centrifuged before use and the clear supernatants
were stored at −20°C until analysis. Microalbumin
concentrations were estimated in urine using a Minineph
Microalbumin kit based on the nephelometry method on
a Minineph nephelometer (AD200) (Birmingham, UK).
The diagnosis of nephropathy was established when
microalbumin in the urine was more than 30 μg/dl [25].

Statistical analysis
Data entry was carried on Excel sheet and
statistical analysis was done using the SPSS software
program, version 18.0 (SPSS Inc., PASW Statistics for
Windows, Version 18.0. Chicago, USA). Chi-square
was done for qualitative data that were presented
by numbers and percentages. t-test was done for
comparison between two means. A simple linear
 correlation (Pearson’s correlation) for quantitative data
was also done. P value was considered statistically
significant when its value was <0.01. Results
significant when p < 0.05 and considered statistically
was also done. P value was considered statistically
significantly different between them (p > 0.05), as shown in
Table 1. The data presented in Table 1 also shows a
statistically significant difference between obese and
normal-weight diabetic children regarding cholesterol,
IL-10, IL-17, HBA1c, and insulin dose. Meanwhile,
there is no significant difference between both groups
regarding age, disease duration, or triglyceride level
(p > 0.05).

Table 1: Comparison between both diabetic groups regarding
some clinical and biochemical findings according to BMI

<table>
<thead>
<tr>
<th>Items</th>
<th>Group 1 (Overweight and obese)</th>
<th>Group 2 (Normal BMI)</th>
<th>t-test p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± SD</td>
<td>9.20 ± 1.756</td>
<td>9.70 ± 2.693</td>
<td>−0.872</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disease duration (years)</td>
<td>6.20 ± 1.232</td>
<td>6.51 ± 1.330</td>
<td>−0.986</td>
</tr>
<tr>
<td>BMI percentile</td>
<td>56.72 ± 19.974</td>
<td>74.10 ± 22.329</td>
<td>−3.414</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>155.80 ± 18.690</td>
<td>167.85 ± 24.021</td>
<td>−2.263</td>
</tr>
<tr>
<td>Triglycerides (mg/dL)</td>
<td>75.84 ± 13.576</td>
<td>73.73 ± 10.459</td>
<td>0.791</td>
</tr>
<tr>
<td>IL10 (pg/ml)</td>
<td>27.56 ± 1.830</td>
<td>5.754 ± 2.4144</td>
<td>2.819</td>
</tr>
<tr>
<td>IL17 (pg/ml)</td>
<td>150.504 ± 27.087</td>
<td>168.069 ± 33.3187</td>
<td>−1.876</td>
</tr>
</tbody>
</table>

Table 2: Comparison between the diabetic groups regarding
some clinical and biochemical findings according to the
glycemic control

<table>
<thead>
<tr>
<th>Items</th>
<th>Group 1 (controlled HBA1c <8%)</th>
<th>Group 2 (uncontrolled HBA1c >8%)</th>
<th>t-test p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± SD</td>
<td>9.20 ± 1.756</td>
<td>9.70 ± 2.693</td>
<td>−0.872</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disease duration (years)</td>
<td>6.20 ± 1.232</td>
<td>6.51 ± 1.330</td>
<td>−0.986</td>
</tr>
<tr>
<td>BMI percentile</td>
<td>56.72 ± 19.974</td>
<td>74.10 ± 22.329</td>
<td>−3.414</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>155.80 ± 18.690</td>
<td>167.85 ± 24.021</td>
<td>−2.263</td>
</tr>
<tr>
<td>Triglycerides (mg/dL)</td>
<td>75.84 ± 13.576</td>
<td>73.73 ± 10.459</td>
<td>0.791</td>
</tr>
<tr>
<td>IL10 (pg/ml)</td>
<td>27.56 ± 1.830</td>
<td>5.754 ± 2.4144</td>
<td>2.819</td>
</tr>
<tr>
<td>IL17 (pg/ml)</td>
<td>150.504 ± 27.087</td>
<td>168.069 ± 33.3187</td>
<td>−1.876</td>
</tr>
</tbody>
</table>

Table 3 shows that diabetic overweight and
obese children displayed significantly 3.8 folds more at
risk to be bad glycemic control than diabetic children
with normal BMI (Table 3).

Table 3: Association between glycemic control and obesity

<table>
<thead>
<tr>
<th>Items</th>
<th>Glycemic control</th>
<th>Group A (controlled HBA1c <8%)</th>
<th>Group B (uncontrolled HBA1c >8%)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obesity</td>
<td>Count</td>
<td>33</td>
<td>5</td>
<td>38</td>
</tr>
<tr>
<td>% within obesity</td>
<td>86.8</td>
<td>13.2</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Normal BMI</td>
<td>Count</td>
<td>34</td>
<td>20</td>
<td>54</td>
</tr>
<tr>
<td>% within obesity</td>
<td>63.0</td>
<td>37.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Odds ratio = 3.882, 95% CI 1.304–11.556, p=0.015*, *p<0.05 is significant. BMI: Body mass index, HBA1c: Glycated hemoglobin, CI: Confidence interval.
The data in Table 4 show that overweight and obese diabetic children displayed significantly 15 times more at risk of having nephropathy than diabetic children with normal BMI (Table 4).

The data presented in Table 5 showed a statistically significant negative correlation between IL10 and IL17, BMI, cholesterol, HBA1c, and insulin dose, while there is a significant positive correlation between IL17 and BMI, cholesterol, and HBA1c.

Table 4: Association between obesity and diabetic nephropathy

<table>
<thead>
<tr>
<th>Items</th>
<th>Nephropathy</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>BMI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overweight and obese</td>
<td>14</td>
<td>24</td>
</tr>
<tr>
<td>% within obesity</td>
<td>36.8</td>
<td>63.2</td>
</tr>
<tr>
<td>Normal BMI</td>
<td>2</td>
<td>52</td>
</tr>
<tr>
<td>% within obesity</td>
<td>3.7</td>
<td>96.3</td>
</tr>
</tbody>
</table>

Discussion

Long-term complications of DM1 are secondary to the damaging impacts of the metabolic consequences of insulin deficiency on tissues of different body organs. Maintaining good control of diabetes by preventing prolonged hyperglycemia is essential to avoid developing complications in later life [9].

Table 5: Correlation between different variables in diabetic children

<table>
<thead>
<tr>
<th>Items</th>
<th>IL10 (pg/ml)</th>
<th>IL17 (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>r = -0.036</td>
<td>p = 0.736</td>
</tr>
<tr>
<td>p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disease duration (years)</td>
<td>r = -0.085</td>
<td>p = 0.421</td>
</tr>
<tr>
<td>r</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI centile</td>
<td>r = -0.837**</td>
<td>p = 0.491</td>
</tr>
<tr>
<td>r</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cholesterol (mg/dL)</td>
<td>r = -0.667**</td>
<td>p = 0.493**</td>
</tr>
<tr>
<td>r</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triglycerides (mg/dL)</td>
<td>r = -0.188</td>
<td>p = 0.072</td>
</tr>
<tr>
<td>r</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL10 (pg/ml)</td>
<td>r = 0.000</td>
<td>p = 0.000</td>
</tr>
<tr>
<td>r</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL17 (pg/ml)</td>
<td>r = -0.732**</td>
<td>p = 1.000</td>
</tr>
<tr>
<td>r</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBA1c (%)</td>
<td>r = -0.500**</td>
<td>p = 0.400**</td>
</tr>
<tr>
<td>r</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin dose (unit/kg/day)</td>
<td>r = -0.527**</td>
<td>p = 0.393**</td>
</tr>
<tr>
<td>r</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6 and Figures 1 and 2 showed that low level of IL 10 and high level of IL 17 were significantly associated with high BMI in diabetic children.

Table 6: Multiple linear regression analysis of factors affecting BMI in diabetic children

<table>
<thead>
<tr>
<th>Items</th>
<th>Unstandardized coefficients</th>
<th>Standardized coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>SE</td>
</tr>
<tr>
<td>(Constant)</td>
<td>20.213</td>
<td>24.397</td>
</tr>
<tr>
<td>HBA1c (%)</td>
<td>1.382</td>
<td>0.761</td>
</tr>
<tr>
<td>IL10 (pg/ml)</td>
<td>-4.655</td>
<td>0.971</td>
</tr>
<tr>
<td>IL17 (pg/ml)</td>
<td>0.206</td>
<td>0.056</td>
</tr>
<tr>
<td>Cholesterol (mg/dL)</td>
<td>0.113</td>
<td>0.071</td>
</tr>
<tr>
<td>Triglycerides (mg/dL)</td>
<td>0.198</td>
<td>0.111</td>
</tr>
<tr>
<td>Insulin dose (unit/kg/day)</td>
<td>-1.488</td>
<td>5.773</td>
</tr>
</tbody>
</table>

Table 7 showed that high HBA1c, low IL 10, and long disease duration are all considered as risk factors of diabetic nephropathy in diabetic children.

Table 7: Multiple logistic regression analysis of risk factors of diabetic nephropathy

<table>
<thead>
<tr>
<th>Items</th>
<th>B</th>
<th>Adjusted OR</th>
<th>95% CI for OR</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBA1c</td>
<td>1.181</td>
<td>3.192</td>
<td>1.193</td>
<td>8.543</td>
</tr>
<tr>
<td>BMI centile</td>
<td>-0.084</td>
<td>0.919</td>
<td>0.813</td>
<td>1.039</td>
</tr>
<tr>
<td>IL10</td>
<td>-1.710</td>
<td>0.181</td>
<td>0.034</td>
<td>0.955</td>
</tr>
<tr>
<td>IL17</td>
<td>0.020</td>
<td>1.020</td>
<td>0.960</td>
<td>1.084</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>-0.030</td>
<td>0.971</td>
<td>0.906</td>
<td>1.039</td>
</tr>
<tr>
<td>Disease duration</td>
<td>1.377</td>
<td>3.963</td>
<td>1.089</td>
<td>14.418</td>
</tr>
<tr>
<td>Age</td>
<td>0.427</td>
<td>1.533</td>
<td>0.900</td>
<td>2.612</td>
</tr>
<tr>
<td>Insulin dose</td>
<td>-1.188</td>
<td>0.305</td>
<td>0.004</td>
<td>25.414</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>0.042</td>
<td>1.043</td>
<td>0.943</td>
<td>1.154</td>
</tr>
<tr>
<td>Constant</td>
<td>12.218</td>
<td>0.000</td>
<td>0.344</td>
<td>861</td>
</tr>
</tbody>
</table>
There is growing evidence linking IL10 and IL17 to obesity [26]. Metabolic syndrome (MetS) and cardiovascular disease are also linked to IL10 and IL17 [27].

This research provides relevant information on the influence of body composition on inflammatory and biochemical markers in overweight and obese diabetic and normal weight diabetic children. We demonstrate how body composition interferes with the balance of cytokines, especially IL-10 and IL-17, and how it may exert an effect on the biochemical parameters and risk factors associated with T1DM.

The purpose of this study was to predict if the inflammatory cytokines (IL-17 and IL-10) were beneficial as biomarkers in early screening for obesity and T1DM and to determine the relation of inflammatory cytokines with diabetic complications, especially nephropathy.

Comparison of different variables in both obese and normal-weight groups according to BMI group revealed that serum cholesterol, IL-10, IL-17, HbA1c levels, and insulin dose are the factors showing a significant difference between both groups. And to some extent, the findings of previous researches came in accordance with our conclusion as the study done by Israel et al. [8]. We next performed multiple linear regression analysis to predict variants that are independently associated with BMI and we found that IL-10 and IL-17 concentration are strongly associated with BMI. This study showed that IL-10 concentration is negatively correlated with blood cholesterol but not triglycerides. Moreover, this comes in agreement with a study done by Jung and Choi, who stated that IL-10 exerts essential control over the biochemical parameters such as LDL, VLDL, HDL, triglycerides, and glucose [28]. While on the contrast of our findings Jung and Choi reported that such a correlation pattern is not detected in overweight women, in whom IL-10 showed a negative correlation only with total cholesterol and LDL.

In the current study, the overweight and obese diabetic children had a low level of IL-10 and this agrees with a study done by Jung et al. [29], in which when compared overweight and obese with their normal-weight counterparts, overweight and obese children had lower serum IL-10. In contrast, a study done by Pereira et al. revealed that obese women have higher serum concentrations of IL-10 as feedback generated from the elevated expression of pro-inflammatory cytokines as a result of obesity [30]. However, that increase is not sufficient to govern the development of the pro-inflammatory profile [31].

Many other studies investigating IL10 in children and young adolescents with obesity have yielded conflicting results [32], [33], [34], [35]. Another study, included 80 obese and 80 nonobese Egyptian children, agreed with our results as these authors stated that serum levels of IL-10 are significantly lower in the former group [32]. This could be explained by a study done by Lauridsen et al., gave accentual evidence concerning this as they demonstrated that in the prefrontal cortex of neurologically and psychiatrically healthy humans, a gradual increase in BMI is associated with discrete signs of altered gene expression, that leads to downregulation of mRNA expression of the anti-inflammatory cytokine IL-10 [33].

However, this comes in conflict with Calcaterra et al. in a study, including 70 severely obese and 30 normal-weight children aged 11.46±3.42 years old, Calcaterra et al. stated that serum IL-10 concentrations are higher in severely obese children compared to normal weight [34]. Tam et al. recorded no differences in IL-10 concentration between normal and overweight children at 8 years old; however, at 15 years old, serum IL-10 is elevated in overweight and obese girls when compared to normal weight girls of the same age [35].

The study done by Chang et al. suggested that the effect of obesity on IL-10 serum concentration varies with age, but in this current study, we did not find a correlation between IL-10 and IL-17 and age neither in the obese group nor in the normal-weight group [29].

In the present study, IL17 is significantly increased in overweight and obese diabetic compared to normal weight diabetic and this agrees with a study of Sumarac-Dumanovic who observed significant enhancement in circulating IL-17 and IL-23 cytokines in obese as compared with lean individuals [36]. The relationship between obesity and serum level of IL-17 has been further demonstrated in a sheep model, where maternal obesity provoked an inflammatory state in the fetal intestine, with increased levels of inflammatory cytokines, particularly IL-17 [37]. Infiltrating IL-17+ sequestering cells have also been noticed more abundant, in obese versus lean AT, and in visceral versus subcutaneous AT [38]. Dalmas et al. have shown that single populations of IL-17+ IL-22− and IL-17−IL-22+ and double populations of IL-17+ IL-22+ CD4+ T cells are highly induced in the mucosal tissues of obese subjects, as compared with non-obese [39]. Supporting the implication of IL-17 in the MetS, the levels of IL-17 expression in liver or muscle were shown to correlate with insulin resistance [38], and the blockade of IL-17 resulted in the decrease of hepatic inflammation in the non-alcoholic steatohepatitis syndrome (NASH) [40].

This current study also demonstrated that pro-inflammatory cytokine IL-17 and the anti-inflammatory IL-10 are significantly negatively correlated and this matches the findings of Winer et al. which showed that in obese rats the increase of IL-6 due to obesity causes maturation of Th17 and secretion of IL-17 which inhibits IL-10 secretion and Treg development and this, in turn, intensified inflammation in the body [41].

Comparing the two groups of diabetics according to their glycemic control level using HbA1c 8% as a cutoff (controlled [<8%] and uncontrolled [≥8%])
diabetic group), a significant difference between good and bad glycemic control has been found regarding BMI, IL10, cholesterol and insulin dose. Diabetic overweight and obese children were significantly 3.8 folds more at risk to be bad glycemic control than diabetic children with normal BMI. This result comes in line with that of El-Wakeel et al.’s study [42]; this strong association was confirmed by many other studies [8], [18].

The current study showed that overweight and obese diabetic children are significantly at higher risk of having nephropathy than diabetic children with normal BMI. This coincides with the study done by Zu et al. which explained this as obesity is associated with hyperleptinemia, which contributes to a decline in eGFR and pathological processes [43]. Changwei et al. did not agree with this result in their study, where 481 patients with nephropathy were finally enrolled in the study. There was no significant difference in clinical and pathological characteristics among the four-group patients categorized by BMI. After matching with propensity scores, no significant correlation between BMI and renal outcomes was seen [44]. These findings spotlight the effect of impaired control of hyperglycemia and BMI on the risk of premature development of complications in the pediatric diabetic population. There are several limitations in our study; the cross-sectional nature of the current study and the relative small sample size are the common limitations of the study. However, in the light of data documented by the results of the present study, we put forward the evidence that high serum IL17 and lower IL10 levels in type 1 diabetic children together with obesity might be collateral to deterioration in diabetic cases and more emerging of diabetic complications as nephropathy.

Conclusion

This study proved that overweight and obesity in children T1DM are associated with low serum IL-10 concentration and high serum IL-17. The changes in these interleukins in overweight and obese diabetic children may further implicate to the inflammatory environment associated with obesity. The relationship between IL-10/IL-17 can be applied as a good marker for the inflammatory state, and we encourage further studies with a large sample size to confirm this hypothesis. This study is considered as innovative and relevant research in children population showing that serum IL-10 and IL-17 levels can be served as predictors of obesity and diabetes-associated complications.

Acknowledgment

We would like to thank the children and families who donated blood and urine samples to accomplish this research. Furthermore, we are greatly appreciated the teamwork of El Demerdash Hospital Ain Shams University for help and assistance.

References

High BMI levels associate with reduced... Cutting edge: Increased Il-17 secreting T... Requirement of interleukin 17

Friedewald WT, Levy RI, Fredrickson DS. Estimation of the

World Health Organization. Software for Assessing Growth of the

interleukin-23/interleukin-17 proinflammatory axis in obese
ijo.2008.216
PMid:18962006
Maternal obesity induces sustained inflammation in both fetal
and offspring large intestine of sheep. Inflamm Bowel Dis
PMid:21674707
38. Fabbrini E, Cella M, Mccartney SA, Fuchs A, Abumrad NA,
Pietka TA, et al. Association between specific adipose tissue
CD4+ T-cell populations and insulin resistance in obese
org/10.1053/j.gastro.2013.04.010
PMid:23597726
39. Dalmas E, Venteclef N, Caer C, Poitou C, Cremer I, Aron-
Wisnewsky J, et al. T cell derived IL-22 amplifies IL-1β driven
inflammation in human adipose tissue: Relevance to obesity
org/10.2337/db13-1511
PMid:24520123
exacerbates hepatic steatosis and inflammation in non-alcoholic
https://doi.org/10.1111/j.1365-2249.2011.04471.x
PMid:21985374
41. Winer S, Paltser G, Chan Y, Tsui H, Engleman E, Winer D,
et al. Obesity predisposes to Th17 bias. Eur J Immunol
PMid:19662632
42. El Wakeel MA, Abou-El-Asrar MO, El-kassas GM, Elabd MA,
Zeid DA, Sabry RN, et al. Urinary markers of oxidative DNA
damage in Type 1 diabetic children: Relation to microvascular
https://doi.org/10.22159/ajpcr.2017.v10i10.18930
43. Zhu Q, Scherer PE. Immunologic and endocrine functions of
adipose tissue: Implications for kidney disease. Nat Rev Nephrol
PMid:29199276
44. Wu C, Wang AY, Li G, Wang L. Association of high body mass
index with development of interstitial fibrosis in patients with
PMid:30594167