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Abstract

Single nucleotide polymorphism (SNP) studies in the promoter region of tumor necrosis factor-alpha (TNF-α (238)) 
have suggested its role in increased insulin resistance and also in the progression from prediabetes to type 2 
diabetes (T2DM). It has been reported that genetic variations in the promoter region regulate TNF-α production and 
transcription, and they influence susceptibility to inflammatory-related diseases. Impairment of normal functioning of 
the β-cells of pancreatic islets is one of the main causative factors for the suppression of insulin secretion. TNF-α is 
among the main stimuli that induce the inflammation in pancreatic islets which lead to the induction of apoptosis in 
β-cells of pancreatic islets. Transcription factor 7-like 2 (TCF7L2) gene has been found to be one of the most risky 
genes for prediabetes and progression toT2DM. However, the underlying mechanism of this is still unknown. This is a 
review article demonstrating the possible mechanisms of both TNF-α G/A 238 and TCF7L2 C/T gene polymorphisms 
in prediabetes and type 2 diabetes mellitus.
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Introduction

TNF-α, along with other pro-inflammatory 
cytokines, plays a central role in the pathogenesis 
and development of obesity-induced insulin resistance 
as evidenced by the augmented levels of TNF-α in 
systemic circulation, liver, and adipocytes [1], [2], [3], [4]. 
The phenomenon of TNF-α-induced insulin resistance 
is dependent on the intracellular and molecular 
mechanisms that involve the activation of stress-related 
protein kinases such as inhibitor kappa-beta kinase 
beta (IKKβ), Jun N-terminal kinase (JNK), and nuclear 
factor kappa-beta (NF-κB pathway) [5].

Insulin Resistance in Adipose Tissues

In diabetic individuals, the level of messenger 
ribonucleic acid (mRNA) of TNF-α and its protein 
increases in adipose tissues. Another way by which 

TNF-α impairs insulin sensitivity in adipose tissues 
consists of downregulation of protein level of insulin 
receptor substrate1 (IRS-1) and glucose transporter 
4 (GLUT4). TNF-α also decreases fatty acid oxidation 
and increases plasma free fatty acid levels [6]. TNF-α 
alters lipid metabolism and protein in adipose tissues 
[7]. In isolated adipocyte, TNF-α suppresses the action 
of genes that are responsible for regulating the level 
of fatty acids uptake within the tissues. TNF-α is also 
responsible for the inhibition of lipoprotein lipase and 
starts lipolysis in adipose cells. As a result of this 
lipolysis, non-esterified fatty acid level increases, which 
results in the development of insulin resistance [8].

Insulin Resistance in Peripheral Tissues

TNF-α produced by the muscles also induces 
insulin resistance in skeletal muscles by inhibiting 
insulin action in peripheral tissues. Mostly, the muscles 
are accounted for glucose disposal, and it has been 
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reported that TNF-α increases the phosphorylation of 
JNK, and IRS-1 which is linked with the cascade of 
insulin signaling impairment in peripheral tissues [9].

TNF-α and Dysfunctioning of β-Cells of 
Pancreatic Islets

Impairment of normal functioning of the β-cells 
of pancreatic islets is one of the main causative factors 
for the suppression of insulin secretion. TNF-α is 
among the main stimuli that induce the inflammation in 
pancreatic islets which lead to the induction of apoptosis 
in β-cells of pancreatic islets [10], [11], [12]. TNF-α does 
this job by activating the transcriptional factor, that is, 
NF-κB which is an important modulator of pancreatic 
cell death [13], [14], [15].

Role of TCF7L2 Gene Polymorphism in 
T2DM

Genetic mutation in TCF7L2

A previous work [16] had illustrated the 
biological impact of the TCF7L2 in type 2 diabetes and 
the study suggested that this risk variant was due to 
the ancestral T allele of an SNP, rs7903146, through 
replication in West African and Danish with type 2 
diabetes case–control studies and another Icelandic 
study. Then, other authors [17] had evaluated about 
43 SNPs and the previously identified DG10S478 
microsatellite in African American and suggested again 
that rs7903146 was the trait-defining polymorphism 
linked to the development of type 2 diabetes. These 
previous studies interpret the intron 3 SNP rs7903146 
as the causal variant in the TCF7L2 gene. However, the 
underlying mechanism of it is still elusive [15].

Because the mutations in risk-related variants 
were present in an intronic region, rather an exon, it was 
reasonable to suggest that this regulatory process was 
associated with conferring the risk of T2DM [18]. The 
previous researchers found that the locus conferred its 
T2DM risk by transcriptional protein complex binding 
across rs7903146 within TCF7L2 in a self-regulating 
manner [18], [19] and provided that the intronic TCF7L2 
variants might regulate alternative transcript isoforms, 
which, in turn, might have a distinct physiologic process 
in inducing T2DM. One of them may be Acyl-CoA 
synthetase 5 (ACSL5) which has an important role in 
both the fatty acid degradation and lipid biosynthesis 
and which, in turn, might correlate with the insulin 
resistance [15]. Many previous researches found better 
maintenance regard to glucose levels [20], [21] and also, 

improvement in insulin sensitivity [19] in the whole body 
of the ACSL5 knockout mice. A previous study found that 
a causal variant within TCF7L2 resides in an element 
that controls the expression of ACSL5 and suggests that 
TCF7L2 regulates ACSL5 expression [22].

Effector of Wnt signaling pathway

TCF7L2 exerts its regulatory effect on the Wnt 
signaling pathway. This pathway may play a key role 
in both islet cell proliferation and differentiation [15]. In 
humans, it had been suggested that T2DM may have a 
link to a mutation in the TCF7L2 gene associated with 
the Wnt pathway [23]. TCF7L2 affects proglucagon 
gene transcription in the endocrine L-cell lines of the 
gut by mean of the signaling of the Wnt pathway. The 
proglucagon gene is important as it encodes the incretin 
hormone glucagon-like peptide-1 [24]. GLP-1 affects 
glucose by stimulating insulin secretion, inhibiting 
glucagon secretion, and slowing gastric emptying [25]. 
Furthermore, GLP-1 provides other effects such as 
promoting the transcription of the insulin gene, inhibiting 
β-cell apoptosis, promoting β-cell neogenesis, and also 
promoting its proliferation [26].

Because there was a previous work suggesting 
that the β-catenin has a pivotal effect in regard to 
modulating the secretion of insulin, it was exerted 
that the overexpression of TCF7L2, as one of the 
transcriptional coactivator of β-catenin, will attenuate 
the secretion of insulin [27].

Proinsulin conversion and β-cell 
responsivity

β-cells are involved in the production of 
proinsulin. If proinsulin levels relative to the level of 
the mature insulin hormone are increased, this might 
suggested impending insulin resistance and the 
progression to T2DM [28]. TCF7L2-induced β-cell 
apoptosis might occur through obstructing with the 
proinsulin processing. Moreover, it has been confirmed 
that the impairment of insulin vesicle trafficking could 
be done by silencing TCF7L2 [29]. The T-allele of the 
TCF7L2 rs7903146 was an important risk factor for 
impaired proinsulin conversion, as has been found by 
a previous meta-analysis [30].

Conclusion

We concluded that these polymorphisms had 
a role in the progression of prediabetes to type 2 DM, 
particularly TNF by affecting insulin resistance and 
TCF7L2 by affecting mainly insulin secretion. Also, we 
concluded that type 2 DM can be prevented or at least 
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delayed by managing prediabetes by regular exercises 
and keeping ideal body weight.
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