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Abstract
AIM: The article presents the results of a study of chromosomal mutations in residents living in the Aral Sea disaster 
zone, using the example of the city of Aralsk. 

METHODS: The article identifies the level of chromosomal aberrations (CA) in the surveyed population and identifies 
the leading type of aberrations in this region. 

RESULTS: Researches have shown that the main types of structural changes were chromatid breaks and single 
fragments of chromosomes. The results showed that in the study population, the microelement status indicates an 
imbalance of microelements. A correlation analysis showed a relationship between the nickel content in the blood 
and the increase in CAs. Furthermore, researches show a hypothesis about the pathogenesis mechanism of the 
formation of CAs. 

CONCLUSION: Thus, the article provides information on chromosomal mutations during chemical mutagenesis.
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Introduction

Environmental pollution and the consequences 
of its impact on public health are one of the most 
pressing issues for the world community. In many 
ecologically unfavorable regions, a difficult situation 
persists for a long time: air pollution, soil salinization, 
pollution of drinking water, which negatively affects the 
health of the population at various levels (molecular, 
cellular, organ, and systemic). Environmental pollution 
has a negative impact on the health status of the 
population [1], [2], [3], [4], [5].

The negative impact of adverse environmental 
factors on the health of the population has become 
special significance both for the whole world and for 
Kazakhstan.

Aral Sea shallowing and partial drying affects 
the interests of all countries in Central Asia and is a 
matter of concern on the part of the world community. 
This situation has been noted as an Aral Sea disaster 
and has led to significant economic damage and to 
harmful effects on human habitat.

Various researches show that pollution of 
the area near the Aral Sea by heavy metals affects 
the development of diseases of various organs and 
systems [6], [7], [8], [9], [10], [11], [12].

This environmental situation has a negative 
effect on public health, including genotoxic ones, and 
can manifest itself as chromosomal abnormalities 
such as an increase in size, a change in shape, and 
chromosomal aberration (CA) [13], [14].

One of the problems of hygienic significance 
is the problem of the genetic consequences of their 
effects, which are manifested at the chromosomal level 
and underlying the malignant transformation of cells, 
the increase in cases of the disease, and decrease in 
the body’s resistance to environmental factors [15], [16].

Numerous epidemiological, laboratory, and 
clinical observations indicate for the presence of cause-
effect relationships between environmental pollution and 
damage to the genetic material of the human body. These 
examinations were carried out both in harmful industrial 
conditions and in living areas, where the atmosphere, 
water, and soil were contaminated with mutagens [17], 
[18]. Assessment of the effects of mutagens on humans 
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in real conditions (with prolonged exposure of mutagens) 
is carried out mainly by cytogenetic examination of 
people exposed to the harmful factors.

Aralsk city of the Kyzylorda region (Population 
– 33,141 people) located in Southern Kazakhstan, in 
the zone of ecological disaster at a distance of 17 km 
from the Aral Sea [19]. In the south of the city is the 
dried-up Gulf of the Aral Sea – Bolshoy Saryshyganak. 
The climate is continental, arid, with large fluctuations 
in seasonal and daily temperatures.

The studies conducted by the “Scientific and 
Practical Center for Sanitary and Epidemiological 
Expertise and Monitoring” showed a high level of 
chemical load on the population in the conditions of the 
city of Aralsk [20]. The Aralsk ambient air is polluted with 
salts of heavy metals (nickel, manganese, lead, cuprum, 
zinc, iron, and silicon) that exceed the permissible level 
[21], [22]. In a control area – Atasu city, there is no 
excess of the above pollutants detected [23].

The aim of cytogenetic researches is to estimate 
the frequency and qualitative spectrum of chromosomal 
deviations in peripheral blood lymphocytes of people in 
reproductive age living in the territory of the Aral Sea 
ecological disaster zone.

Materials and Methods

Research design

Prospective medical case-control study was 
conducted in Aralsk city (46’48’’00’’ N 61’40’’00’’ E) and 
in Atasu city (48’41’’00’’ N 71’39’’00’’ E), Kazakhstan.

Conditions and sampling technique

The level of CAs and the level of microelements 
in the blood were considered as the main evaluated result.

We analyzed 7465 metaphase plates in 40 
healthy people of reproductive age (18–45 years old) 
in the main group of examined persons who have been 
living in the ecological disaster zone (Aralsk) since they 
were born, which were not affected by harmful factors 
at the workplace.

For comparison purposes, 7020 metaphases 
were analyzed in 40 individuals living in the city of Atasu 
(control group). People living in Atasu formed a control 
group as they lived far from the disaster zone, but the 
climatic, geographical, and socioeconomic conditions 
were identical to compared groups.

All subject patients were divided into two groups 
based on matching parameters such as gender, age, 
duration of stay, social status, education, profession, 
and living conditions. The difference between the 
groups was in living in different ecological regions.

Genotoxic effects were studied using a modified 
method of peripheral blood lymphocytes cultivation by 
Hungerford, with the purpose of accounting frequency 
and types of CAs [24], [25], [26]. The main stages of 
preparation of chromosome preparations are venous 
blood sampling, lymphocyte culture, mitosis arrest at 
the metaphase stage, hypotonization of metaphase 
lymphocytes, fixation of chromosome sets on a glass 
slide, and chromosome coloring [26].

For each examined, at least 150 metaphase 
plates were analyzed. The frequency of CAs was 
calculated by the formula:

CA=(a/b)*100%
Where: a – is the number of CAs;
b – is the number of metaphases.
The main purpose of the methods for processing 

cell cultures and chromosome preparations is the 
obtaining a sufficient number of metaphase plates with 
chromosome spread, which makes possible to assess 
the size, ratio of chromosome shoulder lengths, the 
presence of secondary constrictions, satellites, and other 
morphological signs of each karyotype chromosome.

The level of the trace elements in blood: (i.e., 
copper [Cu], zinc [Zn], cadmium [Cd], mercury [Hg], 
plumbum [Pb], arsenic [As], chromium [Cr], selenium 
[Se], manganese [Mn], iron [Fe], nickel [Ni], and iodine 
[I]) was carried out with MGA-915 atomic absorption 
spectrometer (Lumeks, Russia).

Inclusion criteria

Eighty people are without acute gastrological, 
bronchial obstructive, hemorrhagic, neurological and 
splenomegaly syndromes, infectious and severe 
somatic diseases, acute inflammatory processes, mental 
disorders, and severe physical illnesses. Persons from 
these groups have been living in their cities since they 
were born; they were not affected by harmful factors at 
the workplace. The survey sample included persons of 
reproductive age from 18 to 45 years.

Discontinuation criteria

Patients with gastrological, bronchial 
obstructive, hemorrhagic, neurological and 
splenomegaly syndromes, infectious and severe 
somatic diseases, acute inflammatory processes, 
mental disorders, persons under 18 years old and over 
46 years old, working in harmful working environment 
were excluded from the study.

Statistical analysis

Data analysis was carried out with a Statistica 
10 software package (StatSoft, USA). Processing 
operations have included the calculation of arithmetic 
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mean values (M), standard errors of arithmetic mean 
(m), confidence intervals, and standard deviation for 
variables with normal distributions. The latter was 
verified by the Shapiro–Wilk test and by the Kolmogorov–
Smirnov test. Differences between the groups with 
normal distribution were found by means of parametric 
statistical methods and Student’s t-test for two 
unrelated groups. Linear dependence was determined 
by means of the Pearson correlation coefficient (PCC) 
for indicators with a normal distribution.

Results

The identified CAs were divided into two main 
groups: Chromosome type and chromatid type. The 
total frequency of aberrations in the surveyed population 
amounted to 126 cases and was at 1.167 ± 0.149%, 
which is 40% higher than that in the control group of 
1.011 ± 0.119%. The mean values of aberrations of 
the chromatid among respondents living in the area 
of ecological disaster zone were at 1.205 ± 0.126%. 
The frequency of chromatid-type aberrations (1.205 ± 
0.126%) also exceeded the corresponding values in 
the control group (0.655 ± 0.096%) 45%. There were 
no significant differences between the aberrations of 
chromosomal type (Figure 1).
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Figure 1: Frequency and types of chromosomal aberrations in the 
examined individuals living in the area of the Aral Sea ecological 
disaster zone (M ± m%; 95% confidence intervals). The mark 
*denotes a significant difference in relation to control numbers by 
Student’s t-test p < 0.05. Unit of measurement for all values is %

Analysis of obtained data has shown that the 
identified chromatid type of aberrations was represented 
by single fragments, whose share in the total number of 
aberrations was 59.52% (75 cases), chromatid breaks 
of 7.14% (10 cases), and deletions of 4.76% (6 cases). 
Cytogenetic disorders in the control group, mainly 
represented by the same types of CAs, as in the main 

group: Single fragments of 49% (35 cases), chromatid 
breaks of 9.8% (7 cases), deletions of 5% (4 cases).

Chromosome type aberrations were 
represented by paired fragments, whose contribution 
to the total number of aberrations was 25.39% (32 
cases), breaks on the centromere of 1.58% (2 cases), 
and translocations – is 1.58% (2 cases). In the 
control group of the chromosome type, there are also 
paired fragments of 28.16% (20 cases) of the total 
number of CAs, center breaks – 5.63% (4 cases), and 
interchromosomal translocations – 1.41% (1 case); ring 
chromosomes were not found (Table 1).

Table 1: Types of CAs in the examined individuals living in the 
area of the Aral Sea ecological disaster zone (M ± m%; 95% CI)
Indicators The studied group p

Control The main group
Aberrations of chromosomal type

Paired fragments 0.285±0.063 
(0.160–0.409)

0.428±0.075 
(0.280–0.576)

-

Breaks on the centromere 0.057±0.028 
(0.001–0.112)

0.027±0.018 
(0.009–0.045)

-

Translocation 0.014±0.013 
(0.001–0.027)

0.013±0.012 
(0.001–0.025)

-

Acentric fragment - 0.013±0.012 
(0.001–0.025)

-

Total 0.356 ± 0.071 
(0.216–0.495)

0.482 ± 0.080 
(0.325–0.639)

-

Aberrations chromatid type
Chromatid breaks 0.099 ± 0.037 

(0.025–0.173)
0.147 ± 0.044 
(0.060–0.234)

-

Single fragments 0.498 ± 0.084 
(0.333–0.663)

0.991 ± 0.114 
(0.766–1.215)

0.0006

Deletions 0.057 ± 0.028 
(0.001–0.112)

0.067 ± 0.029 
(0.008–0.125)

-

Total 0.655 ± 0.096 
(0.466–0.844)

1.205 ± 0.126 
(0.957–1.453)

0.0005

M – arithmetic means. m – standard errors. CI – confidence intervals 95%. p – significant difference in 
relation to control group by Student’s t-test. CA: Chromosomal aberration.

The research on chromosomal and chromatid 
types of aberrations in peripheral blood lymphocytes 
of patients living in the area of The Aral Sea region 
has shown a significant prevalence of chromatid 
aberrations over chromosomal, which indicates on 
the chemical mutagenesis. Thus, the total number of 
chromosomal and chromatid aberrations of people 
living in the ecological disaster zone was divided as 
follows: 71% of chromatid type of aberrations and 
29% of chromosomal type. Analyzing obtained data 
on the types of CAs may be noted that the level of 
chromatid type aberrations 42% was higher than 
the aberrations of chromosomal type (Figure 2). As 
we know from the literature, the manifestations of 
chromatid-type aberrations are typical for chemical 
mutagenesis [27], [28], [29]. The total number 
of aberrations for the control group was 65% for 
chromatid type and 35% for chromosomal. Many 
authors support the view that chromatid-type 
aberrations are formed as a result of exposure to 
mutagens and damage to the DNA molecule in the 
synthetic stage [30], [31], [32].

CAs during chemical mutagenesis often occur 
in the S phase, even when exposed to a factor at any 
stage of the cell cycle. Consequently, DNA fragments 
detached from the whole molecule will condense into 
single fragments, and not into an integral chromosome 
(Figure 3).
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Figure 3: Chromosomal aberrations in peripheral blood lymphocytes 
of persons living in the area of the Aral Sea ecological disaster zone 
(chromatid type of aberrations on the left and chromosomal type of 
aberrations on the right)

The chromatid type of aberrations indicates 
the predominantly chemical nature of genotoxic 
agents, although there are exceptions for the general 
hypothesis, according to which the entire chromosome 
changes during breaks in the pre-synthetic stage and 
double aberrations are observed; during breaks at the 
post-synthetic stage, only one chromatid changes, and 
single aberrations are observed [32], [33], [34], [35].

Assessing the effect of genotoxic of chemical 
agents (include heavy metals) on the chromosomal 
structure was performed correlation analysis between 
the level of CAs and the content of microelements in 
the blood.

Obtained results indicate significant 
chromosomal mutations in examined subjects during 

adaptation to high chemical load. Blood test for 
microelements content of people living in the disaster 
zone has shown that concentration of heavy metals in 
the blood such as plumbum, nickel, and copper, which 
have a toxic effect, exceeded control indicators for 98%, 
97%, and 41%, respectively.

Continuous chemical load also has a significant 
effect on the level of essential trace elements in the 
body of people living in the Aral Sea region. There is 
a decrease in such important trace elements such as 
selenium for 38%, zinc for 40%, and iodine – 30% in 
comparison with the control group (Table 2).

The conducted analysis has shown a 
correlation relationship between CA showings and 
the content of microelements in the blood. Correlation 
analysis showed a dependence on the total level 
of chromosome aberration from the level of nickel 
in the blood (PCC = 0.61). Based on the results of 
regression, a linear prognostic dependence model 
of total level of chromosome aberration on the nickel 
level in blood:  y (total level of chromosome aberration) 
= 0.53 + 0.54 * x (regression coefficient is R = 0.61, 
determination coefficient – R2 = 0.36, Fisher’s 
coefficient – F = 41.05, p < 0.01) was developed. Trace 
element analysis showed that the nickel level in the 
main group is higher than in the control group in 49.5%. 
The correlation between the general levels of CAs and 
the level of nickel in the blood consists of an increase 
in chromatid type aberrations (PCC = 0.56, p < 0.01), 
and precisely because of the increase in the number of 
single fragments (PCC = 0.50, p < 0.05).

Furthermore, there was revealed a correlation 
of aberrations of chromosomal type with cadmium 
(PCC = 0.29, p < 0.05); the correlation between the 
copper content in the blood and single fragments 
was revealed (PCC = 0.30, p < 0.05). A statistically 
significant inverse correlation between the zinc level in 
blood and aberrations of chromatid type was also found 
(PCC = 0.32, p < 0.05).

Discussion

Various studies on the genotoxic activity 
of chemical agents, such as heavy metals, show 
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Figure 2: Comparison of types of chromosomal aberrations in the 
examined individuals living in the area of the Aral Sea ecological 
disaster zone (M ± m%; 95% confidence intervals). The mark 
*denotes a significant difference in relation to control numbers by 
Student’s t-test p < 0.05. Unit of measurement for all values is %

Table 2: Blood trace elements content of examined subjects (main and control groups)
Indicator Reference values Control M ± m (95% CI) The main group M ± m (95% CI) p
Copper 800–1300 μg/l 966.33 ± 23.21 (919.35–1013.31) 1366.59 ± 35.65 (1294.05–1439.14) 0.01
Zinc 4000–8600 μg/l 5859.15 ± 183.45 (5250.13–5822.88) 3516.93 ± 89.93 (3333.93–3699.93) 0.01
Plumbum Under 25 μg/dl 2.38 ± 0.34 (1.69–3.07) 4.72 ± 0.39 (3.92–5.52) 0.01
Iron 309–521 mg/l 382.55 ± 11.11 (360.07–405.03) 354.31 ± 7.46 (339.16–369.49) 0.04
Cadmium 0.3–0.9 μg/dl 0.38 ± 0.02 (0.53–0.65) 0.57 ± 0.03 (0.49–0.64) -
Selenium 58–234 μg/dl 85.62 ± 5.17 (75.15–96.08) 52.88 ± 1.83 (49.15–56.61) 0.01
Nickel 1–50 μg/l 2.45 ± 0.21 (2.03–2.87) 4.85 ± 0.36 (4.11–5.61) 0.01
Manganese 1.6–75 μg/l 3.78 ± 0.37 (3.02–4.54) 4.81 ± 0.38 (4.01–5.59) -
Iodine 5–12 μg/l 7.03 ± 0.28 (6.45–7.60) 4.90 ± 0.35 (4.17–5.63) 0.01
Arsenic 0.002–3 μg/dl 1.50 ± 0.14 (1.21–1.79) 0.10 ± 0.02 (0.05–0.15) 0.01
Chromium 0.7–2.8 μg/l 1.52 ± 0.09 (1.32–1.72) 1.30 ± 0.08 (1.13–1.47) -
M – arithmetic means. m – standard errors. CI – confidence intervals 95%. p – significant difference in relation to control group by Student’s t-test.
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that these substances are capable of exhibiting 
mutagenic properties, often manifesting themselves as 
CAs [36], [37], [38], [39], [40], [41].

Considering the mechanisms of damage to 
chromosome structures, we may say that under the 
influence of various chemical agents, which include 
heavy metals, damage to the tertiary structure 
of chromosomes occurs, which leads to partial 
denaturation of DNA, when binding of divalent heavy 
metals to DNA, mutations such as transversions and 
transitions are possible. Hence, they can cause CAs, 
inducing point mutations, disrupt enzyme interactions, 
inhibiting individual enzymes.

A DNA molecule has several active centers 
that coordinate metal ions. First of all, these are oxygen 
ions of phosphate groups that carry negative charges. 
Some atoms of nitrogenous bases that enter grooves 
can also interact with metal ions. The seventh nitrogen 
atom of guanine is the most favorable position for the 
binding of positive ligands to DNA bases [38], [42].

The nature of the interaction of metal ions with 
various binding sites on the DNA molecule is determined 
by the charge of the ion and the structure of the electron 
shell of this ion. Ions of alkali (Na+, Li+, K+) and alkaline-
earth (Mg2+, Ca2+, Ba2+) metals interact mainly with 
phosphate groups of DNA. Ions of transition metal (Ni2+, 
Mn2+, Zn2+, and Cu2+) actively bind to phosphate groups 
and bases [38].

The fact of the interaction of nickel with 
nitrogenous DNA bases was revealed by fixing changes 
in the spectral properties of DNA [38].

The mechanisms of the effect of low 
concentrations of chemical factors on chromosomal 
structures have not been sufficiently studied. They can 
be direct and indirect [32], [38], [39], [43], [44].

Given all the above, there is practically no data 
about the mechanism of the formation of CAs under the 
action of heavy metal ions.

We assume that in the presence of some 
metal ions (Ni, Cd, Mn), the accuracy of DNA synthesis 
decreases; this is due to the ability of these elements 
to interact with the first nitrogen atoms through a donor-
acceptor bond (nitrogen is a donor because it has an 
unshared electron pair), which can lead to transitions, 
base loss, and point mutations.

The ions of these metals are able to form 
an ionic bond with a phosphate group, which leads 
to a rupture of the phosphodiester bond between the 
phosphoric acid residue and deoxyribose; as a result, 
single fragments can form at the metaphase stage.

The pathways for the formation of chromosomal 
mutations, when exposed to a chemical factor, may be 
different. In addition to the direct genotoxic effect of 
chemical factors exerted on DNA, heavy metals also 
activate antioxidant defense system enzymes, which 
with prolonged chemical stress, can damage cellular 

structures by oxidizing the membrane components of 
the cell.

Conclusion

To sum up, long-term chemical load in the 
ecological disaster zone of the Aral Sea causes an 
increase in CA in population, in particular, in people of 
fertile age.

Obtained results indicate significant cytogenetic 
disorders in examined subjects during adaptation to a 
high chemical load.

The level of CAs in the examined persons 
living in the ecological disaster zone of the Aral Sea was 
1.677 ± 0.149% and was in 40% significantly higher 
than in the control group (1.011 ± 0.119%).

Research findings recorded a significant 
increase of nickel by 97% in comparison with the control 
group and a decrease in vital essential trace elements 
(zinc, selenium, and iodine). Zinc level in blood was 
decreased by 40% in the main group in comparison 
with the control group.

The increased level of mutagenic load in the 
study group relative to the control is due to chemical 
mutagenesis, which is confirmed by the revealed 
chromatid-type aberration and correlation analysis.

Correlation and regression analysis 
determined that the nickel level in blood effects on the 
total level of chromosome aberration, the zinc level in 
blood and aberrations of chromatid type were in inverse 
relationships.

According to correlation analysis, an increase 
in trace elements (nickel, cadmium, and copper) in the 
blood can lead to undesirable consequences in the 
form of chromosomal abnormalities.

One of the mechanisms of the formation of CAs 
under the influence of a chemical factor may be newly 
formed atomic bonds between chemical elements 
and a DNA molecule, as a result of competition for an 
unshared pair of electrons of donor atoms of a DNA 
molecule

The current study supports the conclusion that 
at least in part some of these physiological relationships 
are potentially heightened in populations living in areas 
with significant ecological disturbances.

Any changes of trace elements and cytogenetic 
disorders reflect intoxication under long-term chemical 
load among the population in the ecological disaster 
zone of the Aral Sea region. As these changes 
characterize the toxicodynamic response of the body, 
they can be used as diagnostic parameters of high 
sensitivity, specificity, and prognostic significance.
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Thereby, the revealed CAs can be a warning 
signal about the possible genetic consequences since 
they disrupt the balance of hereditary factors, they are 
the cause of a variety of abnormalities in the structure 
and life of the organism, manifested in the chromosomal 
abnormalities, diseases and syndromes.

Human heredity and the quality of its living 
conditions determine both the state of its health and 
society as a whole.
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