

The Influence of Antibiotics Usage on Extended-spectrum β-lactamase-producing Enterobacter Colonization among Intensive **Care Unit Patients**

Wayan Suranadi¹, Dwi Fatmawati², Christopher Ryalino¹*, I Gusti Agung Gede Utara Hartawan¹, Ferdi Yanto¹

¹Department of Anesthesiology and Intensive Care, Faculty of Medicine, Udayana University, Bali, Indonesia; ²Department of Clinical Microbiology, Faculty of Medicine, Udayana University, Bali, Indonesia

Abstract

Edited by: Slavica Hristomanova-Mitkovska Citation: Suranadi W, Fatmawati D, Ryalino C, Hartawan IGAGU, Yanto F. The Influence of Antibiotics Usage on Extended-spectrum β-lactamase-producing Enterobacter Colonization among Intensive Care Unit Patients, Open Access Maced J Med Sci. 2020 Jan 25: 9(A):52-56 Jan 25; 9(A):52-56. https://doi.org/10.3889/camjms.2021.5522 Keywords: Antibiotic; Third-generation cephalosporin; Extended-spectrum beta-lactamases-producing Enterobactraicaese colonization; Intensive care unit "Correspondence: Christopher Ryalino, Department of Australia and Aust Anesthesiology and Intensive Care, Faculty of Medicine

Anesthesiology and Intensive Care, Faculty of Medicine, Udayana University, JI. PB Sudirman, Denpasar 80232, Bali, Indonesia. E-mail: ryalino@unud.ac.id Received: 20-Oct-2020 Revised: 03-Jan-2021 Accepted: 20-Jan 2021 Copyright: © 2021 Wayan Suranadi, Dwi Fatmawati, bistophor Puoling. J. Quit Auran Card

Christopher Ryalino, I Gusti Agung Gede Utara Hartawan Ferdi Yanto

Funding: This research did not receive any financial

Funding: This research did not receive any triancial support Competing Interest: The authors have declared that no competing interest exists Open Access: This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial 4.0 International License (CC BY-NC 4.0)

BACKGROUND: The prevalence of extended-spectrum beta-lactamases (ESBLs)-producing Enterobacteriaceae has increased throughout the world and is a major cause of treatment failure in intensive care unit (ICU). ESBLproducing Enterobacteriaceae exhibit resistance to cephalosporins which is one of the most commonly used and effective group of antibiotics

AIM: The goal of this study was to identify the variables that influence the colonization of Enterobacteriaceae in patients treated at ICU.

PATIENTS AND METHODS: A prospective study involving randomized 70 patients was conducted at ICU of Sanglah General Hospital from October 2018 to March 2019. Specimens were obtained from rectal swabs on admission to and discharged from ICU. Initial bivariate analysis was conducted using Pearson's Chi-square and considered significant if p <0.05. Adjusted relative risk ratio (RR) was used to estimate the influence of the variables to ESBL colonization.

RESULTS: Respiratory system dysfunction (p = 0.012, RR = 2.828) and antibiotic prescription before ICU admission (p < 0.001) influence ESBL-producing Enterobacteriaceae colonization on patient who was admitted to ICU. On discharged from ICU, ESBL colonization was associated to respiratory system dysfunction (p = 0.008, RR = 1.987), third-generation cephalosporin usage (p = 0.009, RR = 2.909), cefoperazone prescription (p < 0.001, RR = 8.471), ceftriaxone prescription (p = 0.007, RR = 6.316), and antibiotics usage duration \geq 3 days (p < 0.001, RR = 7.071). The logistic regression results on influence of antibiotics usage and respiratory system dysfunction to ESBL colonization rate shows that both variables are independent risk factor to EBLS colonization both on admitted to and discharged from ICU.

CONCLUSION: The antibiotics usage and respiratory system dysfunction are independent risk factors to EBLS colonization in ICU patients.

Introduction

Extended-spectrum β-lactamases (ESBLs) are bacterial enzymes which are produced to confer resistance to broad range of extended-spectrum β -lactam antibiotics. The ESBLs hydrolyze extended-spectrum cephalosporins. First reports of ESBLs were in the mid-1980s and mostly Klebsiella pneumoniae and Escherichia coli [1]. In 2013, the Centers for Disease Control and Prevention reported an increasing resistance which included 26,000 ESBL-producing Enterobacteriaceae infections and 1700 deaths in the United States [2], [3].

Colonization of intensive care unit (ICU) patients with ESBL-producing Enterobacteriaceae on admission has an impact on poorer outcome and increasing mortality. A study in Egypt showed that 33% of the patients admitted to ICU were colonized with ESBL on one or more swab sites. The prevalence of ESBLproducing Enterobacteriaceae found in ICU patients rectal swabs varies throughout the world, 2.25% in the United States, 15% in France, 28.2% in South Korea,

and 65% in India out of which 56% were ESBL-producing E. coli and 43% Klebsiella spp. [1], [4], [5].

Risk factors for infection with ESBL-producing organisms are prolonged antibiotic usage, prolonged treatment at ICU, recent invasive procedures, pressure ulcer, anemia, and permanent urinary catheter. Effective and rational usage of antibiotics in ICUs is important for the prevention of the development of antibiotic resistance [5], [6], [7]. The goal of this study was to identify the variables that influence the colonization of Enterobacteriaceae in patients treated at ICU. For the purpose of this study, Enterobacteriaceae are limited to K. pneumoniae and E. coli.

Patients and Methods

We conducted a prospective cohort study which was approved by the Ethical Committee of Sanglah General Hospital from October 1, 2018, until March 31, 2019. Rectal swabs were collected from 70 randomized, adult patients who fulfilled the inclusion and exclusion criteria and willing to sign the informed consent when patients were admitted and discharged from ICU. Inclusion criteria included newly admitted ICU patients aged >18 years old who agreed to follow the study protocol after receiving consent to be included in this study. Exclusion criteria included those with known history of allergy to certain antibiotics and those who were treated at the ICU for <48 h.

Rectal swab specimens were put in transport medium and delivered to the Department of Clinical Microbiology of Sanglah General Hospital to be inoculated in MacConkey medium. After being incubated in 5% CO_2 for 18–24 h, the species were identified and susceptibility was tested using Vitek 2 Compact (BioMerieux, France).

We collected data regarding the study subject's previous antibiotics exposures (type and duration), coexisting conditions, invasive procedures, and other hospitalization-related and demographic information. Categorical variables were presented in percentage while numeric variables were presented in mean ± deviation standard (SD).

Initial bivariate analysis was conducted using χ^2 (Pearson's Chi-square) and considered significant if p < 0.05. Adjusted relative risk ratio (RR) was used to estimate the influence of the variables to ESBL colonization occurrence rate on the patient who was admitted or discharged from ICU. Statistical analysis was performed using SPSS software (IBM Corp. Released 2013. IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.).

Results

Table 1 shows the general characteristics of the patients. The mean age of the patients was 45.7 \pm 17.75 years old, and 82.8% were adult (18–64 years old), with length of ICU stay for 6.35 \pm 4.01 days. There were 57.1% of male patients with 61.4% of total patients were from Sanglah General Hospital inward patients. Most patients were exposed to ceftriaxone on admission to ICU. ESBL colonization increased during ICU stay from 25.7% at admission to 50% when patients were discharged from ICU (Table 2). The mortality rate was 22.9% (16 patients).

Our study shows that ICU stay causes an increase on ESBL-producing *Enterobacteriaceae* colonization rate from 25.7% (18 patients) at admission to 50% (35 patients) on ICU discharge with p = 0.003 (p < 0.05) and relative risk of 1.994, with a 95% confidence interval of 1.225–3.086 (Table 3). The study also finds that respiratory system dysfunction (p = 0.012,

Table 1: General characteristic

Variable	n = 70
Age (years), mean ± SD	45.7 ± 17.75
18–64 years old, n (%)	58 (82.8)
≥65 years old, n (%)	12 (17.2)
Length of stay (days), mean ± SD	6.35 ± 4.01
Sex	
Male, n (%)	40 (57.1)
Female, n (%)	30 (42.9)
Previously treated at	
Other hospital, n (%)	27 (38.6)
Ward, n (%)	43 (61.4)

RR = 2.828) and antibiotic prescription before ICU admission (p < 0.001) influence ESBL-producing *Enterobacteriaceae* colonization on patient who was admitted to ICU (Table 4).

Table 2: Patient characteristic when admitted to and discharge from ICU

Admitted to ICU 42 (60)	Discharge from ICU 38 (54.3)
()	38 (54.3)
()	38 (54.3)
10 (14.3)	17 (24.3)
13 (18.6)	12 (17.1)
5 (7.1)	3 (4.3)
51 (72.9)	21 (30)
19 (27.1)	49 (70)
	16 (22.9)
	54 (77.1)
18 (25.7)	35 (50)
52 (74.3)	35 (50)
	13 (18.6) 5 (7.1) 51 (72.9) 19 (27.1) 18 (25.7)

On discharged from ICU (Table 5), we found that ESBL colonization was associated to respiratory system dysfunction (p = 0.008, RR = 1.987), third-generation cephalosporin usage (p = 0.009, RR = 2.909), cefoperazone prescription (p < 0.001, RR = 8.471), ceftriaxone prescription (p = 0.007, RR = 6.316), and antibiotics usage duration ≥3 days (p < 0.001, RR = 7.071).

 Table 3: Comparative analysis of ESBLs colonization on admission and discharge from ICU

Variable	ESBL	ESBL		RR 95% CI	
	Positive	Negative			
ESBL					
Admission	35 (50)	35 (50)	0.003	1.994 (1.225-3.086)	
Discharge	18 (25.7)	52 (74.3)			
ESBLs: Extended-spectrum beta-lactamases, ICU: Intensive care unit, RR: Risk ratio, CI: Confidence					

ESBLS: Extended-spectrum beta-lactamases, ICU: Intensive care unit, RR: Risk ratio, CI: Confidence interval.

The logistic regression results on influence of antibiotics usage and respiratory system dysfunction to ESBL colonization rate shows that both variables are independent risk factor to EBLS colonization both on admitted to and discharged from ICU (Table 6).

Discussion

In this study, we identified and compared the ESBL-producing *Enterobacteriaceae* colonization on patients who were admitted and discharged from the ICU. Positive ESBL-producing *Enterobacteriaceae* colonization was found on 18 patients (25.7%) when

admitted to ICU. The number was increased to 35 patients (74.3%) on discharge. Thus, we found that antibiotics usage in critically ill patients was strongly associated to ESBL-producing *Enterobacteriaceae* colonization. The result was in line with a study by Harris *et al.* [8] which found 23 patients (23.7%) from a total of 97 patients became ESBL-producing *Enterobacteriaceae* carriers during ICUs stay. Young *et al.* [9] also observed similar results on his study in Singapore and concluded that ICUs stay was the risk factor of ESBL-producing *Enterobacteriaceae* colonization.

Table 4: Variables of ESBL	colonization on IC	U admission
		0 44111331011

Variable (n, %)			p value	RR (95% CI)
	Positive	Negative	•	
Sex				
Male	9 (22.5)	31 (77.5)	0.477	0.750
Female	9 (30)	21 (70)		(0.339-1.65
Age				
Adult	14 (24.6)	43 (75.4)	0.644	0.798
Geriatric	4 (30.8)	9 (69.2)		(0.314-2.03
Central nervous system dysfunction	. ,	. ,		(
Present	10 (22.2)	35 (77.8)	0.370	0.694
Absent	8 (32)	17 (68)		(0.315-1.53
Respiratory system dysfunction	- (-)	()		(0.010 1.00
Present	12 (41.4)	17 (58.6)	0.012	2.828
Absent	6 (14.6)	35 (85.4)		(1.200-6.66
Cardiovascular system dysfunction	. (,
Present	9 (26.5)	25 (73.5)	0.888	1.059
Absent	9 (25)	27 (75)	5.000	(0.478-2.34
Gastrointestinal system dysfunction	- (=0)	()		(0.470-2.04
Present	7 (38.9)	11 (61.1)	0.138	1.838
Absent	11 (21.2)	41 (78.8)	5.100	(0.841-4.01
Urogenital system dysfunction	(22)	(10.0)		(0.041-4.01
Present	5 (31.3)	11 (68.7)	0.564	1.298
Absent	13 (24.1)	41 (75.9)	0.004	
Musculoskeletal system dysfunction	13 (24.1)			(0.545–3.09
Present	3 (16 7)	15 (83 2)	0.578	0.308
Absent	3 (16.7) 15 (28.8)	15 (83.3) 37 (71.2)	0.070	
	13 (20.0)	57 (71.2)		(0.189–1.76
Endocrine system dysfunction Present	5 (50)	5 (50)	0.058	2.308
Absent	5 (50) 13 (21.7)	5 (50) 47 (78.3)	0.000	
	13 (21.7)	41 (10.3)		(1.053–5.05
Malignancy Present	E (20.4)	10 (70.0)	0.690	1 100
Absent	5 (29.4)	12 (70.6)	0.689	1.199
	13 (24.5)	40 (75.5)		(0.500-2.87
Immune system dysfunction	0 (0)	E (100)	0.470	1 202
Present	0 (0)	5 (100)	0.172	1.383
Absent	18 (27.7)	47 (72.3)		(1.190–1.60
Corticosteroid usage	1 (00.0)	a (aa =)	0 507	1.001
Present	4 (33.3)	8 (66.7)	0.507	1.381
Absent	14 (24.1)	44 (75.9)		(0.505-3.46
Antibiotics				
Cephalosporin	16 (30.8)	36 (69.2)	0.100	2.769 (0.705
Non-cephalosporin	2 (11.1)	16 (88.9)		10.885)
Antibiotics prescription before ICU ac				
Ceftriaxone	9 (21.4)	33 (78.6)	0.001	
Cefoperazone	7 (70)	3 (30)		
Cefazolin	0 (0)	13 (100)		
Others	2 (40)	3 (60)		
Antibiotics usage duration				
≥3 days	10 (37.0)	17 (63)	0.086	1.991
<3 days	8 (18.6)	35 (81.4)		(0.899-4.410

Some statistically significant correlations could be observed in our study as the risk factor of ESBL-producing *Enterobacteriaceae* colonization in ICU patients. The previous studies throughout the world also demonstrated the increment of ESBL-producing *Enterobacteriaceae* colonization associated to cephalosporin usage [9], [10], [11]. A study in Croatia showed that ceftriaxone use was significantly correlated with ESBL occurrence (p < 0.05) and concluded that ceftriaxone derestriction increased the occurrence of ESBLs and the utilization of carbapemens [12].

Antibiotic usage with duration >3 days increases the risk of ESBL-producing *Enterobacteriaceae*

Table 5: Variables of ESBL colonization on ICU discharge

Variable	ESBL cole Positive	Negative	p-value	RR 95% CI		
Sex	00 ()	10 (17)		4 000 (0 770 0 00)		
Male	22 (55)	18 (45)	0.334	1.269 (0.773–2.084)		
Female	13 (43.3)	17 (56.7)				
Age Adult	28 (40 1)	29 (50.9)	0.759	0.912 (0.517–1.611)		
Geriatric	7 (53.8)	6 (46.2)	0.700	0.012 (0.011 1.011)		
Central nervous system dysfund						
Present		18 (41.9)	0.086	1.570 (0.903-2.730)		
Absent	10 (37.0)	17 (63)				
Respiratory system dysfunction						
Present		14 (35.9)	0.008	1.987 (1.133–3.484)		
Absent Cardiovascular system dysfunct	· · ·	21 (67.7)				
Present		14 (45.2)	0.470	1.188 (0.746–1.893)		
Absent		21 (53.8)	0.470	1.100 (0.140 1.000)		
Gastrointestinal system dysfund		· · · ·				
Present	10 (52.6)	9 (47.4)	0.788	1.074 (0.645–1.788)		
Absent	25 (49.0)	26 (51)				
Urogenital system dysfunction	0 (52.0)	0 (47 4)	0 700	1 070 (0 630 1 005)		
Present Absent	9 (52.9) 26 (49.0)	8 (47.1) 27 (51)	0.780	1.079 (0.638–1.825)		
Musculoskeletal system dysfund	, ,	27 (01)				
Present	9 (69.2)	4 (30.8)	0.124	1.518 (0.958–2.404)		
Absent	26 (89.7)			,		
Endocrine system dysfunction						
Present	5 (45.5)	6 (54.5)	0.743	0.894 (0.757–1.958)		
Absent	30 (50.8)	29 (49.2)				
Malignancy Present	12 (57.1)	0 (42 0)	0.434	1 217 (0 757 1 059)		
Absent		9 (42.9) 26 (53.1)	0.434	1.217 (0.757–1.958)		
Immune system dysfunction	20 (40.0)	20 (00.1)				
Present	2 (66.7)	1 (33.3)	0.555	1.354 (0.587-3.124)		
Absent	33 (49.3)	34 (50.7)				
Corticosteroid usage						
Present	7 (70)	3 (30)	0.172	1.500 (0.921–2.433)		
Absent Central venous catheter usage	28 (46.7)	32 (53.3)				
Present	20 (58 8)	14 (41.2)	0.151	1.412 (0.880–2.280)		
Absent	, ,	21 (58.3)	0.101	1.412 (0.000 2.200)		
Endotracheal tube usage	,	_ (()))				
Present	29 (49.2)	30 (50.8)	0.743	0.901 (0.495-1.640)		
Absent	6 (54.5)	5 (45.6)				
Peripheral intravenous line						
Present		34 (52.7)	0.164	0.596 (0.359–0.990)		
Absent	4 (80)	1 (20)				
Nasogastric tube Present	32 (53 3)	28 (46.7)	0.172	1.778 (0.670–4.717)		
Absent	3 (30)	7 (70)	0.172	1.776 (0.070-4.717)		
Hemodialysis	0 (00)	. ()				
Present	4 (66.7)	2 (33.3)	0.393	1.376 (0.741–2.558)		
Absent		33 (51.6)				
Mechanical ventilator	- (-)					
Present	12 (63.2)		0.179	1.400 (0.886-2.214)		
Absent	```	28 (54.9)				
Third-generation cephalosporin				//		
Yes		23 (41.8)	0.009	2.909 (1.032-8.203)		
No Antibiotico ucono in ICI I	3 (20)	12 (00)				
Antibiotics usage in ICU Ceftriaxone	20 (52 8)	18 (47.4)	0.007	6.316 (0.944–42.252)		
Cefoperazone	12 (70.6)		< 0.001	8.471 (1.265–56.715)		
Cefazolin	1 (8.3)	3 (29.4) 11 (91.7)	-	-		
Others	2 (66.7)	1 (33.3)	0.024	8.000 (1.040–61.525)		
Antibiotics usage duration	- (- 0)	()				
≥3 days	33 (67.3)	16 (32.7)	< 0.001	7.071 (1.865–26.807)		
<3 days	2 (9.5)	19 (90.5)				
ESBL: Extended-spectrum beta-lactar	nase, ICU: Int	ensive care uni	t, RR: Risk	ratio, CI: Confidence		

ESBL: Extended-spectrum beta-lactamase, ICU: Intensive care unit, RR: Risk ratio, CI: Confidence interval.

colonization rate 7-fold higher (p < 0.001, RR = 7.071). Patients with respiratory system dysfunction are also at increasing risk to be carriers (p = 0.008, RR = 1.987). It may be associated to the third-generation cephalosporin usage such as cefoperazone and ceftriaxone as empirical antibiotic to treat pneumonia. An observational

Table 6: Results of logistic regression on influence of antibiotics usage and respiratory system dysfunction to ESBL colonization rate

ESBL colonization	Variables tested	p-value	RR 95% CI	
ESBL on admission	Antibiotics usage	0.062	4.895 (0.926-25.885)	
	Respiratory system dysfunction	0.008	5.056 (1.529-16.712)	
ESBL on discharge	Antibiotics usage	0.018	5.606 (1.342-23.425)	
	Respiratory system dysfunction	0.013	3.773 (1.322-10.769)	
ESBL: Extended-spectrum beta-lactamase, RR: Risk ratio, CI: Confidence interval.				

multicenter study in France showed similar result with a significant correlation between ESBL-producing *Enterobacteriaceae* colonization and respiratory system dysfunction (p < 0.01), urogenital system dysfunction (p < 0.01), endocrine system dysfunction (p < 0.01), and immune system dysfunction (p < 0.01). Our study, however, reported significant correlation only on patients with respiratory system dysfunction [13].

In our study, invasive procedure variable analysis shows no significant correlation to ESBLproducing Enterobacteriaceae colonization with central venous catheter usage (p = 0.151), endotracheal intubation (p = 0.743), peripheral IV line (p = 0.164), nasogastric tube placement (p = 0.172), hemodialysis (p = 0.393), and mechanical ventilator (p = 0.179). The previous literatures showed various results in correlation with invasive procedure. Kawano et al. [14] and Repesse et al. [15] showed that mechanical ventilator (p = 0.476) and p = 0.1, respectively) had no statistically significant correlation to ESBL-producing Enterobacteriaceae colonization incidence. Another study, however, showed a different result that invasive procedure had strong correlation to ESBL-producing Enterobacteriaceae colonization with central venous catheters (p < 0.01), hemodialysis (p < 0.01), and mechanical ventilator (p< 0.01). The different result may be caused by the brief utilization of the invasive tools [13], [14], [15]. Further studies with larger sample size would help demonstrate the relationship of invasive procedure and ESBLproducing Enterobacteriaceae colonization.

Some limitations in our study included the fact that we collected no environmental sample that could cause ESBL-producing *Enterobacteriaceae* colonization by direct contact. The study was carried out only in ICU patients and no subsequent observations of morbidity and mortality were done after the patients were discharged from ICU.

Conclusion

The antibiotics usage and respiratory system dysfunction are independent risk factors to EBLS colonization in ICU patients.

References

- Mulki SS, Ramamurthy K, Bhat S. Fecal carriage of extendedspectrum beta-lactamase-producing *Enterobacteriaceae* in intensive care unit patients. Indian J Crit Care Med. 2017;21(8):525-7. https://doi.org/10.4103/ijccm.ijccm_112_17 PMid:28904483
- 2. Suranadi IW, Fatmawati NN, Aryabiantara IW, Sinardja CD,

Saputra DJ. *Acinetobacter baumannii* is an opportunistic pathogen as an MDRO in ICU. Bali J Anesthesiol. 2019;3(2):150-3. https://doi.org/10.15562/bjoa.v3i2.199

- McDanel J, Schweizer M, Crabb V. Incidence of extendedspectrum β-lactamase (ESBL)-producing *Escherichia coli* and *Klebsiella* infections in the United States: A systematic literature review. Infect Control Hosp Epidemiol. 2017;38(10):1209-15. https://doi.org/10.1017/ice.2017.156
 PMid:28758612
- Fouda R, Soliman MS, ElAnany MG, Abadeer M, Soliman G. Prevalence and risk factors of MRSA, ESBL, and MDR bacterial colonization upon admission to an Egyptian medical ICU. J Infect Dev Ctries. 2016;10(4):329-36. https://doi.org/10.3855/ jidc.6798

PMid:27130993

- Drinka P, Niederman MS, El-Solh AA, Crnich CJ. Assessment of risk factors for multi-drug resistant organisms to guide empiric antibiotic selection in long term care: A dilemma. J Am Med Dir Assoc. 2011;12(5):321-5. https://doi.org/10.1016/j. jamda.2010.06.012 PMid:21450192
- Kalluru S, Eggers S, Barker A, Shirley D, Sethi AK, Sengupta S, et al. Risk factors for infection with multidrug-resistant organisms in Haryana, India. Am J Infect Control. 2018;46(3):341-5. https:// doi.org/10.1016/j.ajic.2017.08.021 PMid:29102426
- Singh N, Pattnaik D, Neogi DK, Jena J, Malick B. Prevalence of ESBL in *Escherichia coli* isolates among ICU patients in a tertiary care hospital. J Clin Diagn Res. 2016;10(9):DC19-22. https://doi.org/10.7860/jcdr/2016/21260.8544
 PMid:27790433
- Harris AD, Kotetishvili M, Shurland S, Johnson JA, Morris JG, Nemoy LL, *et al*. How important is patient-to-patient transmission in extended-spectrum β-lactamase *Eschericia coli* acquisition. Am J Infect Control. 2007;35(2):97-101. https://doi. org/10.1016/j.ajic.2006.09.011 PMid:17327188
- Young BE, Lye DC, Krishnan P, Chan SP, Leo YS. A prospective observational study of the prevalence and risk factors for colonization by antibiotic resistant bacteria in patients at admission to hospital in Singapore. BMC Infect Dis. 2014;14(1):298. https://doi.org/10.1186/1471-2334-14-298 PMid:24889720
- Hamprecht A, Rohde AM, Behnke M, Feihl S, Gastmeier P, Gebhardt F, et al. Colonization with third-generation cephalosporin-resistant *Enterobactericeae* on hospital admission: Prevalence an risk factors. J Antimicrob Chemother. 2016;71(10):2957-63. https://doi.org/10.1093/jac/dkw216 PMid:27317445
- Bilavsky E, Temkin E, Lerman Y, Rabinovich A, Salomon J, Lawrence C, *et al.* Risk factors for colonization with extendedspectrum beta-lactamase-producing *Enterobacteriaceae* on admission to rehabilitation centres. Clin Microbiol Infect. 2014;20(11):O804-10. https://doi.org/10.1111/1469-0691.12633 PMid:24674024
- Skrlin J, Vrca VB, Marusic S, Ciric-Crncec MC, Mayer L. Impact of ceftriaxone de-restriction on the occurrence of ESBL-positive bacterial strains and antibiotic consumption. J Chemother. 2011;23(6):341-4. https://doi.org/10.1179/joc.2011.23.6.341 PMid:22233817
- Barbier F, Pommier C, Essaied W, Garrouste-Orgeas M, Schwebel C, Ruckly S, *et al.* Colonization and infection with extended-spectrum β-lactamase-producing *Enterobacteriaceae* in ICU patients: What impact on outcomes and carbapenem exposure? J Antimicrob Chemother. 2016;71(4):1088-97. https://doi.org/10.1093/jac/dkv423

PMid:26755492

- Kawano Y, Nishida T, Togawa A, Irie Y, Hoshino K, Matsumoto N, et al. Surveillance of extended-spectrum β-lactamaseproducing Enterobacteriaceae carriage in a Japanese intensive care unit: A retrospective analysis. Korean J Crit Care Med. 2016;31(4):317-23. https://doi.org/10.4266/kjccm.2016.00703
- Repesse X, Artiguenave M, Paktoris-Papine S, Espinasse F, Dinh A, Charron C, *et al.* Epidemiology of extended-spectrum beta-lactamase-producing *Enterobactericeae* in an intensive care unit with no single rooms. Ann Intensive Care. 2017;7(1):73. https://doi.org/10.1186/s13613-017-0295-0 PMid:28674848