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Abstract
BACKGROUND: Ichthyosis vulgaris is the most common type of Mendelian disorders of cornification, caused by 
loss-of-function mutations in the gene encoding epidermal protein filaggrin (FLG), namely R501X and 2282del4. 
FLG 2282del4 mutation in heterozygotes is incompletely penetrant. Polymorphisms in one-carbon metabolism genes 
could be associated with clinical manifestation of ichthyosis vulgaris.

AIM: The purpose of the present study was to analyze the effects of MTHFR, MTR, and MTRR polymorphisms in 
patients with ichthyosis vulgaris.

METHODS: Thirty-one patients with ichthyosis vulgaris, 7 their FLG heterozygous relatives without symptoms of 
disorder, and 150 healthy controls were enrolled in the study. FLG null mutations — R501X (rs61816761) and 
2282del4 (rs558269137)  — and one-carbon metabolism gene polymorphisms — MTHFR C677T (rs1801133), 
MTHFR A1298C (rs1801131), MTR A2756G (rs1805087), and MTRR A66G (rs1801394) — were analyzed by a 
polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay.

RESULTS: Among patients with ichthyosis, heterozygous for FLG 2282 del4 mutation, the distributions of 
genotypes for folate metabolism genes were: MTHFR C677T CC:CT:TT —29.4%:70.6%:0.0%; MTHFR A1298C 
AA:AC:CC — 52.9%:47.1%:0.0%; MTR A2756G AA:AG:GG — 70.3%:23.5%:5.9%; and MTRR A66G AA:AG:GG 
— 23.4%:52.9%:23.5%. The frequencies of MTR 2756AA and MTRR 66GG genotypes were 1.4–1.6 times higher 
in affected individuals heterozygous for 2282del4 than in patients with other FLG genotypes. In affected 2282del4 
heterozygotes, the frequency of MTR 2756AA genotype was 1.6 times greater than in healthy controls (p < 0.01). The 
strongest association was found between MTHFR 677CT/MTHFR 1298AA/MTR 2756AA/MTRR 66AG genotype 
and ichthyosis — odds ratio (OR)=11.23 (95% confidence interval 2.51−50.21, p = 0.002).

CONCLUSIONS: Various genotypes of one-carbon metabolism genes increase the risk of ichthyosis in 
heterozygotes for the FLG 2282del4 mutation (OR 2.80–11.23). The most probable predisposing genotype is 
677CT/1298AA/2756AA+AG/66AG.
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Introduction

One of the largest groups of skin and 
subcutaneous tissue diseases is genodermatoses, which 
includes disorders of keratinization such as ichthyoses [1]. 
The prevalence of ichthyosis vulgaris (Q 80.0, OMIM 
146700), which is regarded as the most common type 
of the disease, varies across countries [2], [3]. Ichthyosis 
vulgaris is caused by loss-of-function mutations in the 
gene encoding crucial epidermal protein filaggrin (FLG, 
1q21.3, OMIM 135940). Lack of filaggrin results in 
keratin filament disorganization, abnormal architecture 
of lipid matrix, scaling, dry skin condition, and impaired 
skin barrier function [3], [4], [5], [6], [7].

Segregation analysis of ichthyosis vulgaris 
confirmed a monogenic (Mendelian) autosomal 
semidominant mode of inheritance and its association 
with FLG null mutations [8]. In populations of European 
ancestry, two most common mutations are 2282del4 
(rs558269137) and R501X (rs61816761) [7]. Despite 
the fact that in heterozygotes, penetrance of the 
mutations ranges from 73% for 2282del4 to 96% for 
R501X [7], [9], any explanation of the difference between 
the frequencies of homo- and heterozygotes for FLG null 
mutations (13.0%) and prevalence of ichthyosis (1.3%) 
has not been proposed yet [2], [7], [10]. At the same 
time, epigenetic studies of eczema and atopic dermatitis 
demonstrated that the risk of the diseases is associated 
with methylation level of FLG gene [11], [12], [13]. It 
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might indicate the role of one-carbon metabolism in the 
regulation of FLG gene expression [1], [14].

Our previous research has shown that carriers 
of FLG 2282del4 mutation, who were heterozygous 
for C677T polymorphism in the MTHFR gene 
(1p36.22, OMIM 607093), were 7 times as likely to 
develop ichthyosis as subjects with wild-type 677CC 
genotype [15]. It was also found that an elevated plasma 
homocysteine level impaired not only the metabolism of 
sulfur-containing amino acids, methionine, and cysteine, 
but also keratin molecules [16], [17], [18] that might 
exacerbate the effects of FLG null mutations. Every of 
single nucleotide polymorphisms (SNPs) of one-carbon 
metabolism genes — MTHFR C677T (rs1801133) and 
A1298C (rs1801131), MTR A2756G (rs1805087) and 
MTRR A66G (rs1801394) — are associated with plasma 
homocysteine level [19], [20]. The only significant model 
for hyperhomocysteinemia is a four-locus model that 
includes SNPs of MTHFR, MTR, and MTRR [21].

Therefore, one-carbon metabolism genes 
could be considered as candidate regulatory genes of 
network for keratinization.

The aim of the present study was to analyze 
the effects of MTHFR, MTR, and MTRR gene 
polymorphisms in patients with ichthyosis vulgaris.

Materials and Methods

Patients with ichthyosis vulgaris were 
recruited from the Regional Clinical Dermatological and 
Venereological Dispensary no. 1 and dermatological and 
venereological dispensaries of Kharkiv region, Ukraine. 
Genomic DNA was isolated from blood samples of 31 
patients with ichthyosis vulgaris and 7 their first-degree 
relatives without ichthyosis using salting-out method. The 
detection of FLG null mutations (R501X and 2282del4) and 
one-carbon metabolism gene polymorphisms (MTHFR 
C677T, MTHFR A1298C, MTR A2756G, and MTRR A66G) 
was performed by polymerase chain reaction-restriction 
fragment length polymorphism (PCR-RFLP) assay with 
optimal primers (Metabion, Germany). The PCR products 
were digested with HinfI, MboII, HaeIII, and NdeI restriction 
endonucleases (Thermo Fisher Scientific, USA) [22], [23], 
[24], [25], [26], [27]. The digested PCR products were 
separated on 2.5% agarose gel (Amresco, USA).

The normality of distribution of continuous 
variables was tested by Shapiro–Wilk test. Correlations 
between groups were assessed by Pearson and 
Spearman correlation. The genotype frequencies were 
analyzed using Fisher’s angular transformation. When 
multiple hypothesis tests were performed, a Bonferroni 
corrected p-value was used.

Differences in variables were statistically 
analyzed with Chi-square test with the values predicted 

by the assumption of Hardy–Weinberg equilibrium. Odds 
ratios (ORs) with 95% confidence interval (CI) were 
used to evaluate the association between one-carbon 
metabolism gene polymorphisms and risk of ichthyosis 
vulgaris.

All data analyses were performed using 
Statistica Basic Academic (version 13.3, TIBCO Software 
Inc., Palo Alto, CA, USA). The linkage disequilibrium 
(LD) parameters D’ and r2 were estimated and haplotype 
block analyses were performed in Haploview (version 
4.2, Broad Institute, Cambridge, MA, USA).

Informed consent was obtained from all 
individuals involved in the study. The research was 
carried out in accordance with the basic bioethical 
principles of the World Medical Association’s Declaration 
of Helsinki (2000, as amended in 2008), the Universal 
Declaration on Bioethics and Human Rights (1997), 
and the Convention on Human Rights and Biomedicine 
of the Council of Europe (1997). All procedures were 
approved by the local Ethics Committee of Kharkiv 
National Medical University.

Results

The results of a literature-based analysis of 
the geographical distribution of the MTHFR A1298C, 
MTR A2756G, and MTRR A66G alleles and genotypes 
frequencies in the northern hemisphere are reported in 
Table 1. The negative correlation was observed between 
latitude and frequency of MTRR 66АG genotype (Pearson 
r = -0.6523, p = 0.041). Previously, we found a negative 
relationship between the latitude and frequencies of 
MTHFR 677T allele and MTHFR 677CT genotype [53].

The geographic distribution of alleles and 
genotypes frequencies of one-carbon metabolism 
gene polymorphisms was also compared to plasma 
homocysteine levels across Europe using data provided 
in the related studies [52]. Homocysteine concentrations 
showed positive correlations with the frequencies 
of MTR 2756A allele and MTR 2756AA genotype 
(Pearson r = 0.689, p = 0.040 and Pearson r = 0.751, 
p = 0.020, respectively), and negative correlations with 
the frequencies of MTR 2756G allele and MTRR 66GG 
genotype (Pearson r = -0.737, p = 0.024 and r = -0.771, 
p = 0.015, respectively).

Based on our data, the penetrance of ichthyosis 
vulgaris in individuals with 2282del4/2282del4, 
2282del4/R501X, and R501X/wt FLG genotypes would 
be considered a complete one, but in individuals with 
2282del4/wt genotype, it was estimated at 67%.

The allele and genotype frequencies of one-
carbon metabolism polymorphisms in patients with 
ichthyosis vulgaris and their relatives from Kharkiv 
region are reported in Table 2. Significant deviation from 
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Hardy–Weinberg equilibrium was detected for the MTHFR 
C677T genotypes in patients with ichthyosis vulgaris.

The frequencies of MTR 2756AA genotype 
and MTRR 66GG genotype were 1.4–1.6 times higher 
in affected individuals heterozygous for 2282del4 than 
in patients with other FLG genotypes (Table  2). In 
2282del4 heterozygotes, the frequency of MTR 2756AA 
genotype in affected individuals was 1.6 times greater 
than in unaffected ones, but the frequency of MTRR 
66GG genotype in the first group was 1.8 times lower 
than in the second one (Table 2). In affected 2282del4 
heterozygotes, the frequency of MTR 2756AA genotype 
was 1.6 times greater than in healthy controls (Table 2).

To estimate the association between 
polymorphisms in one-carbon metabolism genes 
and ichthyosis vulgaris manifestation in individuals 
with 2282del4/wt genotype, we calculated OR for the 
different disease models representing from one to four 
variants of folate metabolism genes. Table  3 shows 
the only statistically significant results. In single-locus 
models, MTHFR C677T polymorphism was significantly 
associated with ichthyosis vulgaris in the overdominant 
genetic model (OR 3.600, 95% CI 1.207−10.712, 

p = 0.032). In two-locus models, a significant increase 
in disease manifestation was associated with MTHFR 
677CT/MTHFR 1298AA + AC (OR 4.393; 95% CI 
1.468−13.139, p = 0.008) and MTHFR 677CT/MTR 
2756AA genotypes (OR 4.239, 95% CI 1.495−12.018, p = 
0.007). The best three-locus model was one representing 
heterozygosity for polymorphisms MTHFR C677T and 
MTRR A66G, and homozygosity for the MTHFR A1298C 
polymorphism (OR 7.636, 95% CI 2.338−24.943, p = 
0.001). The strongest association was found between 
MTHFR 677CT/MTHFR 1298AA/MTR 2756AA/MTRR 
66AG genotype and ichthyosis (OR 11.231, 95% CI 
2.512−50.209, p = 0.002). These results suggest that for 
the heterozygotes for FLG 2282del4 mutation the best 
model of clinical manifestation of ichthyosis is a four-
locus model for folate metabolism genes.

The MTHFR 677CT/MTHFR 1298AA/MTR 
2756AA+AG/MTRR 66AG genotype is most likely genotype 
associated with manifestation of ichthyosis vulgaris.

The MTHFR, MTR, and FLG genes are 
located on the chromosome 1, so LD might underlie this 
association. In individuals with FLG mutations, two LD 
blocks were revealed (Figure 1). The first one consisted 

Table 1: Geographic distribution of genotype and allele frequencies of one‑carbon metabolism single nucleotide polymorphisms 
in Europe
Country MTHFR MTR MTRR Source

С677Т A1298С A2756G A66G
Genotype Allele Genotype Allele Genotype Allele Genotype Allele
СС СТ ТТ С Т AA AС СС A С AA AG GG A G AA AG GG A G

Scotland 48.7 41.4 9.9 69.4 30.6 46.5 43.3 10.2 68.2 31.9 65.5 31.5 3.0 81.3 18.7 19.6 47.8 32.6 43.5 56.5 [28], [29]
Denmark 50.3 41.4 8.3 71.0 29.0 46.0 41.3 12.7 66.7 33.3 62.6 33.5 3.9 79.3 21.4 37.6 43.2 19.3 59.2 40.9 [30], [31], 

[32]
England 46.2 42.7 11.1 67.6 32.4 47.8 40.2 12.0 67.9 32.1 63.8 32.3 3.9 80.0 20.0 37.1 47.2 15.6 60.8 39.3 [32], [33]
Ireland 46.4 43.6 10.0 68.2 31.8 49.4 41.8 8.8 70.3 29.7 63.7 32.0 4.3 79.7 20.3 37.4 46.6 16.0 60.7 39.3 [34], [35], 

[36]
Poland 49.5 42.8 7.8 70.9 29.2 43.7 46.2 10.0 66.9 33.2 65.8 30.8 3.3 81.3 18.8 27.5 46.7 25.8 50.8 49.2 [37], [38], 

[39]
Germany 48.7 40.8 10.6 69.0 31.0 50.0 42.0 8.0 71.0 29.0 62.3 34.0 3.8 79.3 20.8 17.7 53.6 28.8 4.44 55.6 [40], [41], 

[42]
France 37.6 52.6 9.8 63.9 36.1 51.5 40.9 7.6 72.0 28.0 66.2 30.0 3.9 81.1 18.9 28.7 50.7 20.6 54.1 46.0 [34], [43], 

[44]
Austria 43.0 43.5 13.5 64.7 35.3 48.2 41.6 10.2 69.0 31.0 — — — — — 19.8 50.3 30.0 45.0 55.1 [45], [46]
Croatia 46.1 44.7 9.2 68.4 31.6 46.7 42.7 10.7 68.0 32.0 61.7 34.0 4.3 78.7 21.3 24.7 47.7 27.7 48.5 51.5 [47], [48]
Italy 29.0 54.8 16.1 56.5 43.6 47.7 35.5 16.8 65.5 34.5 67.5 29.2 3.3 82.1 17.9 26.3 52.5 21.2 52.5 47.5 [34], [49], 

[50], [51]
r 0.754 −0.717 −0.643 0.648 −0.648 −0.210 0.501 −0.335 0.107 −0.098 −0.281 0.334 −0.059 −0.221 0.271 0.383 −0.652 −0.149 0.286 −0.285
p‑value 0.012 0.020 0.045 0.043 0.043 0.561 0.141 0.344 0.769 0.788 0.464 0.379 0.880 0.568 0.480 0.275 0.041 0.682 0.423 0.424

Table  2: Genotype and allele frequencies, and Hardy–Weinberg P values for one‑carbon metabolism single nucleotide polymorphisms 
in ichthyosis vulgaris cases and controls
Filaggrin genotype Phenotype Ratio MTHFR С677Т MTHFR A1298С MTR A2756G MTRR A66G

Genotype Allele Genotype Allele Genotype Allele Genotype Allele
СС СТ ТТ С Т AA AС СС A С AA AG GG A G AA AG GG A G

2282del4/2282del4,
R501X/2282del4,
R501X/wt
(n=14)

Affected Frequency 
(%)

26.7 66.7 6.7 60.0 40.0 57.1 35.7 7.1 75.0 25.0 50.0 42.9 7.1 71.4 28.6 35.7 50.0 14.3 60.7 39.3

HWEP <0.001 1.000 0.893 1.000 0.882 1.000 0.891 1.000

2282del4/wt
(n=17)

Frequency 
(%)

29.4 70.6 0 64.7 35.3 52.9 47.1 0 76.5 23.5 70.3 23.5 5.9 83.9 16.1 23.4 52.9 23.5 50.0 50.0

HWEP 0.013 1.000 0.261 1.000 0.497 1.000 0.841 1.000
R501XP 0.552 0.325 0.405 0.729 <0.001 <0.001 0.006 0.032

2282del4/wt
(n=7)

Unaffected Frequency 
(%)

57.1 28.6 14.3 71.4 28.6 42.9 42.9 14.3 64.3 35.7 42.9 57.1 0 71.4 28.6 0 57.1 42.9 28.6 71.4

HWEP 0.011 1.000 0.801 1.000 0.103 1.000 0.265 1.000
R501XP <0.001 0.011 0.009 0.025 0.149 1.000 <0.001 <0.001
2282IVP <0.001 0.137 0.042 0.011 <0.001 0.006 <0.001 <0.001

wt/wt
(n=150)

Frequency 
(%)

54.7 40.0 5.3 74.7 25.3 42.7 44.7 12.7 65.0 35.0 42.7 38.7 18.7 62.0 38.0 25.3 37.3 37.3 44.0 56.0

R501XP <0.001 <0.001 0.010 0.036 0.012 0.052 <0.001 0.001
2282IVP <0.001 0.022 0.038 0.016 <0.001 <0.001 0.003 0.227
2282HP <0.001 0.457 0.869 0.881 0.975 0.052 0.254 <0.001

HWEP value for the Hardy–Weinberg equilibrium test, R501XP value for the FLG homozygotes and compound heterozygotes with ichthyosis, 2282IVP value for the FLG 2282del4 heterozygotes with ichthyosis, 2282HP value for the 
FLG 2282del4 heterozygotes without ichthyosis
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previous and literary data [7], [15]. We suggested that 
folate metabolism polymorphisms could be associated 
with clinical manifestation of ichthyosis vulgaris in 
individuals with 2282del4/wt genotype.

It is known that various genotypes for the 
MTHFR, MTR, and MTRR genes are related to 
cardiovascular, endocrine, reproductive disorders, 
certain cancer types, etc. [38], [56], [57], [58], [59], [60], 
[61], [62], [63], [64], [65], [66], [67], [68].

Polymorphisms of one-carbon metabolism genes 
and FLG null mutations are associated with the same 
disorders, including atopic dermatitis, eczema, inflammatory 
bowel disease, endocrine and gynecological diseases, skin 
permeability barrier dysfunction, and neoplasms [56], [68], 
[69], [70], [71], [72], [73]. These all suggest that other SNPs 
of folate metabolism genes, in addition to the MTHFR 
C677T variant, might affect FLG gene expression [73].

In our research, a strong association between 
homocysteine-raising polymorphisms of one-carbon 
metabolism genes and ichthyosis vulgaris was found in 
individuals with FLG null mutations.

LD blocks in chromosome 1 were not linked, 
perhaps because the distance between these loci 
exceeds 60 kb [74].

We tested а hypothesis about folate metabolism 
polymorphisms impact on the phenotypic expression of 
FLG null mutations in patients with ichthyosis vulgaris 
for England and Scotland only. This was because all 
the necessary data on the prevalence of the disease 
and frequencies of the FLG mutations and one-carbon 
metabolism polymorphisms were available for this region 
[2], [10], [75]. The frequencies of FLG heterozygotes 
and the predisposing genotype MTHFR 677CT/MTHFR 
1298AA/MTR 2756AA+AG/MTRR 66AG are 0.13 and 
0.092 in the region; thus, the combined probability of the 
clinical manifestation of ichthyosis vulgaris should be 
0.012, that is not statistically different from the prevalence 
of the disease reported for the region — 0.013 (p = 0.857).

Conclusion

Various genotypes of one-carbon metabolism 
genes increase the risk of ichthyosis in heterozygotes 
for the FLG 2282del4 mutation (OR 2.799–11.231). 
The most probable predisposing genotype is 
677CT/1298AA/2756AA+AG/66AG.
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