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Abstract
BACKGROUND: AMPK has pivotal roles in glucose and lipid metabolism, including AMPKα2, which PRKAA2 
encodes. Metformin as an anti-hyperglycemia agent acts through AMPK. Poor glycemic control among patients with 
type 2 diabetes mellitus (T2DM) could increase atherosclerosis cardiovascular disease (ASCVD) risk. Therefore, 
PRKAA2 genetic variation might contribute to 10-year ASCVD risk in patients with newly diagnosed T2DM receiving 
monotherapy metformin.

AIM: The study aimed to detect an association between PRKAA2 genetic variation with 10 year-ASCVD risk among 
newly diagnosed T2DM patients prescribed monotherapy metformin.

METHODS: This present study was a casecontrol study involving 107 participants. Analysis of PRKAA2 genetic 
variation was performed using the TaqMan assay.

RESULTS: A total of 91 participants who fulfilled our criteria enrolled in this study. Most of the participants were 
female, with a mean age of 54.40 ± 7.75 years old, mean HbA1c level of 8.35 ± 1.31% and the lipid profile indicated 
normal conditions. There was a significant difference in age (p < 0.01), HbA1c level (p = 0.04), sex (p < 0.01), and 
smoking status (p < 0.01) between low-risk and high-risk groups. The GT genotype of rs9803799 had 187.86 times 
higher possibility for high-risk of 10-year ASCVD risk than TT genotype (OR = 187.86, 95%CI:2.98–11863.51). The 
dominant model of rs9803799 showed that GT+GG had a 94.33 times higher possibility for high-risk of 10-year 
ASCVD risk than TT genotype (OR=94.33; 95%CI:2.32–3841.21). Other results showed that the G allele of 
rs980377 had 20.48 times higher possibility for high-risk of 10-year ASCVD risk than the T allele (OR = 20.48; 
95%CI:1.48–283.30). These associations were found after multivariate analysis.

CONCLUSION: Our findings indicated that rs9803799 as one of the PRKAA2 genetic variations might impact the 
10-year ASCVD risk among newly diagnosed T2DM patients receiving monotherapy metformin. After considering 
non-genetic factors, patient assessment should include potential genetic factors in cases with hyperglycemia 
involving treatment affecting glucose and lipid metabolism such as monotherapy metformin.
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Introduction

AMPK is an energy sensor and maintains 
homeostasis so it has an important role in glucose and 
lipid metabolism. AMPK consists of three subunits (α, β, 
and γ). Phosphorylated AMPK in Thr172 in the α subunit 
has the primary function to induce AMPK downstream 
activation [1]. Accordingly, AMPK is the target of the 
mechanism of action of metformin. Metformin is an 
oral antidiabetic agent with a mechanism as an insulin 
sensitizer and reduces gluconeogenesis by AMPK 
activation [2], [3]. A study in mice showed that AMPKα2 
knockout had higher glucose levels and lower insulin 
concentration during meals and insulin resistance 
compared to wild type [4]. AMPKα2, which is encoded 
by PRKAA2, is one of the pharmacogenetic research 
targets, especially in metformin pharmacodynamic 
research. AMPKα2 is dominant in muscles and the 

liver  [5], [6]. AMPKα2 was involved in reducing left 
ventricle pressure and smooth muscle relaxation [7], [8]. 
Therefore, it might contribute to lowering atherosclerosis 
cardiovascular disease (ASCVD) risk.

In fact, ASCVD causes the highest mortality 
and morbidity among diabetic patients, especially in 
type 2 diabetes mellitus (T2DM). Consequently, ASCVD 
is considered in T2DM therapy management [9]. 
Patients with T2DM have a 2–4 fold higher possibility of 
developing ASCVD risk, although this risk is not equal 
among individuals because of the heterogeneity in the 
population [10]. The increased risk of ASCVD mortality 
is associated with younger age groups, poor glycemic 
control, and increased renal complications [11]. In 
addition, patients with newly diagnosed T2DM tend to 
have higher poor glycemic control [12].

Pathogenesis of ASCVD and T2DM is related 
to epigenetic, genetic, and cell signaling interference, 
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which is correlated with inflammatory and metabolic 
pathways [13]. High glucose levels elevate advanced 
glycosylation end products (AGEs) formation. AGEs 
deposition increases fibrosis, cardiac stiffness, and 
inhibits diastolic relaxation. AGEs are associated with 
macrophages function resulting in escalating ASCVD 
risk [14], [15]. Insulin resistance could increase blood 
lipid levels, and systemic inflammation markers 
including, C-reactive protein, interleukin 6, and amyloid 
A which could predict ASCVD complications among 
patients with T2DM [16].

Several ASCVD risk calculators are freely 
available, including the Framingham risk score, 
SCORE, and pooled-cohort equation (PCE). The PCE 
was reported to be able to estimate ASCVD risk better 
when the racial difference was found [17]. A previous 
study in Sleman showed that there was no significant 
difference in the results of ASCVD risk calculated using 
SCORE or PCE [18].

Metformin is the first choice recommended by 
international guidelines [9], [19]. A previous study in 
newly diagnosed T2DM patients in the Asian population 
showed that metformin could control HbA1c after 
3 months [20]. The effect of metformin reducing ASCVD 
risk in patients with T2DM remains controversial. 
A previous meta-analysis study reported that metformin 
did not show a protective effect on ASCVD risk [21]. On 
the other hand, a review stated that metformin could 
reduce ASCVD risk effectively [22]. Recent research 
determined that genetic variation affects metformin 
efficacy, but it still requires clinical research to confirm 
these findings [23].

However, the effect of genetic variation in 
AMPKα2, encoded by PRKAA2, has not been discovered 
yet related to ASCVD risk. Accordingly, this recent study 
aimed to examine the association of PRKAA2 genetic 
variation and ASCVD risk among newly diagnosed 
T2DM patients who receive monotherapy metformin.

Methods

Study designs and participants

A casecontrol study was conducted among 
newly diagnosed T2DM patients who receiving 
monotherapy metformin from ten primary health care 
centers in the Sleman District of Daerah Istimewa 
Yogyakarta, Indonesia. A total of 107 participants were 
examined who were required to fast at least 10 hours 
for clinical laboratory measurements. In this study, the 
inclusion criteria were: adult participants who were 
aged 40−70 years old, newly diagnosed T2DM with 
monotherapy metformin, and without previous ASCVD 
history. The exclusion criteria were: patients who did 
not fulfill PEC requirements as outlined in the following 

conditions. Using the PEC calculation requirements 
were: systolic blood pressure 90−200 mmHg, diastolic 
blood pressure 60−130 mmHg, total cholesterol 
130−320 mg/dL, HDL-c 20-100 mg/dL, and LDL-c 
30−300 mg/dL. The high ASCVD risk (> 5%) was 
categorized as the case group, and the low ASCVD risk 
(< 5%) was categorized as the control group.

Written informed consent was obtained and 
signed by all participants. The protocol of the study 
was reviewed and approved by the Medical and 
Health Research Ethics Committee (MHREC) Faculty 
of Medicine, Public Health, and Nursing Universitas 
Gadjah Mada - Dr. Sardjito General Hospital 
(KE/FK/0633/EC/2019).

Anthropometric examination, clinical 
laboratory measurements and ASCVD score 
calculation

Anthropometric measurements including 
weight, height, and waist circumference were 
conducted by a nutritionist. Blood pressure was 
measured by well-trained nurses. Age, gender, family 
history of diabetes, smoking status, meal routine, 
and physical activity intensity were collected by a 
questionnaire. Hypertension therapy, statin user, and 
aspirin consumption were obtained from interviews and 
then were confirmed through medical records.

A professional analyst collected a blood 
sample after overnight fasting, lasting approximately 
10−12 h. Prodia did all clinical laboratory examinations 
as an accredited laboratory. Fasting blood glucose 
was measured using the hexokinase method, and 
HbA1c was assessed using high-performance liquid 
chromatography D-10. T2DM patients were defined by 
HbA1c > 6.5%. Lipid profiles, including total cholesterol, 
triglycerides, and high-density lipoprotein cholesterol 
(HDL-c), were assayed using Cobas C-311. Low-
density lipoprotein cholesterol (LDL-c) was calculated 
using the Friedewald equation (total cholesterol – 
HDL-c - Triglycerides/5 in mg/dL, but triglycerides should 
be <400 mg/dL). Blood pressure >140/>90 mmHg 
was classified as hypertension. This study adopted 
the formulation developed by ACC/AHA pooled cohort 
equation (http://tools.acc.org/ASCVD-Risk-Estimator-
Plus/#!/calculate/estimate/) to calculate the 10-year 
ASCVD risk score [24]. The 10-year ASCVD risk score 
< 5% was defined as the low-risk (control) group and 
the risk score > 5% was defined as the high-risk (case) 
group.

DNA isolation and PRKAA2 genotyping 
analysis

DNA was isolated from blood samples 
which was done by adding EDTA using the Geneaid® 
Blood DNA Mini Kit and deposited at −20°C until the 
genotyping procedure. Genotyping was performed 
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using the TaqMan® genotyping assay and Applied 
Biosystems® qPCR 7500 Fast Real-Time PCR System 
to identify rs2796498, rs9803799, and rs2746342. 
Genotype identification of rs2796498, rs9803799, and 
rs2746342 was performed using specifically designed 
TaqMan primer sequences as follows:

rs2796498: CTGTAACAGTGTTAGTGATTTAA 
AC[A/G]GAGAGAGCAACCTTACCCTTTCAGT

rs9803799: TAAATACAGGGTTTATATCCCCA 
CA[G/T]TCAATGTAAATTCCTTTTTTTAAAA

rs2746342: AGAGAGGCTAAGATGCAGGCT 
GTAC[G/T]CTGGGTAGCCATGTACTCAGTTGTA

The total volume of amplification mixture 
used in the real-time PCR was 10 mL, including 5 mL 
TaqMan GTXpress mix, 2.5 mL nucleotide-free water, 
and a 0.5 mL TaqMan SNP genotyping assay, and 2 mL 
of genomic DNA sample. The amplicons were set up 
according to the following program: fourty cycles at hold 
95°C for the 20s, at denaturing 95°C for 3s, and then 
annealing 60°C for 30s.

Statistical analysis

We stratified these data by ASCVD risk 
category and then analyzed the differences using 
independent t-tests for numeric variables and chi-
squared tests for categorical variables. We involved 
the dominant and recessive models in detecting an 
association with 10-year ASCVD risk. The association 
between the three studied variants and 10-year 
ASCVD risk was analyzed using logistic regression 
analysis. Confounder variables, including sex, age, 
HDL-c, total cholesterol, triglycerides, high-intensity 
physical activity, the routine of lunch, dinner, and 
snack that had a significant association to 10-year 
ASCVD risk were introduced into multivariate analysis. 
All statistical analysis were performed using SPSS 
version 25.0, and p < 0.05 was adopted as statistically 
significant.

Results

Of the 107 participants who were newly 
diagnosed with T2DM and only received monotherapy 
metformin for three months, 16 were excluded because 
they did not fulfill PCE requirements. For our sample of 
91 participants, the average age was 54.40 ± 7.75 years 
old, 74.7% were female, BMI and waist circumference 
tended toward overweight status, mean blood pressure 
was in the pre-hypertension category, the mean of 
HbA1c level was 8.35 ± 1.31%, and lipid profile was in 
the normal conditions. Only 36.3% of participants had 
a family history of T2DM, and only 16.5% were active 
or former smokers. High ASCVD risk as the case group 

had 34 patients and low ASCVD risk as the control 
group had 57 patients.

Moreover, we compared the participant’s 
characteristics according to ASCVD risk classification. 
We found age, HbA1c level, sex, and smoking status 
were significantly different between those two groups 
(p < 0.05). The high-risk group tended to have older 
participants than the low-risk group (p < 0.01). Notably, 
the HbA1c level was higher in the low-risk group (8.57 
± 1.40%) than the high-risk group (7.99 ± 1.06%) 
(p = 0.04). Female patients were found more common 
in the low-risk (94.7%) than high-risk group (41.2%) 
(p < 0.01). Smoking status was found higher significantly 
(p < 0.01) in the high-risk group (38.2%) than in the 
low-risk group (3.5%). Demographic characteristics are 
presented in Table 1.

Table  1: Characteristics  of  participants with  different  10-year 
ASCVD risk
Variable Newly diagnosed T2DM patients using monotherapy metformin

Total (n = 91) Low-risk (n = 57) High-risk (n = 34) p-value
Age (years old) 54.40 ± 7.75 50.98 ± 6.20 60.12 ± 6.70 0.00**
BMI (kg/m2) 25.05 ± 3.96 25.47 ± 4.26 24.35 ± 3.33 0.19
Waist circumference (cm) 87.23 ± 8.66 87.67 ± 8.44 86.50 ± 9.09 0.54
Systolic blood pressure 
(mmHg)

125.73 ± 11.19 124.82 ± 11.90 127.24 ± 9.87 0.32

Diastolic blood pressure 
(mmHg)

80.70 ± 6.95 79.68 ± 6.26 82.41 ± 7.77 0.09

HbA1c (%) 8.35 ± 1.31 8.57 ± 1.40 7.99 ± 1.06 0.04*
Fasting blood glucose 
(mg/dL)

136.95 ± 29.99 137.02 ± 29.44 136.82 ± 31.36 0.98

Total cholesterol (mg/dL) 184.70 ± 27.23 182.16 ± 26.21 188.97 ± 28.60 0.25
Triglyceride (mg/dL) 138.05 ± 57.68 133.70 ± 59.76 145.35 ± 54.10 0.35
HDL-c (mg/dL) 47.48 ± 8.34 48.61 ± 8.11 45.59 ± 8.51 0.09
LDL-c (mg/dL) 109.58 ± 22.02 106.77 ± 21.13 114.29 ± 22.98 0.12
Sex, female 68 (74.7) 54 (94.7) 14 (41.2) 0.00**
Family history of 
diabetes, yes

33 (36.3) 22 (38.6) 11 (32.4) 0.47

Smoking status, yes 15 (16.5) 2 (3.5) 13 (38.2) 0.00**
Meal routine

Breakfast, yes 60 (65.9) 36 (63.2) 24 (70.6) 0.47
Lunch, yes 80 (87.9) 48 (84.2) 32 (94.1) 0.16
Diner, yes 65 (71.4) 37 (64.9) 28 (82.4) 0.08
Snack, yes 44 (48.4) 31 (54.4) 13 (38.2) 0.14

Physical activity intensity
High, yes 13 (14.3) 6 (10.5) 7 (20.6)  0.19
Intermediate, yes 67 (73.6) 41 (71.9) 26 (76.5) 0.63
Low, yes 90 (98.9) 57 (100) 33 (97.1) 0.37

Data are presented in mean ± SD or n (%). *p-value<0.05, **p-value<0.01. BMI: Body mass index,  
HDL-c: High density lipoprotein cholesterol, LDL-c: Low density lipoprotein cholesterol

There was no significant difference in the 
proportion of 10-year ASCVD risk between genotypes 
in each SNP of PRKAA2 in this study (p > 0.05). Mostly, 
all of the genotypes of rs2796498, rs9803799, and 
rs2746342 had a low proportion of high-risk groups. 
However, it was found that only GT of rs9803799 had 
a higher proportion of high-risk ASCVD than other 
genotypes (Figure 1).

Associations between PRKAA2 genetic 
variation and 10-year ASCVD risk, both in bivariate 
analysis and in multivariate analysis, are listed in 
Table 2. Bivariate analysis failed to find any association 
between PRKAA2 genetic variation and 10-year ASCVD 
risk. After adjusting for sex, age, lipid profiles, physical 
activities high intensity, daily routine of lunch, dinner, 
and snack, using multivariate analysis, only rs9803799 
had a significant association with 10-year ASCVD risk. 
Patients with GT genotype had 187.86 times higher 
possibility for high-risk of 10-year ASCVD risk than 
TT genotype (OR = 187.86, 95%CI: 2.98–11863.51). 
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The dominant model also showed that GT+GG had 
94.33 times higher possibility for high-risk 10-year 

ASCVD risk than the TT genotype (OR = 94.33; 95%CI: 
2.32–3841.21). Those findings indicated that the G 
allele had 20.48 times higher possibility for high-risk 
10-year ASCVD risk than the T allele (OR = 20.48; 
95%CI: 1.48–283.30).

Remarkably, AA as wildtype and the AG 
genotype in rs2796498 showed higher odds of high-
risk 10-year ASCVD risk in the multivariate analysis 
than bivariate analysis. However, it did not become 
significant statistically (p > 0.05). Mutant genotype in 
rs2746342 contributed a higher odds to gain high-risk 
of 10-year ASCVD risk than wildtype genotype, but 
there was no significant association (p > 0.05), even 
after multivariate analysis.

Discussion

Our results emphasized the findings from 
a previous study in Sleman District which found 
that 10-year ASCVD risk among participants was 
categorized as low-risk. However, they used the 
Framingham risk score to measure ASCVD risk [25]. 
This study found that the group with high-risk of 
10-year ASCVD risk had more older participants than 
the low-risk group. The findings of various studies have 
reported that age significantly contributed to ASCVD 
risk as an independent risk factor [26], [27]. Notably, 
the HbA1c level was higher in the low-risk group than 
the high-risk group. The literature has discovered the 
relationship between HbA1c level and ASCVD risk. 
Our finding was the opposite of studies stating that 
increasing HbA1c level is a major risk factor of ASCVD 
outcomes [28], [29]. Our results align with the previous 
findings that females tend to have lower ASCVD risk, 
especially before menopause. Menopause could 
reduce the sex hormones that could affect ASCVD 
risk through changes in vasculature, cardiac muscle, 
metabolism, and coagulation [30], [31], [32]. Smoking 
is one of the substantial factors involved in escalating 
ASCVD events, and the risk is doubled [33]. Our results 
confirmed that report, where the proportion of smokers 
was higher in the high-risk group than the low-risk 
group.

The proportion of low-risk 10-year ASCVD 
risk was dominant in almost all genotypes, except GT 
of rs9803799. It seemed that both the heterozygote 
and the homozygote genotype, could have a role in 
affecting disease risk [34]. However, our findings could 
not explain any significant difference in ASCVD risk 
proportion between each genotype.

This present study investigated the association 
between three variants in the PRKAA2 gene, rs2796498, 
rs9803799, and rs2746342, with 10-year ASCVD risk 
in newly diagnosed T2DM patients who have been 
prescribed metformin for three months consecutively. Our 

Table 2: The association between PRKAA2 genetic variation 
and 10-year ASCVD risk
SNP Genotype Newly diagnosed T2DM patients using monotherapy  

metformin (n = 91)
high-risk 
(n = 34)
n (%)

low-risk 
(n = 57)
n (%)

OR  
(95% CI)

p-value AORa 
(95%CI)

p-valuea

PRKAA2
rs2796498

AA 2 (5.9) 3 (5.2) 1.09 
(0.17–
7.12)

0.93 2.51 
(0.13–
47.96)

0.54

AG 13 (38.2) 23 (40.4) 0.92 
(0.38–
2.24)

0.86 2.87 
(0.54–
15.20)

0.22

GG 19 (55.9) 31 (54.4) 1.00 (reference)
Dominant 
model

AA+AG 15 (44.1) 26 (45.6) 0.94 
(0.40–
2.21)

0.89 2.80 
(0.58–
13.62)

0.20

GG 19 (55.9) 31 (54.4)
Recessive 
model

AA 2 (5.9) 3 (5.3) 1.13 
(0.18–
7.10)

0.90 1.70 (0.11 
– 26.60)

0.71

AG+GG 32 (94.1) 54 (94.7)
Allele 
model

A allele 17 (25.0) 29 (25.4) 0.98 
(0.49–
1.95)

0.95 1.92 
(0.62–
5.94)

0.26

G allele 51 (75.0) 85 (74.6)
PRKAA2 
rs9803799

GG 0 (0) 1 (1.8) - - - -
GT 4 (11.8) 2 (3.5) 3.60 

(0.62– 
20.82)

0.15 187.86 
(2.98–
11863.51)

0.013*

TT 30 (88.2) 54 (94.7) 1.00 (reference)
Dominant 
model

GG+GT 4 (11.8) 3 (5.3) 2.40 
(0.50–
11.45)

0.27 94.33 
(2.32–
841.21)

0.016*

TT 30 (88.2) 54 (94.7)
Recessive 
model

GG 0 (0) 1 (1.8) - - - -

GT+TT 34 (100) 56 (98.2)
Allele 
model

G allele 4 (5.9) 4 (3.5) 1.72 
(0.42–
7.11)

0.46 20.48 
(1.48–
283.30)

0.024*

T allele 64 (94.1) 110 (96.5)
PRKAA2 
rs2746342

TT 7 (20.6) 10 (17.5) 1.40 
(0.41–
4.78)

0.59 3.69 
(0.23–
60.37)

0.36

GT 17 (50.0) 27 (47.4) 1.26 
(0.48 
– 3.33)

0.64 3.36 
(0.58 
– 19.47)

0.18

GG 10 (29.4) 20 (35.1) 1.00 (reference)
Dominant 
model

TT+GT 24 (70.6) 37 (64.9) 1.30 
(0.52–
3.24)

0.58 3.41 
(0.62–
18.68)

0.16

GG 10 (29.4) 20 (35.1)
Recessive 
model

TT 7 (20.6) 10 (17.5) 1.22 
(0.42–
3.57)

0.72 1.79 
(0.15–
21.27)

0.64

GG+GT 27 (79.4) 47 (82.5)
Allele 
model

T allele 31 (45.6) 47 (41.2) 1.19 
(0.65–
2.19)

0.57 1.89 
(0.65–
5.47)

0.24

G allele 37 (54.4) 67 (58.8)
*p < 0.05. aAdjusted odd ratio for sex, age, HDL-c, total cholesterol, triglyceride, high-intensity physical 
activity routine of lunch, dinner, and snack

Figure 1: The 10-year ASCVD risk based on PRKAA2 genetic 
variation, in percentage
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findings indicated that only rs9803799 had an association 
with 10-year ASCVD risk. GT genotype and dominant 
model (GT+GG) had a significant association to have 
higher risk of 10-year ASCVD risk than TT genotype, 
whereas TT genotype is the mutant genotype of 
rs9803799. The result showed that those with the G allele 
also have a higher chance of getting high-risk ASCVD 
than the T allele. In fact, there has not been a study 
that examines PRKAA2 genetic variation and 10-year 
ASCVD risk. SNP rs9803799 is located in a 3’ prime 
UTR responsible for controlling transcription, initiating 
or inhibiting translation, and localizing in the cytoplasm 
[35]. Previous findings indicated that rs9803799 had a 
significant association with metformin efficacy [36]. In line 
with that study’s results, the rs9803799 variant might have 
a pivotal role in AMPK expression; then, it could influence 
metformin efficacy and ASCVD risk. Undoubtedly, genetic 
variation could not stand alone to predict ASCVD risk. 
In this case, we could discover a significant association 
after adjusting for nongenetic factors in multivariate 
analysis. Several studies have confirmed that genetic and 
environmental factors interact and that interrelationship 
affects the development of ASCVD [37], [38], [39].

Furthermore, a study in Caucasian populations 
reported that rs2796498 and rs2746342 were 
associated with lipid profiles. SNP rs2796498 impacted 
HDL-c, LDL-c, and total cholesterol, while rs2746342 
affected LDL-c and total cholesterol [40]. Lipid profiles 
are the dominant factor which have considerable weight 
in the 10-year ASCVD risk calculation. Nevertheless, 
this study could not identify any significant association 
between rs2796498 and rs2746342 and ASCVD risk.

Review literature declared that PRKAA2, 
which affected the metformin effectiveness, impacted 
ASCVD risk [41], [42]. A study applying the Mendelian 
randomization model which used AMPK as metformin 
pharmacologic target reported that there was genetic 
evidence in AMPK variance that could provide ASCVD 
protection [43].

Theoretically, AMPK has a crucial role in 
the metformin mechanism for reducing ASCVD 
risk. Metformin can activate AMPK, either by way of 
the direct pathway or indirect pathway, by inhibiting 
mitochondrial respiratory chain complex, thus altering 
AMP/ATP level [44], [45]. Several molecular studies 
investigating the pleiotropic effect of metformin 
mediated by AMPK proclaimed that AMPK and 
metformin could reduce ASCVD risk through the 
various pathways. Those explanations involved: 
(1) increasing fatty acid oxidation through acetyl-CoA 
carboxylase activation, (2) enhancing glucose uptake 
over GLUT4 induction, thus increase catabolism, 
(3) elevating endothelial nitric acid synthase (eNOS) 
level as a consequence, it decreases reactive 
oxygen species and increases endothelial function, 
(4) activating PGC-1a who supports left ventricle 
function, (5) inhibiting sterol regulatory element-
binding protein 2 (SREBP-2) maturation for low-density 

lipoprotein receptor (LDLR) binding, (6) suppressing 
Toll-like receptor 4 (TLR4) thus inhibiting the 
inflammatory mediator, and (7) inhibiting apoptosis 
through platelet-derived growth factor receptor 
(PDGFR) suppression [46], [47], [48], [49], [50].

This present study has several limitations. 
First, lipid profiles that contribute to 10-year ASCVD risk 
calculation were only examined after metformin therapy 
was initiated. Second, we only detected diet aspects 
from a daily meal routine, whereas diet significantly 
impacts ASCVD. Third, we only found one participant 
who had GG genotype of rs9803799. Finally, though 
the participants were selected from a representative 
sample of patients with newly diagnosed T2DM who 
have been prescribed only metformin, the results would 
be more convincing in a bigger sample size.

Conclusions

In summary, our finding confirmed that PRKAA2 
genetic variation might impact the 10-year ASCVD 
risk among newly diagnosed T2DM patients receiving 
monotherapy metformin, especially in the rs9803799. 
Patient assessment should consider the combination of 
genetic and environmental factors to determine 10-year 
ASCVD risk.
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