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Abstract
BACKGROUND: Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) has an important 
role in mitochondria biogenesis which generated cellular metabolism. Carbohydrate metabolism in the liver is crucial 
to maintain plasma blood glucose.

AIM: This research aimed to determine the expression of PGC-1α gene in the liver type-2 diabetes mellitus (T2DM) 
rat model, after treatment with a focus on exercise.

METHODS: We used 25 healthy male Wistar rats as subjects. Rats were modified to T2DM models by feeding a 
high-fat diet and low-dose streptozotocin injection. We divided the rats into five groups, that is, sedentary group 
as a control and four others as treatment groups. The exercise was assigned for treatment groups by a run on the 
treadmill as moderate intensity continuous (MIC), highintensity continuous (HIC), slow interval (SI), and fast interval 
(FI). The treatment groups were exercise throughout 8 weeks with a frequency of 3 times a week.

RESULTS: The results showed that expression of PGC-1α gene was lower in all treatment groups compared to 
controls (p < 0.05). Expression in HIC was higher than MIC (p < 0.05), so was the expression in FI more than SI 
(p < 0.05).

CONCLUSIONS: Exercise affected PGC-1α gene expression in the liver of the T2DM rat model. The expression of 
PGC-1α was linear with exercise intensity.
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Introduction

The prevalence of Type-2 diabetes mellitus 
(T2DM) has been growing in Indonesia. The World 
Health Organization estimated that the prevalence 
will still rise until 2030. Indonesian Health Ministry has 
reported that the prevalence of T2DM rose from 6.9% 
in 2013 to 8.5% in 2018. This phenomenon correlated 
with lifestyle change on diet and physical activity in 
Indonesian people, where the data show that people 
with physical inactivity in Indonesia increased by 33.5% 
in 2018 [1], [2]. Lack of physical activity, nutrient excess, 
and obesity influenced DNA methylation including 
peroxisome proliferator-activated receptor (PPAR)-1 
alpha coactivator (PGC-1α) activity as a key regulator 
of cellular energy metabolism. This condition was an 
important risk factor for insulin resistance (IR) [3], [4].

PPAR PGC-1α is a protein complex that 
increases the probability of a gene being transcribed 

by interacting with transcription factors such as 
Forkhead box O1, glucocorticoid receptor, and hepatic 
nuclear factor-4α. By regulating the activities of these 
transcription factors, PGC-1α acts as a molecular switch 
for multiple cellular processes, including mitochondrial 
biogenesis and respiration, gluconeogenesis. In 
gluconeogenesis, PGC-1α binds to the promoter region 
from genes that encode enzymes gluconeogenesis such 
as phosphoenolpyruvate carboxykinase and glucose-6-
phosphatase (G-6-Pase) in the liver [5], [6], [7].

The liver is a crucial organ to maintain 
glucose homeostasis. Blood glucose concentration is 
mainly determined by glucose absorption at intestine, 
gluconeogenesis by the liver, and glucose utilization 
by skeletal muscle. In this process, the liver acts as a 
glucose reservoir that balances the glucose storage 
and release. Impaired hepatic glucose uptake and 
excessive hepatic glucose production are partially 
responsible for hyperglycemia in T2DM [8]. PGC-1α 
is a downstream sensor of metabolic, hormonal, and 
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inflammatory signals that are responsible for the balance 
of hepatic gluconeogenesis, fatty acid β-oxidation, and 
mitochondrial biogenesis [9].

The previous studies have found that mitochondrial 
dysfunction is one of the causes of decreasing fatty acid 
oxidation, which plays a role in the pathogenesis of IR and 
T2DM [8], [10], [11]. Mitochondrial dysfunction is known 
to produce excessive reactive oxidative stress (ROS) 
that eventually leads to oxidative stress and pancreatic 
β-cell dysfunction. ROS as a result of oxidative stress 
mitochondrial decreased PGC-1α expression and reduced 
glucose-stimulated insulin secretion [12]. Expression of 
PGC-1α gene also found decreased in skeletal muscle 
so that muscle glucose uptake was disrupted, meanwhile, 
gene expression in the liver increased as compensation 
for the lack of cellular energy in T2DM [13], [14]. PGC-1α 
expression modification might be a candidate for the 
management of mitochondrial dysfunction, leading to the 
treatment for diabetes mellitus [13], [15].

Few studies have been conducted to find out 
the effect of exercise on PGC-1α, especially at skeletal 
muscle [13], [16]. Studies proved that exercise could 
decrease plasma blood glucose and IR by improving 
mitochondrial function in T2DM patients [17], [18]. 
However, there was still limited information about 
the effect of exercise with different intensity to the 
expression of PGC-1α liver gene. As we know that liver 
is also a homeostatic organ for blood glucose regulation 
and PGC-1 α promote mitochondrial biogenesis in 
gluconeogenesis. The aim of this research was to 
determine the expression of PGC-1 α liver gene in T2DM 
rats model with a focus on exercise that was carried out 
as continuously and interval with different intensity.

Methods

Animal model

This research was carried out using T2DM 
model rat (Rattus norvegicus sp.) as the subjects. Eight 
weeks of age Wistar were made T2DM by combining 
the administration of a high-fat diet and low-dose 
streptozotocin injections twice (30 mg/kg BW and 45 mg/
kg BW in 0.1 citrate buffer pH 4.5 given intraperitoneal). 
T2DM was determined if fasting blood glucose 
<200  mg/dl and homeostatic model assessment-IR 
(HOMA-IR) >6.5. Cage placement, feeding and drinking 
of the subjects was done in accordance with the ethics 
approval of research in experimental animals.

Animal intervention

We intervened subjects with exercise ran on 
the treadmill as moderate-intensity continuous (MIC), 

high-intensity continuous (HIC), slow interval (SI), and 
fast interval (FI) while the control group was made 
sedentary. Exercise intensity determination based 
on protocol of Huang et al. (Table  1). Exercise was 
carried out every 2 days with 30 min each session, for 
8  weeks. Plasma blood glucose and HOMA-IR were 
assessed before and after exercise procedure. All 
rats were terminated under sedation (ketamine 30 mg 
intramuscular) subsequent the intervention. Duration 
and intensity for each treatment groups are shown in 
Table 1.
Table 1: Duration and intensity of exercise for each treatment 
group
Groups Exercise procedure
MIC 25 m/min, 30 min
HIC 30 m/min, 30 min
SI 25 m/min, 10 × 2 min, 1 min interval
FI 30 min, 15 × 30 s, 1 min interval
MIC: Moderate-intensity continuous, HIC: High-intensity continuous, SI: Slow interval, FI: Fast interval.

mRNA PGC-1α examination

About 20–30 mg liver tissue was mixed with 
β-mercaptoethanol 10 µl +1  ml buffer RLT as much 
as 600 µl and homogenized with a mortar. RNA 
isolation procedure followed RNeasy Mini Kit (Qiagen, 
Germany). Two microliters template RNA, two-step 
Sybr Green reagent, primer PGC-1α forward and 
reverse, and beta-actin primer forward and reverse 
were mixed in 0.2  ml PCR tube. Rotor gene was 
setting; hold 95°C (2 min), denaturation 95°C (5 s), and 
annealing 60°C (30 s) for 40 cycles. Cycling threshold 
from each group both target and reference gene was 
taken. Delta-delta CT was calculated by livask method 
to determine whether the expression higher or lower 
than control.

Blood glucose and IR examinations

Blood from rat vein tail was taken for about 
2–3  ml then centrifuged at 6.000  rpm for 3  min for 
serum isolation. Blood glucose level was assessed 
by spectrophotometer and insulin assessed with 
ELISA method followed Qia-Byee procedure. IR was 
determined by calculate fasting insulin (U/ml) × fasting 
plasma glucose (mmol/l)/22.5 and named as HOMA-IR.

Statistical analysis

Data normality was confirmed using Shapiro–
Wilk test. Plasma blood glucose and HOMA-IR before 
and after intervention in treatment groups were analyzed 
with dependent t-test. To find out whether the PGC-1α 
gene mRNA expression in each group was significantly 
different, the cycling threshold of each group was 
analyzed with one-way ANOVA test and followed by 
post hoc least significant difference (LSD) to analyze 
the different between groups. Data were significant if 
p < 0.05 was considered.
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Discussion

The purpose of this research was to determine 
the expression of PGC-1α gene in liver of T2DM rat 
model after treatment with a focus on exercise that was 
carried out as continuously and interval with different 
intensity. Our research found that expression of 
PGC-1α gene in the liver was lower in exercise groups 
compared sedentary group. It was shown that exercise 
has an effect on PGC-1α gene expression in the liver. 
This research is in line with Safdar et al. that endurance 
exercise alters biogenesis of mitochondrial by enhancing 
PGC-1α function in mitochondria  [17]. Meanwhile, 
Buler et al. found that PGC-1α has beneficial effect of 
physical exercise and caloric restriction and becomes 
a regulatory interlink between energy homeostasis 
and the hepatic immune system  [18] and improved 
mitochondrial dysfunction [19].

The expression of PGC-1α gene in the liver 
after exercise was contrast with the expression in 
skeletal muscle. A previous research has proven that 
PGC-1α expression has been reported to be increased 
in the liver of both Type 1 and Type 2 diabetic mouse 
models, in contrast to the reported observations that 
PGC-1α expression was decreased in the muscle of 
human Type  2 diabetic subjects [13]. The influence 
of exercise on both expressions is reverse. Exercise 
increased PGC-1α gene in skeletal muscle while 
decreased in liver [17], [20].

Increased hepatic PGC-1α expression could 
be expected to stimulate hepatic glucose output in 
T2DM concerned with the default of plasma glucose 
to enter the cell [21]. Impaired insulin signaling in 
the liver disrupts the mechanism of glycogenesis 
and stimulates gluconeogenesis and glycolysis [22]. 
Induction of PGC-1α and PGC-1β expression in liver 
is a critical regulatory event leading to the activation 
of energy metabolic pathways that serve to increase 
ATP production by fatty acid oxidation and exert 
homeostatic control, especially in fasted state 
as it is observed in diabetes mellitus. Moreover, 
PGC-1α may promote IR directly by inducing TRB-
3, an inhibitor of Akt signaling, a critical downstream 
component of the insulin signaling pathway, 

Table  3: Plasma blood glucose and insulin resistance in 
treatment groups before and after exercise assignment
Groups Pre-test Post-test p-value
Blood glucose

MIC 339 ± 103.7 191.6 ± 5.4 0.014*
HIC 396.8 ± 25.7 198.2 ± 75 0.009*
SI 452.6 ± 31.3 227.2 ± 87.8 0.001*
FI 451.2 ± 83.2 259 ± 25 0.006*

HOMA-IR
MIC 90.5 ± 40.5 43.3 ± 8.6 0.066
HIC 81.3 ± 6.1 18.5 ± 6.4 0.000*
SI 94.0 ± 21.1 16.6 ± 4.0 0.001*
FI 91.1 ± 19.7 19.7 ± 7.8 0.004*

*p < 0.05, MIC: Moderate-intensity continuous, HIC: High-intensity continuous, SI: Slow interval, FI: Fast 
interval, HOMA-IR: Homeostatic model assessment-insulin resistance.

Results

mRNA PGC-1α gene expression

The average of cycling threshold of each group 
and gene expression compared to control is shown in 
Table  2. The cycling threshold value is opposite with 
gene expression. The extended cycling threshold 
time showed decreased of gene expression otherwise 
shorter cycling threshold mean gene expression 
increase.

Table 2: The average cycling threshold of each group
Group Sedentary Mean 

± SD (n = 5)
MIC Mean 
±SD (n = 5)

HIC Mean ± 
SD (n = 5)

SI Mean  
± SD (n = 5)

FI Mean 
± SD (n = 5)

p

∆CT 2.72 ± 1.03 9.62 ± 1.59 13.37 ± 1.33 8.98 ± 0.12 11.61 ± 1.52 0.000**
∆CT: Target gene-reference gene, MIC: Moderate-intensity continuous, HIC: High-intensity continuous,  
SI: Slow interval, FI: Fast interval.

From Table 2, we found that time of cycling 
threshold value mRNA PGC-1α gene at treatment 
groups was significantly different than control after 
8  weeks of exercise (p  <  0.05). Post hoc LSD 
analysis showed that differences in the length of 
the cycling threshold between groups were seen 
in the MIC group with HIC (p  =  0.004), HIC with 
SI (p = 0.01), and SI with FI (p = 0.016), as shown 
at Figure 1. Calculation with livask method shown 
that 8  weeks of exercise were able to decrease 
the expression of mRNA PGC-1α gene in liver 
T2DM rat model, MIC =0.0084, HIC =0.0006; 
SI =0.0130; FI =0.0023.
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Figure  1: Cycling threshold showed significantly different between 
moderate intensity and high intensity. Moderate-intensity continuous 
(MIC)-high-intensity continuous (HIC) (p = 0.004); MIC-slow interval 
(SI) (p = 0.311); MIC-fast interval (FI) (p = 0.098); HIC-SI (p = 0.01)

Blood glucose and IR

Fasting blood glucose and IR in treatment 
groups before and after exercise assignment are 
shown in Table 3. Fasting blood glucose each treatment 
group after exercise assignment was significantly 
declined, as well as HOMA-IR except HOMA-IR in MIC 
group.

The magnitude of decreasing in fasting plasma 
glucose and IR after exercise protocol is shown in 
Figure 2.
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potentially increasing hepatic glucose production that 
contributes to circulating hyperglycemia. Exercise 
has been shown improved IR in the liver by reducing 
the inflammatory process, including the inhibition of 
TRB3, and suppressing gluconeogenesis [23].

Exercise enhanced mitochondrial 
biogenesis to produce energy for muscle needs. 
Increased activity of mitochondrial enzymes and 
nitric oxide of the muscle stimulates PGC-1α being 
more active  [24]. This mechanism impacts insulin 
sensitivity in skeletal muscle and liver so that IR 
and plasma blood glucose were decreased [25]. 
Improvement in IR degrades liver gluconeogenesis, 
IR, and activated Akt signaling so that the PGC-1α 
gene in liver was decreased [26].

In this research, PGC-1α liver gene 
expression in HIC training was lower than in MIC so 
that the expression of PGC-1α in FI was lower than 
SI. In vigorous intensity, cell metabolism produces 
more energy that promotes insulin sensitivity 
improvement at skeletal muscle [27]. Decreasing 
IR at skeletal muscle followed by decreasing on 
liver gluconeogenesis [28]. This finding suggests a 
connection between PGC-1α liver gene expression 
and exercise intensity.

Conclusions

We conclude that exercise affected PGC-1α 
gene expression in the T2DM rat model liver. The 
expression was associated with exercise intensity, 
especially in continuous exercise. We suggested 
advanced research to obtain more insight into the 
mechanism.
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