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Abstract
BACKGROUND: Anxiety disorder is one of the most common psychiatric problems. Prolonged stress gives 
rise to anxiety-like behavior in animals. Environmental interventions influence the outcome of anxiety treatment. 
Environmental enrichment (EE) can modulate brain’s structure and function.

AIM: The objective of the study was to evaluate EE effects on anxiety-like behavior and corticosterone (CORT) level 
after unpredictable chronic mild stress (UCMS).

METHODS: A  total of 28 rats were assigned into four groups randomly: Control, UCMS, UCMS+EE, and 
UCMS+fluoxetine. UCMS, EE, and fluoxetine were given for 21  days. Anxiety behavior was measured on day 
22nd using Elevated Plus Maze. Behavioral measurement was based on the total time spent and total entries onto 
open and closed arms. CORT was measured using ELISA.

RESULTS: UCMS increased anxiety-like behavior as seen from reduced number of entries and time spent in open 
arms as well as increased number of entries and time spent in in closed arms in UCMS group than control. Rats in 
EE group spent more time and made more entries in the open arms than UCMS group (both p = 0.002). Anxiolytic 
effect of EE was stronger than fluoxetine. Plasma CORT level among groups did not differ significantly (p = 0.351).

CONCLUSION: EE can ameliorate stress-induced anxiety-like behavior without affecting CORT level.
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Introduction

Stress is associated with the development 
of many diseases [1]. Chronic stress can dysregulate 
the hypothalamic-pituitary-adrenal (HPA) axis with 
subsequent negative implications on health including 
psychiatric problems [2]. Prolonged stress exposure 
can result in maladaptive behavioral changes such 
as depression and anxiety-like behavior that mimic 
mental disorders in human [3], [4]. Stress impact was 
prominent in two brain areas called the hippocampus 
and amygdala, structures that control the networks for 
mood regulation, suggesting the important role of stress 
response in emotional behavior [4].

Anxiety disorder is one of the most common 
psychiatric problems found in the current societies [5]. 
Anxiety research in preclinical setting has been 
focusing on the development of new anti-anxiety 
drugs  [6] probably due to the fact that emotional 
behavior in human and animal especially rodents are 
relatively similar [7], [8]. There are three most popular 
assays that have been adopted in preclinical studies 

to assess anxiety behavior including the elevated 
plus maze (EPM) test, the open field (OF) test, and 
the light-dark (LD) box test [6]. A profound basis from 
preclinical research is crucial to direct further studies 
and to develop therapeutic interventions for anxiety 
disorders [9].

A number of studies suggested the 
involvement of certain factors such as genes, drugs, 
and environmental interventions in the management of 
anxiety [6]. Environmental enrichment (EE) was shown 
to induce not only morphological and molecular changes 
in the brain but also changes in the behavior [10], [11]. 
EE incorporates social and physical stimuli that help 
modulate brain’s function and structure by affecting 
the expression of certain genes and neurotransmitter’s 
activity [12], [13]. The previous studies showed 
that EE increased the animal’s resilience to stress 
and inhibited anxiety-like behavior as well as fear 
induced by stress  [14], [15] and restored memory 
impairment   [16]. Despite the EE positive effects on 
behavior, the mechanism that underlies these effects 
is not clear yet. Considering these facts, we aimed to 
investigate whether EE can attenuate stress-induced 
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alteration in anxiety behavior and evaluate whether this 
alteration correlates with any changes in the level of a 
stress-related hormone, corticosterone (CORT).

Methods

Animal and housing condition

Twenty-eight male Wistar rats (Rattus 
norvegicus) aged approximately 6 weeks were used 
in this research. Rats were allocated randomly into 
four groups including control group (C), stress group 
(UCMS), stress plus EE group (UCMS+EE), and 
stress plus fluoxetine group (UCMS+Fluox). Each 
group consisted of seven rats. Rats in the UCMS+EE 
group were put in an enriched cage to facilitate more 
physical activity and social interaction. As compared 
to standard cage, the enriched one was larger 
(80  cm × 55  cm × 45  cm) and contained various 
kinds of playing tool such as a small ball, a slide, 
a running wheel, a plastic tube, bedding material, 
and a ladder step. These toys were re-positioned 
regularly to provide novel experience. All other 
rats were housed in standard cages with controlled 
lighting at 25–28°C. The rats could access food and 
drinking water freely.

Stress protocol

We applied a chronic unpredictable mild stress 
(UCMS) procedure in this study. A variety of stressors 
were given randomly at different time each day to 
ensure unpredictability as well as to avoid habituation. 
Stress exposure was given for 21  days to create a 
chronic state of the stress condition. Detailed protocol 
of the stress procedure is shown in Table 1.

Experimental procedure

After acclimation process, rats were assigned 
to four groups as previously mentioned. On the 1st day 
of the experiment, stress exposure as outlined in 
the UCMS protocol was given to all animals except 
those in the control group. Enrichment condition and 
fluoxetine administration were also started from day 1 
along with the stress exposure in the UCMS+EE and 
UCMS+ Fluox group, respectively. Fluoxetine was 
administered once per day orally at 10  mg/kg [17]. 
Immediately before administration, fluoxetine was 
dissolved with saline 0.9%. Stress exposure, EE, and 
fluoxetine were given for 21  days. On day 22, the 
behavioral test was conducted. Blood sample was 
collected from the retro-orbital plexus on the following 
day at 9–10 a.m for the measurement of plasma CORT 
level. The study was conducted as per the guidelines 
of the Animal Care and Use of Universitas Sebelas 
Maret. Approval for the study protocol has been 
given by the Medical Research Ethics Committee 
of the Faculty of Medicine, Universitas Sebelas 
Maret, Surakarta, Indonesia (Ethical Clearance 
244/UN27.6/KEPK/2018). Every effort was done to 
minimalize the animals’ suffering.

Behavioral test

On the 22nd day of the experiment, anxiety-like 
behavior of the animals was measured with EPM test. 
The EPM test was conducted according to Park et al. 
previous work [18]. The task used an apparatus with a 
plus-shaped configuration comprising of two open arms 
(50 cm × 10 cm) and two closed arms (50 cm × 10 cm × 
40 cm) made from white opaque acrylic. The maze was 
raised 50 cm from the ground. A video camera placed 
directly above the middle of the apparatus was used 
to record the test. Sixty minutes before the test, rats 
were transported to the behavior testing room. At the 
start of the examination, the rat was put at the middle 
of the apparatus (5  cm × 5  cm) and was then given 
5 min to explore the maze freely. After every session, 
70% ethanol was applied to clean the maze. Before 
starting the following test, the maze must be clean and 
dry. An entry is counted when the rat puts all four paws 
onto the open or closed arm. EPM is a simple yet valid 
method to evaluate anxiety state in rats. It is developed 
in accordance with the innate behavior of rats to 
spontaneously explore novel environment as well as 
their natural aversion to be in elevated and open areas, 
thus, creating an exploration conflict. Increased anxiety 
level and fear is reflected in avoidance of the open arms 
of the EPM [19]. Anxiety behavior assessment was 
done by measuring the number of entrances and time 
spent in each arm. Increased number of entries and the 
time spent in open arms and rat’s tendency to reside in 
closed arms display higher level of anxiety [20]. Total 
entries in closed arms are also used to measure the 
general locomotor activity [21].

Table 1: The protocol for chronic unpredictable mild stress
Day Time I Stressor I Time II Stressor II
1 08.00 Cold swimming (10°C, 

4 min)
14.00 Predator noise (30 min)

2 10.00 Cage tilting at 45°C (4 h) 18.00 Overnight illumination
3 09.00 Cage darkened (3 h) 17.00 Continuous cage shaking 

(10 min)
4 08.00 Food deprivation (24 h) 15.00 Cold swimming (10°C, 4 min)
5 08.00 Cage darkened (3 h) 16.00 Tail pinch (2 min)
6 09.00 Predator noise (30 min) 18.00 Overnight illumination
7 07.30 Water deprivation (24 h) 16.00 Cage tilting at 45°c (4 h)
8 08.00 Damp sawdust (5 h) 13.00 Cold swimming (10°C, 4 min)
9 10.00 Cage darkened (3 h) 17.00 Predator noise (30 min)
10 06.30 Predator noise (30 min) 16.00 Cage tilting at 45°C (4 h)
11 11.00 Continuous cage shaking 

(10 min)
16.30 Tail pinch (2 min)

12 07.00 Cage darkened (3 h) 17.30 Overnight illumination
13 11.00 Cage tilting at 45°C (4 h) 17.00 Continuous cage shaking 

(10 min)
14 10.00 Damp sawdust (5 h) 15.30 Cold swimming (10°C, 4 min)
15 08.30 Cage darkened (3 h) 18.00 Overnight illumination
16 09.00 Cage tilting at 45°C (4 h) 14.00 Predator noise (30 min)
17 08.00 Tail pinch (2 min) 16.30 Cold swimming (10°C, 4 min)
18 06.30 Damp sawdust (5 h) 12.00 Cold swimming (10°C, 4 min)
19 10.30 Predator noise (30 min) 15.00 Continuous cage shaking 

(10 min)
20 09.00 Cage darkened (3 h) 18.00 Overnight illumination
21 08.00 Predator noise (30 min) 15.30 Cage tilting at 45°C (4 h)
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Plasma CORT measurement

Immediately after collection, whole blood was 
processed to obtain the plasma by centrifugation (1500 
rcf for fifteen minutes at 4°C). This plasma subsequently 
was kept in –20°C until ELISA test was performed. The 
concentration of plasma CORT was measured using 
ELISA kit (Fine Test, Wuhan Fine Biological Technology 
Co, Ltd) as per the manufacturer’s instruction manual. 
Absorbance measurement was done at 450 nm using a 
spectrophotometer.

Statistical analysis

One-way analysis of variance (ANOVA) or 
Kruskal–Wallis test was used to analyze the data 
followed by Post hoc test for multiple comparisons 
using SPSS version 22.0. p < 0.05 was set as the level 
of significance.

Results

Behavioral response

Anxiety-like behavior was assessed based on 
several parameters including the total entries score 
and time spent in both the open and closed arms in 
the EPM test. UCMS significantly reduced entries onto 
open arms and tended to reduce the time spent in 
open arms. Rats housed in an enriched condition spent 
significantly more time in the open arms than rats in 
the UCMS group (p = 0.002) and so did the rats with 
fluoxetine treatment (p = 0.005). This response was 
stronger in the UCMS+EE group than the UCMS+Fluox 
group (p = 0.005). Similarly, the number of entries into 
open arms in both the environmentally enriched group 
and fluoxetine treated group was significantly higher as 
compared to UCMS group (p = 0.002 and p = 0.017, 
respectively). Result of the measurement on total time 
and entries onto the open arms is displayed in Figure 1.

The number of entries in closed arms of UCMS 
group was significantly higher as compared to control 
(p = 0.040). The total time spent in closed arms was 
significantly higher in UCMS group than UCMS+EE 
group (p = 0.035). Effect of EE in decreasing the total 
time spent in closed arms was stronger than fluoxetine. 
The total entries into closed arms in UCMS+EE and 
UCMS+Fluox group did not differ significantly as 
compared to UCMS group (p = 0.659 and p = 0.067, 
respectively). Detailed result of the measurement on 
total time and entries onto the closed arms is displayed 
in Figure 2.

Figure 2: The average total time spent (a) and total entries (b) in Closed 
Arms in each group presented as mean + standard error of the mean 
(SEM). Data (a and b) were analyzed with Kruskal–Wallis followed by 
Post hoc Mann–Whitney test. *p < 0.05 versus unpredictable chronic 
mild stress group (a); * p < 0.05 versus control (b)

Plasma CORT level

We compared the level of plasma CORT 
between control, stress group, and treatment group. 
However, there was no significant difference in the 
concentration of plasma CORT among groups after we 
performed the one-way ANOVA analysis.

Discussion

Behavioral response

The previous works have suggested the 
correlation between stressful event and the development 
of several psychiatric disorders including affective 
disorders such as anxiety and depression [22], [23], [24]. 
This study showed that chronic exposure of unpredictable 
mild stress induced anxiety-like behavior in rodents 
as indicated by the propensity of the animals to enter 
the closed arms of the EPM apparatus and to spend 
most of the time in the closed arms during the test. 
Rat’s preference to be in the closed arms suggests 
the need for a secure environment reflecting a sign 
of an anxious state [25]. Consistent with our finding, 
studies in animals showed that certain kinds of stress 
exposure resulted in the development of anxiety-like 
behavior [21], [25], [26]. In line with this result, clinical 
studies in human also revealed that stress exposure 

ba

Figure  1: The average total time spent (a) and total entries (b) in 
open arms in each group depicted as mean + standard error of the 
mean (SEM). Data were analyzed with one-way analysis of variance 
followed by Post hoc least significant difference (LSD) test (Data A) 
and Kruskal–Wallis followed by Post hoc Mann–Whitney test (Data 
B). *p < 0.05 versus unpredictable chronic mild stress (UCMS) group; 
**p < 0.01 versus UCMS group
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increased the risk of developing anxiety disorder [27]. 
As a response to stress exposure, the HPA axis is 
stimulated. Stress causes the hypothalamus to secrete 
a neurohormone called corticotrophin releasing factor 
(CRF) which subsequently triggers the production of 
adrenocorticotropic hormone (ACTH) from anterior 
pituitary. ACTH is released into the bloodstream and 
then induces the production of glucocorticoid (called 
CORT in rodents and cortisol in human) from adrenal 
gland [28]. Stress-related elevation in CRF expression 
in the amygdala, a structure that regulates emotion, 
is considered to stimulate anxiety [29]. Moreover, rats 
with high anxiety state showed increased level of CRF-
expressing neurons in the basolateral amygdala [30].

Rats naturally have the fear of height and 
open spaces as well as the drive to explore new 
environment. It is generally accepted that the closed 
arms and the open arms of EPM apparatus can induce 
similar exploratory drive. Thus, higher level of anxiety is 
characterized by the aversion of open arm exploration 
and the propensity to spend time in the closed arms [19]. 
This study showed that EE could attenuate anxiety-like 
behavior in rats assessed with EPM paradigm. EE 
significantly reduced the time spent in the closed arms 
and increased both the duration in open arms and 
total entries onto open arms. This change in anxiety 
behavior was not caused by altered general locomotor 
activity mainly due to the fact that we did not find any 
marked differences in the frequency of entries in closed 
arm between treated groups and UCMS group [21]. 
Similar to our result, a number of studies found that 
EE could reduce the level of anxiety in several kinds 
of animal models [31], [32], [33], [34], [35]. In addition, 
we found that the anxiolytic effect of EE was stronger 
than fluoxetine, an antidepressant drug that belongs 
to serotonine selective reuptake inhibitor (SSRI) 
group. The previous clinical studies demonstrated that 
antidepressant (Nutt DJ) could be used to treat anxiety 
disorders effectively [36] and SSRI was shown to have 
an anti-anxiety property [37], [38].

The previous research has shown that EE 
could modulate behavior [39], [40]. It improved the 
capacity to learn and store memory as well as lowered 
anxiety level [41], [14], [42]. However, there has been 
no conclusive evidence regarding the mechanism 
underlying the anxiolytic effect of EE. There has been 
no standardized protocol for EE. However, certain 
components are generally included in the procedure [43]. 
In this study, we put the UCMS+EE rats in a spacious 
cage to give them more opportunity to move and 
provided playing tools to stimulate more social, spatial, 
sensory, and physical activity. In particular, we put 
a running wheel to facilitate physical activity. The 
complexity of EE which incorporates various kinds of 
stimuli was proven to influence the brain’s morphology 
and function by changing the expression of certain 
genes and the activity of neurotransmitter [12], [13] 
which may contribute to the anxiolytic property of EE.

CORT level

Increased anxiety-like behavior has been 
associated with elevation in CORT concentration [44]. 
In contrast, our study suggested that unpredictable 
chronic mild stress induced an increased anxiety state 
without any effect on plasma CORT concentration. 
There was no significant difference in the plasma 
concentration of CORT among groups (p = 0.351). 
Neither EE nor fluoxetine administration affected CORT 
level as compared to both UCMS group and control. 
This result was somewhat surprising because the 
previous works indicated that stress exposure elevates 
the concentration of CORT [45], [46]. Stress-induced 
emotional disorders in animals also correlated with 
elevated level of CORT  [3], [47], [48]. However, it is 
noteworthy to see that our findings corroborate previous 
research showing that rats assigned to EE condition 
have high resting plasma CORT level as compared 
to control [49]. Other studies in rats also revealed that 
neither the basic nor the response level of plasma 
CORT was affected by EE treatment [50], [51]. In 
addition, both blockade of CORT secretion and CORT 
replacement did not normalize the stress-induced 
alteration in OF behavior following chronic HPA axis 
disruption [2]. Therefore, it is plausible that CORT 
regulates behavioral disorders related to stress but 
may not involve in amelioration of anxiety-like behavior 
stimulated by EE.

A number of published works showed that many 
systems plays an important role in the pathophysiology 
of anxiety disorders including monoaminergic system 
(serotonergic, dopaminergic, and noradrenergic 
system)  [52] and neuroimmune system [14], [15]. 
A  large cohort study in human also reported an 
association between immune dysregulation with anxiety 
disorder [54]. Stress exposure was reported to alter 
these systems [1], [55], [56], [57]. Thus, it is likely that 
these systems contributed to alterations in anxiety-like 
behavior in the EPM test.

Strength and weaknesses

The stress-induced anxiety model that we used 
in this study has been widely used in neuroscience 
research. In addition, anxiety measurement was 
done using EPM test that has become an established 
procedure to test anxiety level. It has been validated for 
usage in both mice and rats [58]. However, we realize 
that there have been several limitations in this study 
including the fact that we only measured CORT level at 
one time point. Thus, we cannot evaluate any changes 
in the baseline and response CORT level. Additional 
data from baseline CORT measurement and other 
stress-related hormone such as CRF will give more 
support to our study. Further research could investigate 
the role of other factors that may contribute to the 
anxiolytic effect of EE such as the neurotransmitter, 
inflammatory cytokines, and neurotrophic factors 
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to gain more understanding on the mechanism that 
underlies EE effect on anxiety behavior.

Conclusion

Enriched environment can ameliorate stress-
induced anxiety like behavior. This anxiolytic effect is 
not associated with alteration in stress hormone level.
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