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Abstract
BACKGROUND: Alzheimer’s Dementia (AD) cases are increasing with the global elderly population. To study the 
part of the brain affected by AD, animal models for hippocampal degeneration are still necessary to better understand 
AD pathogenesis and develop treatment and prevention measures.

AIM: This study was a systematic review of toxic substance-induced animal models of AD using the Morris Water 
Maze method in determining hippocampal-related memory impairment. Our aim was reviewing the methods of AD 
induction using toxic substances in laboratory rodents and evaluating the report of the AD biomarkers reported in 
the models.

METHODS: Data were obtained from articles in the PubMed database, then compiled, categorized, and analyzed. 
Eighty studies published in the past 5 years were included for analysis.

RESULTS AND DISCUSSION: The most widely used method was intracerebroventricular injection of amyloid-β 
substances. However, some less technically challenging techniques using oral or intraperitoneal administration of 
other toxic substances also produce successful models. Instead of hippocampal neurodegeneration, many studies 
detected biomarkers of the AD pathological process while some reported inflammation, oxidative stress, neurotrophic 
factors, and changes of cholinergic activity. Female animals were underrepresented despite a high incidence of AD 
in women.

CONCLUSION: Toxic substances may be used to develop AD animal models characterized with appropriate AD 
pathological markers. Characterization of methods with the most easy-handling techniques and more studies in 
female animal models should be encouraged.
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Introduction

Alzheimer’s dementia (AD) is a problem 
involving deteriorating cognitive function due to 
neurodegeneration and a leading cause of disability 
and dependency in the elderly. It is characterized by 
memory decline, impaired executive function, and 
communication problems. The number of cases is 
currently increasing along with the increasing older 
population. There were more than 55 million people 
living with dementia worldwide in 2019, and this is 
anticipated to triple by 2050 [1]. Although aging is 
a risk factor for cognitive decline, AD itself is not 
part of the normal aging process [1], [2]. Until now, 
no effective dementia therapy is available; hence, 
prevention efforts are very important to be developed 
by modifying risk factors to reduce or slow down 
the pathological process  [3]. The study of tissue 
pathology and molecular biomarkers in the brain 
of patients with AD is limited due to the invasive 
examinations required and infrequent autopsies 
done. Therefore, the use of animal models is still 

needed to better understand AD pathogenesis, find 
biomarkers for early diagnosis and develop treatment 
and prevention modalities.

Rodents are widely used as animal 
models of neurodegeneration and AD, due to their 
simplicity in handling and testing compared to 
larger mammals. Their brain anatomy is analogous 
to humans. Compared to other brain areas, the 
hippocampus of animal models of AD shows the most 
significant changes in the DNA methylation, mRNA 
(transcriptome), protein (proteome), and metabolite 
(metabolome) levels. The molecular changes in the 
hippocampus are correlated with the decrease of 
cognitive function in animal models, which is in line 
with the clinical symptoms of AD [4], [5], [6].

At present, various methods are used in 
inducing AD in animal models, such as using natural 
aging processes, transgenic animals of AD, various 
surgery techniques to occlude arteries leading to the 
brain, and administering a variety of toxic substances. 
Natural aging processes match the development of 
AD in humans [6], [7]. However, longer time is needed 
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to develop the signs and symptoms. Moreover, the 
increased mortality rate of aging animals complicates 
the study design. Mostly involving mice as reviewed in 
several publications [8], [9], transgenic animals of AD 
are useful in examining certain pathways in disease 
pathogenesis. However, the technique requires 
expensive facilities and high-end expertise that are not 
suitable for many studies especially in drug development 
research. Requiring only relatively modest facilities, 
induction of AD using a variety of toxic substances is 
a widely used method in drug development studies. 
However, reviews on toxic substance-induced AD 
models are limited.

Since cognitive dysfunction is the most 
prevalent symptom in humans, this parameter 
should occur in good AD animal models. The 
Morris Water Maze (MWM) test is the main test for 
examining cognitive impairment in rodent models 
of hippocampal neurodegeneration [10], [11]. This 
systematic review aimed to evaluate the use of toxic 
substances in rat models of cognitive impairment 
examined by the MWM test. The technical issue of 
toxic substance delivery as well as the histological 
and biochemical parameters presented in the reports 
will be discussed.

Methods

The search was conducted on the 
PubMed database on December 9, 2020, at 
6:42 Western Indonesian Time by entering the 
keyword combination ((((((dementia) OR (dementia 
Alzheimer)) OR (Alzheimer)) AND ((degenerati*) OR 
(neurodegenerati*))) AND (hippocamp*)) AND ((rat) OR 
(rats))) AND (Morris Water Maze). The inclusion criteria 
were original reports on hippocampal degeneration and 
AD using rats as animal models, and MWM as a test 
for spatial memory examination. The efficacy studies 
of alternative medicine and drug developments were 
included when they provided data of untreated models 
and normal control groups. The exclusion criteria were 
non-English articles, lack of full text, not using toxic 
substances as induction technique, have non-significant 
results in MWM, and studies which used transgenic 
animal modeling. There was no year limitation in our 
first search.

The data obtained were compiled in a 
spreadsheet and categorized based on modeling 
techniques, characteristics of animal models, tested 
parameters, and modeling mechanisms in causing 
hippocampal degeneration and clinical symptoms 
of AD. The obtained data from the past 5  years 
(2016–2021) were then analyzed to provide a more 
detailed description of each model.

Results

The screening of articles

From this search, 255 articles published within 
1998 to 2021 were obtained and selected based on the 
inclusion and exclusion criteria. The filtering process is 
described in Figure 1. From the screening of titles and 
abstracts, 61 articles were excluded because they did 
not meet the criteria, including three articles which were 
not original articles, three articles written in non-English 
language, one article which was an incomplete 
manuscript (only abstract found), and 54 articles which 
did not use toxic substances. From the remaining 194 full 
texts, 34 articles were excluded in the rescreening step, 
that is, ten articles used transgenic animal modeling, 
two articles aimed to model neurological disease other 
than AD, three articles using mice, two articles did not 
test the control group (normal control nor induction 
control), one article had insignificant results on MWM, 
and 16 articles used more than one induction. From 
the 160 articles obtained, 80 articles published in the 
past 5 years (2016–2021) were included in the study 
for further analysis.

Preeliminary Screen, 
n = 255

Rescreened Literature, 
n = 194

Final inclusion of 
the literature,

n = 80

• Excluded literature after
reading titles and abstracts,
n = 61
• Not original article = 3
• Non-English article = 3
• Article that unavailable in full

text = 1
• Not used toxic substances = 54

• Excluded literatures after reading
full text, n = 114
• Unrelated studies = 2
• Used mice = 3
• Used transgenic rats =  10
• Used combination induction

methods = 16
• Not used the control group =2
• Has un-significant result on

MWM = 1
• Published before 2016 = 80

Figure 1: Screening flowchart for systematic review

Increased reports on this subject were 
apparent since the number of reports published 
before 2010 periods were only 21 studies, while 
59 studies reported between 2011 and 2015, and 
80  studies reported between 2016 and early 2021. 
The most widely used technique in the past 10 years 
is the injection of amyloid-β (Aβ) and streptozotocin 
(STZ). However, over the past 10  years, many other 
techniques have emerged which have not been used 
in older studies, that is, the use of trimethyltin (TMT), 
d-galactose, okadaic acid, monosodium glutamate 
(MSG), lipopolysaccharide (LPS), high-fat high glucose 
(HFHG) diet, high salt-cholesterol diet (HSCD), virus 
vectors as carriers of toxic substances, colchicine, 
cuprizone, letrozole, and scopolamine. All the studies 
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included in further analysis conducted the MWM test 
and showed significant results, both in the acquisition 
test, the probe test, and/or both.

Experimental animals and modeling 
methods

Most of the reports used male Wistar or 
Sprague-Dawley (SD) rats; each reported by 43 and 30 
studies, respectively. Only five studies used female rats 
(two Wistar rats and three SD rats) (Table 1). Meanwhile, 
another two studies used male rats but did not mention 
the strain. The average age of the rats at the necropsy 
was 5  months. One study induced neonate rats with 
MSG [12] and the testing and necropsy were done in 
adulthood.

Table 1: Number of articles published on 2016–2021 using 
chemical substance and route of administration
Toxic substances Number of article Route of Administration

ICV IP Oral Sub‑cutaneous
Amyloid β** 35 [13], [14], [15], [16], [17], 

[18], [19], [20], [21], [22], [23], 
[24], [25], [26], [27], [28], [29], 
[30], [31], [32], [33], [34]. [35], 
[36], [37], [38], [39], [40], [41], 
[42], [43], [44], [45], [46], [47]

35 0 0 0

Streptozotocin** 16 [48], [49], [50], [51], [52], 
[53], [54], [55], [56], [57], [58], 
[59], [60], [61], [62], [63]

16 0 0 0

Aluminum chloride 4 [64], [65], [66], [67] 0 1 3 0
192IgG‑saporin 4 [68], [69], [70], [71] 4 0 0 0
d‑galactose 3 [72], [73], [74] 0 1 0 2
Scopolamine 2 [75], [76] 0 2 0 0
Okadaic acid 2 [77], [78] 2 0 0 0
Ibotenic acid 2 [79], [80] 2 0 0 0
Lipopolysaccharide 2 [81], [82] 0 2 0 0
Trimethyltin 2 [83], [84] 0 2 0 0
High‑fat‑high glucose 
diet

2 [85], [86] 0 0 2 0

Monosodium 
glutamate 

1 [12] 0 0 0 1

Virus vector‑APP 1 [87] 1 0 0 0
Colchicine 1 [88] 1 0 0 0
Cuprizone 1 [89] 0 0 1 0
High salt and 
cholesterol diet**

1 [90] 0 0 1 0

Letrozole** 1 [91] 0 0 1 0
Total number of 
articles

80 61 8 8 3

**Used female rat: Aβ 2 articles (33,45); STZ 1 article (61); HSCD (90); Letrozol (91)

In the 2016–2021 periods, there was a rapid 
development in the number and type of induction 
techniques in research using AD modeling. In the 80 
studies reported within the past 5 years, we found 17 
modeling techniques Table 1.

The length of interval between induction and 
MWM test with all methods varied with the different types 
of induction. The interval was 7 weeks on average, while 
the fastest was 30 min after induction (of scopolamine 
injection) [75], and the longest was 32 weeks (HFHG 
diet) [85]. The most widely used administration 
technique for introducing toxic substances was through 
the intracerebroventricular (ICV) route (Table 1). Most 
toxic substance administrations through ICV route 
used a single dose, except for STZ administration 
that needed multiple doses. Four studies of ICV 
administration used multiple doses of Aβ. The most 
widely used administration technique for introducing 
toxic substances was through the (ICV) route (Table 1). 

Most toxic substance administrations through ICV route 
used a single dose, except for STZ administration 
that needed multiple doses. Four studies of ICV 
administration used multiple doses of Aβ. The ICV route 
of delivery resulted in the shortest interval time such 
as reported in ICV colchicine induction (1 week), ICV 
STZ induction (1–3 weeks), okadaic acid (2 week), 192 
Ig-Saporin (2–3 weeks), and ibotenic acid (2–5 weeks). 
Although we found one article reported a short 1-week 
interval, other reports of ICV Aβ induction reported 
longer intervals of 8 weeks between induction and the 
MWM tests. By ICV administration, the toxic substance 
directly accumulates in the central nervous system 
without any problems in crossing the brain-blood 
barrier. Therefore, the effect is likely to be faster than 
systemic administration [92].

Toxic substances administration through 
intraperitoneal (IP) injection and oral route were also 
commonly used. LPS, scopolamine, TMT, aluminum 
chloride, and d-galactose were toxic substances 
administered through the IP route, while aluminum 
chloride, cuprizone, and letrozole were toxic 
substances administered orally. Almost all of the toxic 
substances given through IP injection and oral routes 
were done in multiple doses and in a relatively longer 
time, except TMT that was given at single dose orally 
20 days before the MWM test. Among the parenteral 
routes, subcutaneous administration requires a longer 
absorption time [93], [94] and a relatively longer interval 
between induction and behavioral test (12  weeks for 
MSG, 6–8 weeks for d-galactose, and 6–12 weeks for 
aluminum). Subcutaneous injection was reported by 
three studies; two of them used d-galactose; and the 
other one gave MSG injection to their animal models. 
Oral induction, such as HFHG [85] and HSCD [90], 
was seen to have the longest interval, which was about 
15–32 weeks.

The most widely used typical marker of AD 
was the presence of amyloid plaque or Aβ (26 articles), 
followed by neurofibrillary tangle (NFT) or p-tau 
(11 articles), glycogen synthase kinase 3 beta (GSK3β) 
(four articles), beta secretase (βACE) (four articles), 
amyloid precursor protein (APP) (three articles), and 
presenilin-1 (PS-1) (one article) Table  2. Examination 
of typical markers of AD was performed through in situ 
and biochemical techniques. In situ studies of amyloid 
plaque markers used mostly immunohistochemical 
staining techniques and rarely using special staining 
of Congo Red. Biochemical and qualitative level 
measurements used enzyme-linked immunosorbent 
assay, polymerase chain reaction, and Western blotting 
to determine levels of the typical marker of AD in the 
level of protein and mRNA.

In addition to examining the typical markers of 
AD, these studies also examined the markers of the AD 
pathological process, such as markers of inflammation, 
oxidative stress, neurotrophic factors, the change of 
cholinergic activity, and markers of neurodegeneration 
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(apoptosis, neuronal and hippocampal tissue 
damage, change of neuronal morphology, decrease 
of neurogenesis, or neuronal death through both 
quantitative and qualitative methods). Seventeen studies 
examined inflammation-related markers, including 
interleukin-1 (IL1), IL6, IL10, tumor necrosis factor-
alpha, nuclear transcription factor-kappa B, peroxisome 
proliferator-activated receptor γ, XB1, and inducible nitric 
oxide synthase. Twenty-six studies examined markers 
of oxidative stress, such as malondialdehyde, reactive 
oxygen species, and the level of antioxidants such as total 
antioxidant capacity, total thiol groups, thiol, superoxide 
SOD, catalase, glutathione peroxidase, and glutathione. 
Ten studies examined markers of neurotrophic factors, 
such as brain-derived neurotrophic factor and vascular 
endothelial growth factor, and signaling components 
such as peroxisome proliferator-activated receptor 
gamma coactivator 1-alpha, cAMP response element-
binding protein, sirtuin, protein kinase B (p-AKT), and 
extracellular signal-regulated kinase. Nineteen studies 
examined altered cholinergic enzymes, such as activities 
of choline acetyltransferase and acetylcholinesterase.

Most of the studies (52 studies) examined markers 
of degenerative neurons such as synaptic damage, 
pyknotic nuclei, cytoplasmic swelling, neuron shrinkage, 
vacuolization, lower number of neurons, and decreased 
volume of the hippocampus. Molecular markers including 
apoptosis markers: B-cell associated X-protein, B-cell 
lymphoma protein 2, Caspase-3, terminal deoxynucleotidyl 
transferase mediated dUTP nick end labeling (TUNEL), 
and fluoro jade; neuronal and glial responses: Microtubule 
associated protein 2, neuronal nuclei, glial fibrillary acidic 
protein, ionized calcium-binding adaptor molecule 1; and 
the neurogenesis marker: Bromodeoxyuridine was also 
frequently reported Tables 2 and 3.

Discussion

The use of chemical substances to induce 
animal models has been shown to be successful in 

causing memory impairment [95] as shown with the result 
of the MWM test. This test examines spatial memory 
impairment and has been correlated with hippocampal 
neurodegeneration in rat models [10], [11], [68]. Wistar 
and SD rats are widely used with equal proportions in 
AD modeling. Both strains of rats are widely available 
and handled easily with comparable MWM test results.

The pathological process of AD is related 
to the deposition of amyloid plaque and tau-protein 
hyperphosphorylation that causes NFT. The formation 
of Aβ deposition comes from the cleavage of APP 
by βACE through the amyloidogenic pathway and 
subsequently produces C-terminal fragment β (CTFβ). 
The CTFβ fragment is cleaved by secretase-γ which 
contains the protein PS-1 to produce Aβ peptide. The 
βACE has been shown to be elevated in AD patients, 
as APP and PS-1 mutations are also responsible for 
increased Aβ deposition in patients. The Aβ deposition 
will cause synaptic disturbance and then lead to 
excessive tau-protein hyperphosphorylation. Tau-
protein hyperphosphorylation leads to pathological 
intracellular tau protein accumulation to form NFT 
and subsequently leads to neurodegeneration. Tau 
phosphorylation is facilitated by tau kinases, including 
GSK3β and cyclin-dependent kinase 5 (CDK5). 
Amyloid-deposition also causes the formation of 
hydrogen peroxide which triggers lipid peroxidation and 
finally produces an aldehyde compound that is toxic to 
nerve cells, namely, 4-hydroxynonenal (4-HNE). The 
formation of 4-HNE also leads to the formation and 
aggregation of NFT. The Aβ and NFT are neurotoxic 
and cause oxidative stress and inflammation, hence 
leading to neuronal death [3], [96], [97], [98].

The typical AD markers such as amyloid 
plaques and NFT are important parameters to be 
examined in an AD animal model, yet they were only 
reported by a limited number of studies. Other typical 
markers, such as protein PS-1, APP, GSK3β, and 
βACE, were reported less frequently. Instead, most of 
the studies examined neurodegeneration markers and 
markers of processes leading to neurodegeneration 
such as oxidative stress, inflammation, and neuronal 
damage. These markers are reported possibly due 

Table 2. Number of articles reporting each type of parameter for each toxic‑substance‑induced animal model
Toxic substances Typical marker of 

dementia
Stress oxidative 
marker

Inflammation 
marker

Neurotrophic 
factor

Cholinergic 
activity

Neuro‑degeneration 
marker

Amyloid β (Aβ) 14 9 3 4 3 25
Streptozotocin (STZ) 6 5 3 1 5 10
192Ig‑saporin 0 0 0 1 3 2
Alumunium chloride 3 2 2 1 2 4
d‑galactose 1 2 2 1 0 2
High fat high glucose (HFHG) diet 2 1 1 0 0 1
Ibotenic acid 1 2 0 0 2 1
Lipopolysaccharide (LPS) 0 0 1 0 0 1
Okadaic acid 2 1 2 0 0 2
Scopolamine 0 2 0 2 1 0
Trimethyltin (TMT) 0 0 0 0 1 1
Colchicine 0 1 0 0 0 1
Cuprizone 1 0 0 0 1 0
Monosodium glutamate (MSG) 1 0 1 0 0 0
High salt & cholesterol diet (HSCD) 0 1 1 0 0 0
Letrozole 1 0 1 0 1 1
Virus vector‑APP 1 0 0 0 0 1
Total number of articles 33 26 17 10 19 52
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to the clinical similarity between neurodegenerative 
processes and AD, especially if the disease includes 
hippocampal degeneration [99], [100].

Two toxic substances were most frequently 
used in the studies, that is, Aβ and STZ. ICV 
administration of Aβ injection is the most widely 
reported induction technique especially after 2010. The 
injection of the substance in the form of protein aimed 
directly into the ventricle of the brain was mostly done 
by a single dose injection. Only four studies performed 
the injection in divided doses. These techniques 
consistently reported amyloid plaque formation in 
the hippocampus [19]. Increased levels of Aβ and 
the formation of amyloid plaques stimulate further 
processes related to AD pathology such as formation 
of NFT, oxidative stress, inflammation, decrease of 
neurotrophic factor, change in cholinergic activity, 
and death of neurons  [3],  [96],  [98]. Because of its 
consistency in producing AD characteristics, this model 
of direct delivery to the target organ is increasingly 
popular despite the technical challenges [19].

Another substance that is used to induce 
hippocampal degeneration in animal models of 
dementia is STZ [48], [57], which is a toxic compound 
that is widely employed in inducing pancreatic beta 
cell death in animal models of diabetes [58]. It has 
been revealed that the PI3K/AKT/GSK-3β pathway 
of the insulin signaling cascade is downregulated 
upon administration of ICV STZ and downregulation 
of this pathway is responsible for the emergence of 
insulin resistance [55]. The ICV pathway is the STZ 
entry route of choice in AD modeling. In AD modeling, 
administration of STZ through the ICV pathway causes 
increased levels of Aβ, formation of NFT, induces 

oxidative stress, neuroinflammation, decreases of 
neurotrophic factors, changes in cholinergic activity, 
apoptosis, and other neurodegenerative changes 
through insulin signaling impairment leading to cognitive 
and memory deterioration as found in AD [50], [55]. 
Several studies used the IP route, which was relatively 
easier than the ICV route. However, this method 
has not been reported in the past 5  years. Although 
insulin resistance is correlated with GSK3β activity, 
tau hyperphosphorylation and amyloid formation [55], 
previous STZ-induced animal models using the IP route 
had not reported biomarkers of AD.

Insulin signaling pathway is implicated in AD 
model induced by HFHG diet through increased CDK5 
transcriptional activity that causes hyperphosphorylation 
of various substrates such as neurofilament, APP and 
p-tau [85]. Other than STZ, aluminum chloride, MSG, 
HFHG, and dan letrozole were other toxic substances 
that induce the appearance of typical AD markers 
through impaired insulin signaling [12], [65], [85], [91]. 
Normally, insulin binds to the insulin receptor (IR) 
and further leads to the activation of PI3K/AKT 
and inactivation of GSK-3β. Insulin resistance is 
characterized by abnormal GSK-3β activity, responsible 
for hyperphosphorylation of tau protein, a significant 
contributor to AD pathogenesis. Other mechanisms in 
AD pathogenesis may involve reducing the activity of 
insulin degrading enzymes (IDE) that are responsible 
for the degradation of insulin as well as Aβ. In a mouse 
model, IDE gene knockout creates the tendency of 
excessive APP generated Aβ accumulation in neuronal 
cells [55].

Biomarkers of AD such as tau 
hyperphosphorylation and Aβ formation have been 

Table 3. Markers detected in hippocampus of AD animal model
Typical marker of dementia Stress oxidative markers Inflammation markers Neurotrophic factor Markers of Cholinergic 

activity
Neuro‑degeneration 
marker

Amyloid plaque MDA (malondialdehyde) NF‑κB BDNF (brain derived 
neurotrophic factor)

AchE (Acetylcholine 
esterase)

Casp‑3 (caspase‑3)

p‑Tau (phosphorylated tau) ROS (reactive oxygen 
species)

TNF‑α PGC1‑α ChAT (choline 
acetyltransferase) 

BAX

APP (amyloid precursor 
protein)

NO (nitric oxide) IL‑1 (interleukin 1) SIRT (sirtuin) BCL‑2

Presenilin‑1 (PS1) Nitrit IL‑6 (interleukin 6) CREB p‑AKT
GSK3β (glycogen synthase 
kinase 3 beta)

FOXO1 (forkhead box 
protein O1)

IL‑10 (interleukin 10) VEGF (vascular endothelial 
growth factor)

ERK

βACE (Beta secretase) PCO (plasma protein 
carbonyl)

PPAR‑γ GFAP (glial fibrillary 
acidic protein)

TTG (total thiol group) XB‑1 TUNEL
H2O2 (hydrogen peroxide) iNOS JNK 
4‑HNE (4‑hydroxynonenal) Fluoro Jade
GSH (glutathione) IBA‑1
GPx (glutathione 
peroxidase)

Neu‑N

SOD (superoxide 
dismutase)

BrdU

CAT (catalase) MAP‑2
TAC (total antioxidant 
capacity)

Change of neuron 
morphology:
Decrease number of 
neuron using stereology 
technique 
Change in density of 
neuron
Neuron 
impairment (pyknotic 
nuclei, vacuolization)

          Synaptic impairment
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reported in AD models induced by other toxic 
substances. Okadaic acid induced AD biomarkers 
through inhibition of serine/threonine phosphatase 
1 (PP1) and 2A (PP2)  [78]. Ibotenic acid impaired 
cholinergic neurons in the nucleus basalis of Meynert, 
a similar sign found in AD. Although the mechanism 
was not clearly stated, one article reported that 
APP and amyloid were expressed on ibotenic acid 
induction  [80]. Cuprizone was also one of the toxic 
substances reported to induce amyloid plaques 
although the exact mechanism was not elucidated. 
Cuprizone is able to induce neuronal demyelination 
and oxidative stress in the brain, causing AD 
clinical symptoms [67]. One study also reported that 
d-galactose induction lead to the presence of Aβ and 
βACE. D-galactose itself has previously been used to 
induce oxidative stress and brain impairment [74]. TMT 
administration has been reported to induce memory 
impairment, typical markers of AD, hippocampal 
degeneration, neuroinflammation, and decreased 
neurotrophic factors [68], [100], [101], [102]. In addition, 
a transcriptomic high-throughput analytical study of 
TMT revealed differential expression of AD-associated 
genes such as PS-1 and p-tau [101].

In the HFHG and HSCD induced AD models, 
the dietary cholesterol cannot pass the blood-
brain barrier directly, but it is thought to influence 
central nervous system homeostasis by increased 
transport of its circulatory breakdown product, an 
endogenous selective estrogen receptor namely 
27-hydroxycholesterol, into the brain. Most studies 
investigating the role of cholesterol in increasing the 
risk of AD has focused on how cholesterol affects APP 
processing and Aβ protein clearance. The cholesterol-
fed animal model of AD shows a multitude of pathological 
findings similar to those seen in AD patients including 
Aβ deposits, NFT, and significant increase of markers 
associated with neurodegeneration in the hippocampus 
as well as cognitive deficits [103].

Not all studies on AD animal model using toxic 
substances examined NFT and Aβ deposits but instead 
used biomarkers of neurodegenerative processes, such 
as markers of neuronal damage, oxidative stress, and 
inflammation. A  study using HSCD reported that it is 
associated with neuroinflammation marked by activated 
NF-kB signaling pathway [90]. Inhibiting NF-κB 
pathways itself could interrupt neuroinflammation and 
generation of Aβ [90]. Neuronal death due to oxidative 
stress and inflammatory processes in the hippocampus 
results in a lower number of hippocampal pyramidal 
neurons. While hippocampal neurodegeneration 
is often reported in toxic substance induced AD 
models, this hallmark of AD neuropathology is an 
aspect often lacking in transgenic models [103]. Many 
studies provided data on the density of pyramidal 
neurons in the hippocampal area from histological 
sections [24], [28], [29], [50], [51], [58], [61], [62], [87]. 
Such data are prone to bias from reference traps [104]. 

Unbiased stereological techniques of total number of 
pyramidal neurons in the hippocampus [32], [83] may 
provide more reliable data on reduced number of 
neurons upon neuronal death.

The length of interval between induction and 
MWM test varies with different types of induction. Most 
studies used mostly young adults of 2–5 months old rats. 
Although aging is a risk factor for cognitive decline, AD 
itself is not part of the normal process of aging [2], [3]. 
Therefore, using younger animals induced by toxic 
substances may reduce the length of time needed 
to obtain the desired signs and symptoms of AD [7]. 
In general, oral administration of toxic substances 
takes more time to produce desirable signs and 
symptoms compared to parenteral administration. In 
the gastrointestinal tract, toxic substances may interact 
with many digestive enzymes, microbiomes and food 
components that may neutralize the toxin. Furthermore, 
the detoxification process in hepatocytes may weaken 
the effect of the toxin. On the other hand, substance 
metabolism may produce a derivative substance with 
more potent toxicity [93].

The interval from the start of induction to the 
MWM test is the longest in animals undergoing diet 
modification, such as HSFD and HCSD. Obviously, 
the longer time and special diet for about 15–32 weeks 
in producing this model require more resources. 
Nevertheless, diet modification has an advantage in 
mimicking the slow pathological changes in human 
metabolism leading to neurodegeneration [93]. ICV 
route is the most widely use method and produces a 
relatively fast model with high reproducibility. However, 
it is a technically demanding method that also needs 
special equipment. Scopolamine and TMT are toxic 
substances typically given intraperitoneally to generate 
neurodegeneration in AD modeling. Scopolamine is 
injected repeatedly in multiple dosages, while TMT 
is injected in a single dose. Scopolamine has a rapid 
effect, but the duration of its effect is short. Therefore, 
scopolamine must be given repeatedly, every 30  min 
before the behavioral examination or termination  [75]. 
TMT can be considered as one of the promising 
alternative AD induction substances due to several 
factors, for example, easy administration (IP, single 
dose) and relatively shorter duration from induction into 
development of AD characteristics.

Studies using female rats were more limited in 
number, possibly due to its more complicated nature. 
Using female rats, researchers must consider the 
influence of hormones such as estrogen in memory 
function. Therefore, the study is less appealing for many 
researchers with limited resources. Studies on sex 
differences in AD rat models are limited to five studies, 
that is, two articles using Aβ [33], [45], one study using 
STZ [61], one study used HSCD [90], and one study 
used letrozole [91]. Those limited studies reported that 
female rats are comparable to male rats on MWM, AD 
markers, and neurodegenerative markers upon toxic 
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induction. Nevertheless, further study on female animal 
models should be encouraged, because the number of 
women who suffer from AD is actually more than men 
with AD [33] and sexual differences in animal models of 
other brain-related diseases have been reported [105]. 
Differential hormonal secretion and sex chromosome 
gene expression may induce different pathogenesis, 
markers, and therapeutic efficacy in women [106].

Conclusion and Future Direction

At least 17 modeling techniques in rats were 
developed to support AD research and the most widely 
used technique was injection of Aβ toxic substances. 
The memory impairment in the rat models was examined 
with MWM. The presence of both senile plaques and 
NFT in brain tissue is other characteristics of AD in 
humans and should be considered to be examined in 
the brains of AD animal models. The reduced number 
of neurons in the hippocampus can provide evidence 
of neuronal degeneration and should be counted with 
an unbiased method. Additional parameters that were 
widely examined in studies using AD modeling were 
the biomarkers of AD pathological processes, such as 
markers of inflammation, oxidative stress, neurotrophic 
factors, the change of cholinergic activity, and markers 
of neurodegeneration. It is still necessary to develop 
techniques and selection of toxic substances with 
optimal results and easy-handling techniques. Future 
study of AD using female rats needs to be encouraged 
considering the higher number of women who suffer 
from Alzheimer’s disease compared to men.
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