Introduction

Tropical diseases such as dengue hemorrhagic fever (DHF), malaria, and tuberculosis remain global health problems [1], [2], [3]. Meanwhile, several efforts that have been carried out to control these diseases have not significantly reduced the number of sufferers, especially DHF. An estimation has shown that 390 million dengue infections occur each year and 96 million manifests clinically [4]. Out of the population at risk of this disease, 1.3 billion live in 10 countries of the WHO regional area in Southeast Asia, which are dengue-endemic areas [5].

DHF is caused by the dengue virus and transmitted through mosquito bites from the genus Aedes [6]. Moreover, behavioral factors, population mobility, and climatic factors such as rainfall, temperature, and humidity affect dengue incidence [7], [8], [9]. Meanwhile, people’s behavior is changed through a positive deviance approach that focuses on the local community behavior and through outreach to increase community knowledge and attitudes [10], [11]. Strengthening of the institutional system also plays a role in preventing and controlling dengue cases [12]. In addition, the detection and mapping of dengue virus serotypes is essential to monitor transmission [13].

Maros Regency is among the areas in South Sulawesi Province that are prone to dengue fever. This is due to the high incidence of dengue fever and its varying tendency. In 2013, the number of DHF sufferers in Maros Regency was 245 cases with an incidence...
rate (IR) of 73.84 per 100,000 population and three deaths with a case fatality rate (CFR) of 1.22. The IR DHF in Maros Regency in 2014 increased to 133.79 per 100,000 population in 2014 and decreased to 117.01 in 2014, while in 2016, it increased to 183.15. Meanwhile, the high rate of DHF morbidity in this regency is due to poor environmental conditions and the inadequate activity of Mosquito Nest Eradication (PSN) in the community [14].

Due to the high incidence of DHF in the Maros Regency, studies are conducted on the development of the incidence through dynamic modeling of dengue fever prediction from 2020 to 2040. This dynamic model approach describes the increased incidence as a part of a complex system in the real world into a simple model. Furthermore, the dynamic system modeling is expected to predict future dengue events and serve as an early warning in anticipating the incidence.

Methods

Research location and design
The study was conducted in Maros Regency, South Sulawesi Province, because the regency is a dengue-endemic area. This study design is a research and development (R and D) method through a dynamic systems approach.

Population and sample research
DHF incidence data recorded in the Health Office of Maros Regency from 2014 to 2018 are used samples in this study.

Data collection
The secondary data used in this study were from the Maros District Health Office in the form of morbidity, mortality, and healing dengue disease. Furthermore, the climatological data were from the Maros Regency Meteorology, Climatology, and Geophysics Agency.

Data analysis
Dynamic modeling of dengue event prediction begins with making a flowchart prediction model for the fever. Interpretive structural modeling (ISM) was used to determine the right policy scenario in reducing cases. In implementing the ISM model, interviews were conducted with stakeholders from academia, practitioners, and the government to obtain ideas for controlling the incidence of DHF in the regency. Furthermore, the analysis was carried out using ISM through the Powersim program based on the interview data.

Research Results

Key elements in the prevention of DHF
The analysis of DHF prevention 14 sub-elements in Maros Regency based on interviews with stakeholders showed that the sub-elements with a considerable driving power in the prevention program are Jumantik, 3M Plus, early warning systems, and extension programs (Figure 1).

Due to the high incidence of DHF in the Maros Regency, studies are conducted on the development of the incidence through dynamic modeling of dengue fever prediction from 2020 to 2040. This dynamic model approach describes the increased incidence as a part of a complex system in the real world into a simple model. Furthermore, the dynamic system modeling is expected to predict future dengue events and serve as an early warning in anticipating the incidence.

Methods

Research location and design
The study was conducted in Maros Regency, South Sulawesi Province, because the regency is a dengue-endemic area. This study design is a research and development (R and D) method through a dynamic systems approach.

Population and sample research
DHF incidence data recorded in the Health Office of Maros Regency from 2014 to 2018 are used samples in this study.

Data collection
The secondary data used in this study were from the Maros District Health Office in the form of morbidity, mortality, and healing dengue disease. Furthermore, the climatological data were from the Maros Regency Meteorology, Climatology, and Geophysics Agency.

Data analysis
Dynamic modeling of dengue event prediction begins with making a flowchart prediction model for the fever. Interpretive structural modeling (ISM) was used to determine the right policy scenario in reducing cases. In implementing the ISM model, interviews were conducted with stakeholders from academia, practitioners, and the government to obtain ideas for controlling the incidence of DHF in the regency. Furthermore, the analysis was carried out using ISM through the Powersim program based on the interview data.
dynamic model simulation using the 3M Plus scenario for 20 years (2020–2040) has decreased. Meanwhile, the number of dengue cases in 2020 was 188 cases, while in 2040, it was 73, with a decrease of 61.17% (Figure 4).

Early warning system scenarios

The estimated average incidence of DHF based on dynamic model simulation results using an early warning system scenario for 20 years (2020–2040) in the Maros Regency showed a decrease of 74.4%. The number of dengue cases in 2020 was 188 and decreased to 48 in 2040 (Figure 5).

Extension scenarios

Figure 6 shows the estimated average incidence of DHF based on a dynamic model simulation with a scenario for 20 years (2020–2040) that had a decrease in cases. The number of dengue cases in 2020 was 188, while in 2040, it was 90, with a decline of 52.12%.

Combined scenarios

Estimating the average incidence of DHF based on dynamic model simulation results using a combined scenario (Jumantik, 3M Plus, early warning system, and counseling) for 20 years (2020–2040) has decreased. The number of dengue cases in 2020 was 188, while in 2040, it was 4, with a decrease of 97.87% (Figure 7).

Discussion

The sub-elements that have a considerable driving power in the DHF prevention program in Maros Regency are the Jumantik program, 3M Plus, early warning systems, and counseling. Meanwhile, dengue hemorrhagic fever (DHF) is a common disease in tropical regions that usually cause extraordinary events (KLB). Community participation is required to control mosquito larvae that cause DHF through continuous larva checks. To increase community participation, it is necessary to have a Jumantik cadre (Juru Pemantau Jentik) [15]. Supriayana's study showed that controlling dengue incidence through the “One Jumantik One House” program increased community-based family...
participation and empowerment for prevention [16]. Meanwhile, government attention to the Jumantik cadres requires improvement by providing facilities and tools to support the cadres in carrying out delegated duties.

The 3M Plus action is carried out to eradicate and destroy the dengue mosquito vector chain. A previous study by Moreira showed that 3M Plus activities such as draining and covering water reservoirs, as well as using mosquito repellent insecticides were related to the dengue incidence [17] This has a significant impact in controlling breeding places for mosquito nests and eradicating larvae before growing into adult mosquitoes. Moreover, prevention and control of dengue are carried out earlier [18].

The dengue fever early warning system is an effort to prevent and overcome dengue cases. This system is designed to predict outbreaks and avoid dengue cases by assisting in timely decision-making [19]. Furthermore, the system provides accurate and up-to-date data to prevent dengue. Moreover, climatic and non-climatic information is used as an epidemiological tool for a dengue outbreak early warning system that enables prevention, vector control, identification of high-risk populations, and increases the preparedness of health-care facilities and workers as well as the public. This minimizes potential harm to society by prioritizing health services and limited resources and implementing vector control activities before an epidemic occurs [20].

Outreach activities and interpersonal communication regarding dengue are essential to improve good dengue prevention behavior in the community [21]. A previous study by Hasnah showed that health education on dengue significantly affected family behavior in preventing the disease [22]. Similarly, Baequni in Jakarta showed that the provision of health education in posters and flipcharts to elementary school students effectively triggered dengue eradication and prevention behavior [23]. Therefore, health workers need to conduct education on DHF and its prevention regularly to reduce the incidence of DHF.

The most effective scenario to reduce dengue cases in Maros Regency in the next 20 years is the combination of all methods, namely, the Jumantik program, 3M Plus, early warning systems, and counseling. This is in contrast with Rasmanto’s study, which showed that the most useful scenarios to control dengue fever were the abatezation and fogging scenarios [24]. The difference in the results of this study could be caused by several factors such as sociocultural, community behavior, and environmental factors in the research location.

Conclusions

Based on the results, the most adequate model for predicting dengue incidence in Maros Regency from 2020 to 2040 is the combination of the Jumantik program scenario, 3M Plus, early warning systems, and counseling. Therefore, the combined method is used as a prevention and control strategy to reduce the rate of increase in DHF in Maros Regency and be considered to find the best way of increasing the effectiveness of the DHF disease prevention program.

References


12. Nuddin A, Asiah N, Dangnga MS, Arsunan AA, Yusrani Y, Handayani S. Institutional strengthening as an anticipatory measure for dengue virus transmission to reduce the incidence
PMid:32204203


PMid:30818394


