The Effect of Topical and Oral Phenytoin on Increasing Wound Healing of Enterocutaneous Fistula in Wistar Rat

Victor Kurniawan1,*, Hardian Hardian2, Ignatius Riwanto3

1Biomedical Master Program, Diponegoro University, Semarang, Indonesia; 2Department of Physiology, Faculty of Medicine, Diponegoro University, Semarang, Indonesia; 3Department of Digestive Surgery, Faculty of Medicine, Diponegoro University, Semarang, Indonesia

Abstract

BACKGROUND: Enterocutaneous fistula is an abnormal connection between gastrointestinal tract with skin or wound [1]. The incidence of this fistula is high in inflammatory bowel disease, post-cancer surgery, adhesion removal, and trauma patients [2], [3], [4].

Enterocutaneous fistula treatment includes wound treatment, adequate nutrition, infection control, and fluid and electrolyte balance [5]. Some studies showed low numbers of spontaneous fistula closure (20–30%) despite proper wound treatment and nutrition with high morbidity and mortality rate in fistula repair operation [1], [4], [6], [7]. The understanding of basic principles of wound treatment, technique, and available materials is crucial to reduce the morbidity and mortality rate of patients with enterocutaneous fistula. Therefore, a study of new modality with higher efficacy for enterocutaneous fistula wound treatment is needed [5].

Introduction

Enterocutaneous fistula is an abnormal connection between the gastrointestinal tract with skin or wound [1]. The incidence of this fistula is high in inflammatory bowel disease, post-cancer surgery, adhesion removal, and trauma patients [2], [3], [4].

Phenytoin or diphenylhydantoin is commonly used as an anti-convulsant but recently it is studied for its effects on wound healing. Several studies have revealed the role of phenytoin in wound healing process such as promoting fibroblast activities, formation of granulation tissue, reduction of collagenase activities, increasing collagen production and other connective tissue components, reducing bacterial colonization, and reducing wound exudate. There is no significant difference between P1 and P2, p < 0.05 (0.269), indicating that oral phenytoin is not more effective than topical phenytoin. There is no significant difference between P1 and P2, indicating that oral phenytoin is more effective in collagen formation than topical phenytoin. There is no significant difference between P1 and P2, indicating that oral phenytoin in granulation tissue in enterocutaneous fistula in Wistar rats.

MATERIALS AND METHODS: This is an experimental study with randomized post-test only design on 20 Winstar rats. A 5 mm enterocutaneous fistula was made on the rat’s stomach and the rats were assigned randomly into three groups: K (control), P1 (10% phenytoin ointment), and P2 (0.03 mg/g oral phenytoin). The groups were terminated on day 7 and wound histological slides were made. The data were analyzed using SPSS software.

RESULTS: The delta diameter is highest in P1 group (mean ± SD 0.928 ± 0.078), followed by P2 (mean ± SD 0.770 ± 0.145), and control (mean ± SD 0.411 ± 0.120). There is a significant difference, p < 0.05 (0.000), between P1 and P2, indicating that oral phenytoin is more effective in collagen formation than topical phenytoin. There is no significant difference between P1 and P2, p < 0.05 (0.269), indicating that oral phenytoin is not more effective than topical phenytoin in granulation tissue in enterocutaneous fistula in Wistar rats.

CONCLUSION: Administration of topical and oral phenytoin was effective in increasing granulation tissue thickness, increasing collagen amount in wound tissue, and reducing the diameter of enterocutaneous fistulas in Wistar rats compared with control on the seventh day.

Phenytoin or diphenylhydantoin is commonly used as an anti-convulsant but recently it is studied for its effects on wound healing. Several studies have revealed the role of phenytoin in wound healing process such as promoting fibroblast activities, formation of granulation tissue, reduction of collagenase activities, increasing collagen production and other connective tissue components, reducing bacterial colonization and reducing wound exudate [8], [9], [10], [11], [12], [13], [14], [15]. Therefore, this study aims to assess the effect of phenytoin in the fistula wound healing process in Winstar rats. The results of this study are hoped to support the use of phenytoin as an option in the management of enterocutaneous fistulas.
rats (age 8–10 weeks, weight 100–150 g). A 5 mm enterocutaneous fistula was made on the rat’s stomach. The rats were assigned randomly into three groups: K (control, wound treated with damp-dry sterile gauze dressing), P1 (10% phenytoin ointment and dry sterile gauze dressing), and P2 (0.03 mg/g oral phenytoin with dry sterile gauze dressing). The groups were terminated on day 7. All samples were treated in the same environment and diet. After termination, wound tissue was sampled up to the intestines and was prepared into histological slides. The histological slides were assessed by a pathological anatomist and the data was analyzed using SPSS version 25 for Windows.

Table 1: Delta diameter of enterocutaneous fistula (day 7 after treatment minus day 1 before treatment) in millimeters

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>6</td>
<td>0.411 ± 0.120</td>
</tr>
<tr>
<td>Topical</td>
<td>6</td>
<td>0.928 ± 0.078</td>
</tr>
<tr>
<td>Oral</td>
<td>6</td>
<td>0.770 ± 0.145</td>
</tr>
</tbody>
</table>

between P1 and P2, p < 0.05 (0.269), indicating that oral phenytoin is not more effective than topical phenytoin in granulation tissue in enterocutaneous fistula in Wistar rats (Figures 1-3 and Tables 1-3).

Table 2: The amount of collagen in the tissue between three treatment groups

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>6</td>
<td>44.333 ± 9.048</td>
</tr>
<tr>
<td>Topical</td>
<td>6</td>
<td>126.167 ± 13.287</td>
</tr>
<tr>
<td>Oral</td>
<td>6</td>
<td>155.500 ± 10.709</td>
</tr>
</tbody>
</table>

Results

The delta diameter (day 7 treatment fistula diameter minus day 1 before treatment) is highest in P1 group (mean + SD 0.928 ± 0.078), followed by P2 (mean + SD 0.770 ± 0.145), and control (mean + SD 0.411 ± 0.120). The amount of collagen increased in early phase of wound healing from the inflammation phase to the proliferation phase. There is a significant difference, p < 0.05 (0.000), between P1 and P2, indicating that oral phenytoin is more effective in collagen formation than topical phenytoin. Granulation tissue is thickest in P2, followed by P1, and control. There is no significant difference

Discussion

Similar results were seen in study done by Motawea et al. whose study found that administration of phenytoin powder resulted in reduction of ulcer diameter compared to treatment with only sterile gauze with normal saline [15]. Gupta et al. also yielded similar results using topical phenytoin [14].

Table 3: Granulation tissue thickness between three treatment groups

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>6</td>
<td>574.995 ± 183</td>
</tr>
<tr>
<td>Topical</td>
<td>6</td>
<td>845.351 ± 3.241</td>
</tr>
<tr>
<td>Oral</td>
<td>6</td>
<td>896.587 ± 81.295</td>
</tr>
</tbody>
</table>

Figure 1: Macroscopic view of enterocutaneous fistula on day 1 and day 7 (termination) in control (K), topical treatment (P1), and oral treatment (P2) of phenytoin. (a) K-D1, (b) K-D7, (c) P1-D1, (d) P1-D7, (e) P2-D1, (f) P2-D7
Topical phenytoin had more effect on skin epithelization above the fistula tissue and thus skin closure was better compared to treatment using oral phenytoin. This aligns with the results from a study by Jain et al. who reported significant increase in epithelization, neovascularization, and tissue tensile strength in mice administered with topical phenytoin [12].

Systemic levels of phenytoin affect the formation of granulation tissue and other extracellular protein matrices [16]. A study of the effects of intravenous phenytoin on gastrointestinal fistula healing in mice revealed a faster healing process compared to conventional treatment [17]. This study also compared the doses of intravenous administration. The higher the level of phenytoin in blood resulted in more granulation tissue.

Conclusion

Administration of topical and oral phenytoin was effective in increasing granulation tissue thickness, increasing collagen amount in wound tissue, and reducing the diameter of entero-cutaneous fistulas in Wistar rats compared with control on the 7th day.

References

PMid:27926552

PMid:8416784

PMid:22606642

PMid:27777858

PMid:21552054

PMid:30999080

PMid:24694757

PMid:32532188