The Effect of Various Training on the Expression of the 5'AMP-Activated Protein Kinase A2 and Glucose Transporter - 4 in Type-2 Diabetes Mellitus Rat

Rahmi Rahmi1, Yetty Machrina2*, Zulham Yamamoto3

1Department of Biomedical Sciences, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia; 2Department of Physiology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia; 3Department of Histology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia

Abstract

BACKGROUND: Exercise is the main pillar in Type 2 Diabetes Mellitus (T2DM) management. The mechanism of glucose uptake mediated by exercise is different from insulin, and this mechanism is not disturbed in T2DM. One of the mechanisms is through the activation of 5'AMP-activated protein kinase (AMPK). AMPK also regulates the glucose transporter 4 (GLUT4) expression. Effect various types of exercise to AMPK α2 and GLUT-4 of the skeletal muscle still limited.

AIM: This study aims to determine the effect of various physical training on the expression of Ampk α2 and Glut 4 in skeletal muscle of T2DM rats.

METHODS: This study used stored skeletal muscles of 25 T2DM Wistar rats. Previously, the rats were divided into groups of K1 (control, not given exercise), K2 (moderate continuous training), K3 (severe continuous training), K4 (slow interval training), and K5 (fast interval training). Running on a treadmill frequency 3 times a week for 8 weeks. The relative expression of Ampk α2 and Glut 4 were assessed using Real Time-PCR and were compared among the groups using the Livak formula.

RESULTS: Moderate intensity continuous training increased Ampk α2 and Glut 4 expression by 1.45 and 2.39 times, respectively. Severe intensity continuous training increased the expression of Ampk α2 and Glut 4 by 1.55 and 2.56 times, respectively. Slow interval training increased the expression of Ampk α2 and Glut 4 by 4.41 and 3.76 times, respectively. The expression of Ampk α2 and Glut 4 in fast interval training was 4.58 and 4.79 times more than control.

CONCLUSION: Continuous and interval training increase Ampk α2 and Glut 4 expression. The fast interval training showed the highest expression of Ampk α2 and Glut 4.

Introduction

The prevalence of Diabetes Mellitus Type-2 (T2DM) in the world continues to increase every year [1]. Indonesia also experienced an increase in prevalence from 6.9% in 2013 to 8.5% in 2018 [2]. One of the reasons for this increase is the lack of physical activity. Physical inactivity can reduce insulin sensitivity due to mitochondrial dysfunction, especially skeletal muscle because the skeletal muscle was one of the organs with large amount of insulin receptor. Insensitivity of insulin receptor, lead to glucose uptake impairment. As the compensation of energy insufficiency in cell, hepar will produce gluconeogenesis [3], [4].

Exercise is one of the main pillars of managing T2DM [5]. Exercise and muscle contraction stimulate glucose uptake through a different mechanism than insulin-mediated one [6]. In patients with T2DM, insulin-mediated glucose intake is impaired although exercise-mediated glucose uptake is normal or nearly normal [7]. The activation of 5'AMP-activated protein kinase (AMPK) is one of the insulin-independent mechanisms that is mediated by exercise. AMPK is a heterotrimeric protein kinase consisting of α, β, and γ subunits, encoded by different genes (α1, α2, β1, β2, γ1, γ2, and γ3). AMPK is activated by energy stress in response to an increase in ATP consumption or a decrease in ATP production, in the form of a low ratio of ATP to AMP and ADP [8]. When exercising, the amount of ADP and AMP increases rapidly while ATP decreases slightly, activating AMPK and stimulating glucose uptake by translating GLUT4 to the plasma membrane [9], [10].

AMPK also regulates GLUT4 expression [10]. This is supported by the finding that exercise, through AMPK activation, can increase GLUT4 expression in skeletal muscle [11], [12], [13]. Increased expression of skeletal muscle GLUT4 may improve blood sugar control in T2DM [14]. During exercise, only α2β2γ1 and α2β2γ3 complexes are activated and cause
Aerobic training

T2DM rats were divided into five groups, namely, K1: the sedentary group (not treated) as the control group; K2: group with moderate-intensity continuous training: running on a treadmill with a running speed of 20 m/min, for 30 min; K3: group with severe intensity continuous training: running on a treadmill with a running speed of 24–33 m/min, for 30 min; K4: group with slow interval training: running on a treadmill with a running speed of 20 m/min, 10 repetition sessions, with a duration of 2 min/session interspersed with rest for 1 min (20 m/min, 10 × 2 min, rest 1 min); K5: group with fast interval training: running on a treadmill with a running speed of 30 m/min, 15 repetition sessions with a duration of 30 s/session interspersed with a rest for 1 min (30 m/min, 15 × 30 s, rest 1 min). Physical training in the K2, K3, K4, and K5 was carried out for 8 weeks, three times a week [24].

Real time-PCR

RNA was extracted from 30 mg of the muscles using commercial kit (Tiangen Simple Total RNA Kit, Tiangen, China). The Nanodrop ND-1000 spectrophotometer (Thermo Fisher Scientific, Newington, NH, USA) was applied to measure the concentration and purity of extracted RNA. RNA samples were reverse-transcribed using ReadyScript cDNA Synthesis Mix (Sigma Aldrich, Darmstadt, Germany). Specific primers were used in this study for Ampk β2 and Glut4 and gene expression was normalized using β-actin as a housekeeping gene (Table 1). Primers were purchased from Macrogen, Seoul, South Korea.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-actin</td>
<td>F 5'-AGGCCCTGTTGAACCCCTAA-3'</td>
</tr>
<tr>
<td></td>
<td>R 5'-GGAGGAAATCATGCCACCCA-3'</td>
</tr>
<tr>
<td>Ampk β2</td>
<td>F 5'-GATCGGCAAACAGATATCTTCCCT-3'</td>
</tr>
<tr>
<td></td>
<td>R 5'-GACAGTGGTCACACGGCAGAC-3'</td>
</tr>
<tr>
<td>Glut4</td>
<td>F 5'-GCCGCAGGACACTATACCCTA-3'</td>
</tr>
<tr>
<td></td>
<td>R 5'-GGGAAAGTCACTGACGACCCA-3'</td>
</tr>
</tbody>
</table>

A total of 20 μL real time-PCR reactions were made up as follows in a 36 well plate; 100 ng of cDNA in 6,4 μL of Rnase free ddH₂O, 10 μL of SensiFast SYBR No-Rox Mix (Bioline Reagents Ltd. the United Kingdom) and 0.8 μL of both forward and reverse primers at 100 μM concentrations. The amplification process was performed using RotorGene (Qiagen, Germany), which was programmed to perform the following steps; 2 min hold at 95°C, and then 40 cycles at 95°C for 5 s and 60°C for 20 s. The mRNA expression was represented using the Rq which is normalised to the control group or Rq = 2−ΔΔCt (ΔCt = Ct [target] – Ct [β-actin]; ΔΔCt = ΔCt [sample] – ΔCt [control]) [26].

Statistical analysis

Effect aerobic training to fasting blood glucose in treatment groups was analyzed with paired t-test. To
compare the cycling threshold from Ampk α2 and Glut4 gen expression difference among group, we analyzed data with One Way ANOVA. Relative expression of Ampk α2 and Glut4 in each group was determined by livaks formula.

Table 2: The comparation of ΔCt Ampk α2 and ΔCt Glut4 among group

<table>
<thead>
<tr>
<th>Groups</th>
<th>ΔCt Ampk α2</th>
<th>ΔCt Glut4</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>1.78 ± 1.75</td>
<td>4.72 ± 1.75</td>
</tr>
<tr>
<td>K2</td>
<td>1.24 ± 1.37</td>
<td>4.71 ± 1.70</td>
</tr>
<tr>
<td>K3</td>
<td>1.15 ± 1.37</td>
<td>1.15 ± 1.37</td>
</tr>
<tr>
<td>K4</td>
<td>0.36 ± 3.03</td>
<td>3.14 ± 3.03</td>
</tr>
<tr>
<td>K5</td>
<td>0.41 ± 4.85</td>
<td>2.46 ± 3.37</td>
</tr>
</tbody>
</table>

p value = 0.737, 0.853, 0.006, 0.006

Discussion

The results of this study indicated that there was an increase in Ampk α2 expression in the four groups that were given physical training. The interval training group experienced an increase in Ampk α2 expression higher than the continuous exercise group. The highest increase in the expression was found in the group with fast interval training. In addition, exercise with a higher intensity will further increase the expression of Ampk α2. The results of this study are in line with Cao et al. Cao et al., (2012) reported that swimming exercise in T2DM rats model for 8 weeks increased the expression of Ampk α2 protein 1.5 times compared to rats that were not given exercise [13]. Brandt et al., (2010) also reported that swimming exercise for 4 weeks increased Ampk α2 expression by 43% in insulin resistance-induced rats [27].

Results

Aerobic training for 8 weeks significantly reduce fasting in all groups (Table 3). Average of cycling threshold (Ct) for AMPK A2 and GLUT-4 in treatment groups were lower than control group (Table 2). Cycling threshold value was inverse to mRNA gene expression, which mean lower Ct, higher mRNA gene expression. There was an increase in gene expression of Ampk α2 and Glut4 after 8 weeks of training. Moderate intensity continuous training increased Ampk α2 expression by 1.45 times and Glut 4 expression 2.39 times. Severe intensity continuous training increased the expression of Ampk α2 by 1.55 times and the expression of Glut 4 by 2.56 times. The highest expression of Ampk α2 and Glut 4 was shown in the fast interval training group. The expression of Ampk α2 and Glut 4 were 4.56 and 4.79 fold higher than the control group, respectively (Figure 1 and Figure 2).

Figure 1: Relative Ampk α2 Expression in Each Group. Livask formula = 2ΔDΔCt. K2 expressed Ampk α2 1.45 fold than K1; K3 expressed 1.55 fold than K1; K4 expressed 4.41 fold than K1; K5 expressed 4.56 fold than K1.

Table 3: Fasting Blood Glucose before and after treatment among group

<table>
<thead>
<tr>
<th>Group</th>
<th>Fasting Blood Glucose (mg/dl)</th>
<th>ΔFBG</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before treatment</td>
<td>After treatment</td>
<td>After-</td>
<td>Before</td>
</tr>
<tr>
<td>K1</td>
<td>247.8 ± 24.9</td>
<td>214.9 ± 5.7</td>
<td>147.4</td>
</tr>
<tr>
<td>K2</td>
<td>339 ± 103.7</td>
<td>191.6 ± 5.4</td>
<td>147.4</td>
</tr>
<tr>
<td>K3</td>
<td>396 ± 25.7</td>
<td>198.2 ± 75.0</td>
<td>198.6</td>
</tr>
<tr>
<td>K4</td>
<td>452.6 ± 31.3</td>
<td>227.2 ± 97.8</td>
<td>225.4</td>
</tr>
<tr>
<td>K5</td>
<td>451.2 ± 83.2</td>
<td>259 ± 125.0</td>
<td>192.2</td>
</tr>
</tbody>
</table>

(*) mean significant (p<0.05). K1: Control, K2: Moderate intensity continuous training, K3: Severe intensity continuous training, K4: Slow interval training, K5: Fast interval training.

During exercise, repeated muscle contractions cause ATP to be consumed faster than it is synthesized. This results in an increase in ADP, which is followed by an increase in AMP due to the action of the adenylate kinase enzyme in the cytosol. This enzyme converts two ADP molecules into one ATP molecule and one AMP molecule. An increase in the AMP/ATP ratio causes AMPK activation and alters the anabolic and catabolic rates to restore intracellular ATP [28]. Apart from muscle tissue, AMPK also plays a critical role in controlling glucose production in the liver. AMPK activation in the liver mediates the hypoglycemic effect of adiponectin [29]. Previous study showed that moderate-intensity continuous training, severe intensity continuous training, slow interval training, and fast interval training increase the expression of Ampk α2 in the liver and decrease fasting glucose levels in T2DM rats [30].

Figure 2: Relative Glut4 Expression in Each Group. Livask formula = 2ΔDΔCt. K2 expressed Ampk α2 2.39 fold than K1; K3 expressed 2.56 fold than K1; K4 expressed 3.76 fold than K1; K5 expressed 4.79 fold than K1.

Figure 3: Cfd of Various Training on the Expression of theAMPK A2 and GLUT4 in T2DM Rat
and AMP levels increase along with increasing exercise intensity and trigger AMPK activation [28].

The change in substrate use or mobilization for interval training is steeper than for continuous training. Plasma lactate and glucose levels during interval training are lower than during continuous training. This difference explains the greater energy requirements of interval training compared to continuous training. This results in a significant increase in the AMP/ATP ratio [32]. In addition, the exercise-rest pattern on interval training also has an effect. AMPK activity was 2.9 times higher when the intensity training session was punctuated by rest intervals, compared to when the exercise was done continuously for 30 min [33].

The increase in Glut4 expression in this study was in line with the results of the increase in Ampk α2 expression. T2DM is characterized by insulin resistance, a condition in which cells are unable to respond to insulin, especially in the liver, skeletal muscle, and fat tissue [34]. There are several mechanisms of insulin resistance. One of them is due to a decrease in the number of insulin receptors and their catalytic activity. This change causes a decrease in glucose uptake in the muscles [35]. Previous study showed that moderate-intensity continuous training, severe intensity continuous training, slow interval training, and fast interval training in T2DM rats improve insulin receptor distribution and the highest percentage increase in the distribution is in the fast interval group. The increase in the distribution of insulin receptors was followed by a decrease in insulin resistance [24].

Insulin resistance is also associated with disturbances in Glut4 expression.[35] The amount of GLUT4 in skeletal muscle is mainly regulated at the transcription level. GLUT4 transcription is mediated by a transcription factor, namely, myocyte enhancer factor 2 (MEF2) [36]. In the resting state, MEF2 is physically associated with the transcription repressor histone deacetylase 5 (HDAC5) [11].

There are two enzymes that can phosphorylate HDAC5, namely Calmodulin-dependent Protein Kinase (CaMK) and AMPK [6]. During the contraction during exercise, each wave of depolarization will remove Ca from the reticulum sarcoplasm and increase the concentration of Ca in the cytosol and activate CaMK [37]. Both CaMK and AMPK which are activated during exercise can phosphorylate HDAC5 so that HDAC5 leaves the nucleus and the MEF2/HDAC5 complex dissociates. The dissociation of the MEF2/HDAC5 complex causes MEF2 binding to PGC-1α and increase GLUT4 expression [6], [38]. An important adaptation of exercise is increased GLUT4 expression in skeletal muscle, increased capacity for glucose transport, and better systemic control [39]. Previous study showed that moderate-intensity continuous exercise, severe intensity continuous exercise, slow interval training, and fast interval training in T2DM rats significantly reduces fasting blood sugar levels compared to the sedentary group [40].

Conclusion

Moderate-intensity continuous training, severe intensity continuous training, slow interval training, and fast interval training increased the Ampk α2 and Glut4 expression. The highest increase in expression was found in the fast interval training group.

References

PMid:31518657


PMid:23441028

PMid:26549348


PMid:25434013

PMid:30423971

PMid:19196246


11. Mcgee SL, van Denderen BJ, Howlett KF, Mollica J, Schertzer JD,
Rahmiet al. Effect of Various Training on the Expression of the AMPKα2 and GLUT4 in T2DM Rat


