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Abstract
Scientific data suggests the possible beneficial role of probiotics in treatments for COVID-19, but the species/
strains-specificity and disease-specificity of probiotics need high attention in choosing the appropriate probiotic in 
diseases, in particularly in the COVID-19. We hope this review will raise awareness of the COVID-19 probiotic 
recommendations, highlighting the latest scientific information about virus/hydrogen peroxide/probiotics and the 
importance of finding out of a specific “criterion” for the probiotics’ recommendation in this disease.
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Introduction

Literature data indicate an association 
between COVID-19 severity and diabetes [1], [2]. 
Most COVID-19  patients are prone to impaired 
glucose metabolism; glycemic testing and control are 
important even if the patients have no pre-existing 
diabetes [3]. Furthermore, hypertension  [1],  [4], 
acute coronary syndrome [5], rheumatic [6], 
gastrointestinal [7], and neurologic features [8], [9] in 
SARS-CoV-2 infection have been reported. Potential 
associations between host blood characteristics and 
gut bacteria  [10], [11], [12], as well as between gut 
microbiota and COVID-19 – accompanying diseases 
have been actively discussed  [13]. Sever childhood 
respiratory illness in association with vitamin D 
deficiency has also been shown [14]. The clinical trials 
and experimental studies on COVID-19 treatments are 

ongoing worldwide, increasing the obtained information 
on infected people, blood and organ system, genomics, 
and metabolomics. Despite of a safe and efficacious 
vaccines, respiratory tract infections will remain of 
concern for high morbidity and mortality rates among 
the elderly due to low level vaccine-induced immune 
response [15], [16]. Recently collected data appear 
to confirm the possible beneficial role of probiotics in 
treating COVID-19 patients [17], [18]; however, there 
is insufficient scientific evidence specific to COVID-
19. Therefore, species/strain-  and disease-specificity 
of probiotics need more attention [19]. Probiotics may 
have beneficial, harmful, or neutral impact on the 
host. For example, in an in vivo study of their radio-
preventive/protective characteristics, 17 putative 
probiotic lactobacilli, including the strain Lactobacillus 
acidophilus DDS®-1 (from Lacto-G, a marketed 
symbiotic formulation), the commercial probiotic 
product Narine (L. acidophilus INMIA 9602 Er-2 
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strain 317/402), and several strains of Lactobacillus 
rhamnosus, Lactobacillus plantarum, Lactobacillus 
casei, Lactobacillus fermentum, Lactobacillus 
delbrueckii, and Lactobacillus helveticus, have shown 
varying impact on 4.5 Gy, whole-body X-ray irradiated 
rats before and after the irradiation [20]. In addition, 
since COVID-19 patients may rapidly “transform” their 
physiological state following an infection by the virus, 
potential probiotic-effects and the individual dietary, 
nutritional, medical, lifestyle, and environmental 
risks should be carefully investigated before any 
recommendation. Since it was recognized that the 
SARS-CoV-2 pandemic has been particularly deadly 
in older adults [21], [22], we hope to raise awareness 
about probiotics for COVID-19 patients and highlight the 
possible importance of hydrogen peroxide production 
for any probiotics recommendation in this disease.

Probiotics/Immunobiotics

Nowadays, the interaction of probiotics with 
the SARS-CoV-2 spike (S) proteins [22] and with the 
gut microbiome [23], [24], [25] is at the attention of 
the researchers. In general, the benefit of probiotics 
is determined by the complex interactions between 
probiotic bacteria, the host intestinal microbiota, and 
the gut epithelium [23], [24], [25]. Frequently, probiotic 
lactobacilli are able to (i) promote the expression and 
regulation of tight junctions and adherence junctions, 
resulting in the restoration of a defective epithelial 
barrier and (ii) interact with immune cells through pattern 
recognition receptors, such as Toll-like receptors, which 
on activation stimulate or suppress various immune 
responses [26], emphasizing host gut-blood [27], 
and gut-brain [28] linkages. Probiotic immunobiotics 
beneficially regulate the mucosal immune system [29] 
and have valuable antagonistic potential against 
nosocomial pathogens. Among the many proposed 
mechanisms by which immunobiotics mediate 
their effects is the modulation of the innate immune 
response both by anti-inflammatory [30], [31] and pro-
inflammatory effects  [32]. In addition, immunobiotics 
have been shown to enhance the adaptive immune 
response, for example, antibody formation [33]. 
Inhibition of adherence, attaching, and effacing 
microorganisms  [34], modulation of mucosal  barrier 
function [35], or inhibition of trophil migration [36] 
may also be important mechanisms, whereby 
immunobiotics may influence intestinal diseases [37]. 
There is also strong evidence that signaling molecules/
determinants are preserved in immunobiotic strains 
[38], and certain immunogenic strains enhance 
immune function, especially in subjects with less than 
adequate immune response [39].

Human Viral Diseases, Oxidative Stress, 
Hydrogen Peroxide, and Probiotics

The prevalence of chronic diseases increases 
with age. Increased production of reactive oxygen 
species is involved in the pathogenesis of cardiovascular 
diseases, such as coronary atherosclerosis, 
hypertension, diabetic vascular complications, and 
heart failure [40]. These are also known risks for 
potentially worse COVID-19 outcome. The patients with 
severe COVID-19 history have also often been found 
to have elevated D-dimer, troponin, ferritin, C-reactive 
protein, and alanine aminotransferase  [41], and 
circulating endothelial cell levels [42], as well as vitamin 
D deficiency [14]. It seems that there is a link between 
oxidative stress and a variety of pathological conditions, 
including COVID-19 [43] and its accompanying 
diseases, such as diabetes [44], hypertension [45], 
acute coronary syndrome [46], rheumatic [47], 
gastrointestinal [48], or neurologic features [49].

Both enzymatic and non-enzymatic pathways 
are involved in endogenous antioxidant defense 
mechanisms. The enzymes superoxide dismutase, 
catalase, the prosthetic group Se-containing glutathione 
peroxidase, and glutathione reductase are common 
antioxidants; important in endogenous antioxidant 
defense systems [44]. Iron is an essential element for 
virtually all cell types due to its role in energy metabolism, 
but free iron may induce cellular and organ damage 
through the free radicals [50]. Peroxidase uses various 
organic compounds: Polyphenols, aromatic amines, 
ascorbic acid, etc., to destroy hydrogen peroxide 
and organic peroxides (oxygen donors), and to form 
a high valent iron intermediate named Compound I. 
In erythrocytes and some other tissues, glutathione 
peroxidase protects membranes and hemoglobin from 
oxidation by peroxides. Peroxisomes, the cell organelles 
known as important centers in innate immune-, lipid-, 
inflammatory-, and redox-signaling networks [51], by 
regulating their number, shape, and protein content in 
response to changing environmental conditions [52], 
have the intrinsic ability to mediate and modulate H2O2-
driven biological processes [53].

Free radicals/other reactive oxygen and nitrogen 
species show a double role, causing oxidative damage/
tissue dysfunction and serving as molecular signals 
activating beneficial stress responses [54], [55]. H2O2 
emerged as a major redox metabolite operative in redox 
sensing, signaling, and regulation [56]. Its action mainly 
depends on the cellular context, its local concentration, 
and the kinetics of its production and elimination [57]. 
Interestingly, long-lasting blood pressure lowering 
effects of nitrite are NO-independent and are mediated 
by hydrogen peroxide, persulfides, and oxidation of 
protein kinase G1α redox signaling [58]. Although H2O2 
is a strong oxidizing agent, it can accumulate in cells 
and tissues to relatively high concentrations due to it 
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slow reaction kinetics with most biomolecules. The 
removal of excess H2O2 by antioxidant enzymes is 
therefore central in minimizing cellular damage [59].

Beside the endogenous H2O2 produced by 
immune cells to kill pathogenic microbes, to inhibit 
other competing bacteria, lactic acid bacteria also 
produce H2O2, using different enzymes that include 
pyruvate oxidase, lactate oxidase, NADH oxidase, 
and NADH flavin-dependent reductases [60]. There 
are indications that H2O2-producing lactobacilli in the 
intestine play an important role in the repair of intestinal 
damage [61], whereas H2O2-producing lactobacilli in 
the vagina control the growth of pathogenic bacteria 
and prevent tumorigenesis [62]. Unfortunately, 
pathogenic Streptococcus pneumonia (through SpxB) 
and Streptococcus pyogenes (through LacD) are also 
known to produce H2O2, possibly through the lactate 
oxidation pathway [63]. While the host interactions in 
general are unclear, it was shown that H2O2 released by 
Streptococcus pneumonia inhibits host inflammasomes 
and is responsible for pathogen colonization [64]. 
Blockage of inflammasome activation by the oral 
commensal H2O2-producing bacterium Streptococcus 
oralis was also reported [64].

There are numerous reports indicating the role 
of hydrogen peroxide in viral inactivation and in virus-
host interaction. For example,
•	 Herpes simplex virus 1-associated catalase 

may protect the virus from inactivation in an 
oxidizing environment outside a host cell [65];

•	 Uncontrolled concentrations of H2O2 promote 
translation by the internal ribosome entry site 
element of hepatitis C virus in tissue-cultured 
cells through adaptation of oxidative stress 
in the host cell by mediating La cytoplasmic 
shuttling [66];

	 The addition of polyethylene glycol-conjugated 
catalase increased the specific enzyme activity, 
which, in turn, along with a respiratory syncytial 
virus (RSV) infection decreased H2O2 in the 
airways, and had an important defensive impact 
on RSV-induced disease/pathology. Therefore, 
it was concluded that the addition of catalase 
might represent a new pharmacological 
approach that should be studied in humans 
for the prevention and treatment of respiratory 
infections caused by RSV [67];

•	 H2O2-producing lactobacilli in the vagina may 
control genital HIV-1 shedding [68], the growth 
of several pathogenic bacteria, and may 
prevent tumorigenesis [62]. Along these ideas, 
Krüger and Bauer showed that the lactobacilli-
origin H2O2 intrinsically is not likely to assist 
the vaginal epithelium, as it origins apoptosis 
both in non-transformed and in transformed 
cells [69]. The authors suggested that a 
combination of lactobacilli and peroxidase, 
that is, the situation actually found for tumor 

tissue in vivo, leads to the conversion of H2O2 
to HOCl which does not affecting on non-
malignant cells. When malignant cells, due 
to the abundance of extracellular peroxide 
anions, allow the formation of apoptosis. 
Subsequently, the combination of peroxide 
producing lactobacilli and peroxidase causes 
the selective elimination of malignant cells [69].

Discussion

Clinical trials and experimental studies have 
shown that probiotics, their components, or their sterilized 
variants (paraprobiotics) may be successfully used as 
biotherapeutic agents for the prevention and treatment 
of gastrointestinal diseases [70], [71], [72], [73], [74], 
and for resistance enhancement in case of intestinal 
viral infections [75], [76]. The possibility of mitigating 
antimicrobial resistance, which might be a result 
of a nosocomial, COVID-19-related infection [77], 
through probiotics has also been discussed in 
publication [78]. A study on the impact of the probiotic 
“Narine” (Vitamaks-E, Armenia) on the number of 
antibiotic resistant gut commensal Escherichia coli in 
familial Mediterranean fever patients, an autosomal 
recessive inflammatory disease [79], showed that the 
probiotic therapy resulted in a reduction of the relative 
abundance of operational taxonomic units in the genus 
Escherichia and the number of multi-resistant E. coli 
isolates [78].

Appropriate inflammasome activation and 
appropriate concentration of hydrogen peroxide 
realized by bacteria [64] are vital for the host to handle 
foreign pathogens and tissue damage, while aberrant 
inflammasome activation can cause uncontrolled tissue 
responses, leading to various diseases, including 
autoinflammatory disorders, cardiometabolic diseases, 
cancer, and neurodegenerative diseases [80]. In short, 
research data indicate the important role of hydrogen 
peroxide in host microbe interaction. Therefore, the 
assessment of blood H2O2, blood catalase activities, and 
detection of inflammasome activity present promising 
indicators in recommending probiotics in COVID-19 
and accompanying diseases.

Conclusions

Thus, socioeconomic and biological strategies 
are needed to combat COVID-19 [81], [82], [83]. 
The production of hydrogen peroxide might be 
considered as one of promising indicators in probiotic-
recommendation in COVID-19 and its accompanying 
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diseases. We hope that continuing investigations 
will raise awareness of potential COVID-19 probiotic 
recommendations, highlighting the latest scientific 
information about COVID-19/probiotics, and the 
importance of determining the specific “criteria” for the 
recommendation of probiotics’ use in this disease.
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