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Abstract
The studies on quantum and fuzzy theories by Planck and Zadeh, respectively, still continue presently. Based on the 
mathematical side, these two theories that directly related and become the basis for various studies, both theoretical 
and applied, are quantum and fuzzy measures. Although in the literature, these are measure generalizations but 
not substantiated by definition; therefore, the substance does not appear directly. Furthermore, there is also no 
discussion of the relationship between quantum and fuzzy measures on Boolean σ– algebra. This study accomplishes 
a proof based on the definition that both the quantum and the fuzzy measures are measure generalizations or do not 
reciprocally generalize; hence, the measure is the intersection of the two.
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Introduction

Light radiation was observed to come from 
small quanta that can be measured and not from 
continuous energy waves [1], [2], [3] since Max Planck 
used the term quantum to observe black body radiation 
in 1900. This developed into quantum mechanics, 
where researchers such as Albert Einstein, De Broglie, 
and Schrodinger, who established special and general 
relativity theories, wave dualism, and particle wave 
functions, respectively, were interested. Furthermore, 
experiments on quantum-related measure theory were 
developed until 1973, when Gudder [4] reformulated 
classical measure theory is necessary if the theory 
is to accurately describe measurements of physical 
phenomena (generalized measure theory). In addition, 
Sorkin [5] formulated quantum mechanics as a measure 
theory in 1994. He demonstrated that classical physics is 
a special case of quantum physics, by relating quantum 
mechanics to the additive property of probability in the 
measure space. In addition, Gudder [6], [7] referred to 
Sorkin when discussing quantum measure theory as a 
generalization of measure theory. This generalization 
not only generalized of the measure theory in known 
measure spaces but can also invalidate well-known 

theorems, such as the fundamental theorem of calculus 
and the Radon-Nikodym theorem.

Zadeh introduced the fuzzy set in 1965  [8] 
and re-published an article on the probability 
measure of fuzzy events in 1968 [9]. The studies on 
fuzzy measure theory have attracted attention, for 
example, in  [10],  [11], [12], where fuzzy measure 
is a generalization of measure. This results in a 
generalized measure that includes the quantum and 
fuzzy measures. Furthermore, the fuzzy measure 
theory is the basis for the application of several models, 
such as decision-making on uncertain multi-criteria 
problems [13], fuzzy c-means (FCM) method [14] and 
fuzzy learning quantization method  [15] as clustering 
methods, and modified generalized Dunn’s indices that 
can be used for the dynamic evaluation of an evolving 
(including the fuzzy clustering method) structure in 
streaming data [16].

Anatolij conducted a study in 1988 [17] on 
the phenomenon of quantum mechanics (quantum 
probability space) with fuzzy set theory, where the 
membership function in the set [18] was referred to as 
fuzzy soft algebra, and the study [17] was named fuzzy 
quantum spaces. In addition, Duris et al., in 2021 [19], 
referred to [17], [18] and studied several limit theorems 
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Results

This study proves the quantum and fuzzy 
measures as a generalization measure on Boolean σ–
algebra based on the definition grouped in the following 
discussion:
1.	 Proof of Quantum and Fuzzy Measures as 

Generalization of Measure
2.	 Proof that Quantum Measure is not 

Generalization of Fuzzy Measure
3.	 Proof that Fuzzy Measure is not Generalization 

of Quantum Measure.
They are discussed as follows:

Proof of quantum and fuzzy measures as 
measure generalization

1.	 Proof of quantum measure as a measure 
generalization
If (X, M, µ) is the measure space, the proof is 

conducted by showing that µ is a quantum measure, 
namely continuous (a), grade-2 additive (b), and 
regular (c).

a.	 Continue
According to Theorem 1, µ is continuous.

b.	 Grade-2 additive

µ µ µ µA B C A B C 

. .( ) = ( ) + ( ) + ( ) � (3)

µ µ µ µ µ µA B A C B C A B C  

. . .� �( ) + ( ) + ( )− ( ) − ( ) − ( )  
= ( ) + ( ) + ( ) + ( ) + ( ) + ( ) − ( )µ µ µ µ µ µ µA B A C B C A

− ( ) − ( )µ µB C  = ( ) + ( )µ µA B� + ( )µ C � (4)

According to (3) and (4),µ is grade-2 additive.
c.	 Regular

If µ(A) = 0, hence,
µ µ µ µ µA B A B B B

.( ) = ( ) + ( ) = + ( ) = ( )0

If, µ A B.( ) = 0  therefore,
µ µ µA B A B

. ,( ) = ( ) + ( ) = 0  with µ (A) ≥ 0, and µ (B) ≥ 
0, then µ (A) = µ (B) = 0, hence, µ is regular.

Therefore, µ is a quantum measure.

2.	 Proof of Fuzzy measure as a Measure 
Generalization
If (X, M, µ) is the measure space, the proof is 

carried out by demonstrating that µ is a fuzzy measure, 
namely, continuous (a), empty (b), and monotone (c).

a.	 Continuous
Based on Theorem 1, µ is continuous.

b.	 Empty
According to the measure definition, it fulfills µ (Ø) = 0.

c.	 Monotone
If A ⊂ B. The finite additive is a special 

case of the additive countable, which is obtained 
by taking the last few sets of the countable joint 
operation as Ø. Consequently, when A ⊂ B, then 
µ µ µB A B A( ) = ( ) + ( )~ ,  hence, µ µA B( ) ≤ ( ).
Therefore, µ is a fuzzy measure.

Proof of quantum measure not fuzzy 
measure generalizations

This is carried out with the following counter 
example, where X = [0,1], M is the σ- algebra of X and v 
is the Lebesgue measure constrained to [0,1]. For E ∈
M, µ measure is defined as:

µ E E x E x E

E E E

( ) = ( ) − ∈ + ∈


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
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
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 

2 3
4

2 3
4

:



Then (X,M, µ) is a quantum measure space, 
which fulfills continuous (1), grade-2 additive (2), and 
regular (3), but it is not a fuzzy measure (4).
1.	 Continuous

If Ai sequence ascends in M then
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Furthermore, if the Bi sequence descends at M 
and it is known that µ B1 1( ) < < ∞ , then

    

1 1 1 1

32
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( ) 

3lim 2
4i i ii

B B B 
→∞

   = − −      

= ( )
→∞
lim .
i iBµ

2.	 Grade-2 additive
To prove the grade-2 additive, then 

µ µ µ

µ µ µ µ
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Since v of the Lebesgue measure is additive, hence 
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.( ) = ( ) + ( )  then it obtained that
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related to fuzzy quantum space, convergence, and 
extreme value analyses, which estimated financial 
risks using incomplete data. The quantum and fuzzy 
measures, such as [8], [4], [17], referred to Lattice 
studied by Birkhoff [20] either directly or indirectly. 
According to Birkhoff, lattice is a fundamental 
application of modern algebra, point-set theory, and 
functional analysis, as well as logic and probability. 
Furthermore, Gratzer [21] demonstrated that lattice 
provides a unifying framework for previously unrelated 
developments in several mathematical disciplines; 
hence, it is predictable. However, the membership 
function discussed (point-set) is in a different frame of 
reference in various studies; hence, they are not in the 
form of Boolean sigma-algebra.

Although quantum and fuzzy measures are 
depicted as generalization of measure in several 
literatures, they are not shown by definition, which, 
hence, cannot be seen in their generalizations. 
Furthermore, in various literature, there is also no 
discussion of the relationship between quantum and 
fuzzy measures on Boolean σ– algebra. Therefore, 
this study discusses “the proof of quantum and fuzzy 
measures as a measure generalization that does not 
reciprocally generalized.”

Methods

Definition 1 ([22], [23]) A (Boolean) σ– algebra 
of sets is a collection S of the subsets from a given set 
S, such that:
a.	 φ, S ∈ S,
b.	 If X ∈ S and Y ∈ S, then XUY ∈ S,
c.	 If X ∈ S, then S – X ∈ S,

d.	 If Xn ∈ S, for all n, then
 n nX=

∞
∈

0

S.

Definition 2 ([24]) The measurable space is a 
pair of (X, Μ), where X is a set and M is an σ algebra 
of the subset X. Furthermore, the µ in the measurable 
space (X, Μ) is a non-negative function of µ: Μ →[0, ∞], 
where µ(Ø) = 0 and a countably additive in the sense 

that for any countable disjoint collection 
Ek k( )=

∞
1  of 

measurable sets satisfy,

µ
k

k
k

kE E
=

∞

=

∞







 =∑

1 1


.

Definition 3 ([24]) The measure space is 
triplicate (X, M, µ) where (X, M) is the measurable 
space and µ is the measure within the measurable 
space (X, M).

Definition 4 ([7], [6]) Let, (X, M) is the 
measurable space. A  function of µ: Μ →[0, ∞], is a 
quantum measure if:

lim µ (Ai) = µ (Ai), for every ascending 
sequence Ai ∈ M and limµ µB Bi i( ) = ( )



 for every
 descending sequence Bi ∈ M (continue),

1.	

µ µ µ

µ µ µ µ

A B C A B A C

B C A B C

   



. . . .

.�
( ) = ( ) + ( )

+ ( ) − ( ) − ( ) − ( )  
(grade-2 additive)

2.	 µ µ µA A B B( ) = ⇒ ( ) = ( )0 

.  and 

µ µ µA B A B

.( ) = ⇒ ( ) = ( )0  (regular).

Definition 5 ([10], [12], [25]) A fuzzy measure 
(non-additive measure/capacity)µ in the measurable 
space (X, M) is defined as the set of µ:M→R+ functions, 
hence:
1.	 lim µ (Ai) =µ (U Ai), for every ascending 

sequence Ai ∈M  dan lim μ (Bi)=μ(⋂Bi), for 
every descending sequence Bi∈ M (continue)

2.	 μ(∅)=0, (Empty)
3.	 μ(A) ≤ μ(B) if A⊂B (monotone)

Definition 6 ([24]) Suppose E is the set of real 
numbers, set 

Ik k{ } =
∞

1  as a non-empty open set, and the 
finite interval covering E. The outer measure of E is 
denoted by 

* E( )  which is defined as follows:

 * inf .E I E I
k

k
k

k( ) = ( ) ⊆










=

∞

=

∞

∑
1 1

� ∪
Suppose E is a measurable set, the Lebesgue 

measure is denoted by v (E) or and defined by 
 E E( ) = ( )* .

Theorem 1 ([24]) Measure µ (including 
Lebesgue measures) satisfy the following continuity 
properties:

1.	 If 
Ai i{ } =

∞
1  is a collection of ascending 

measurable sets then:

µ µ
i

i i iA A
=

∞

→∞









 = ( )

1


lim � (1)

MeasureQuantum
Measure

Fuzzy
Measure

Figure 1: Relationship between measure, fuzzy measure, and quantum 
measure
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According to (5) and (6), μ (E1 ⨃ E2 ⨃ E3) = μ 
(E1 ⨃ E2) + μ (E1 ⨃ E3) + μ (E2 ⨃ E3) μ (E1) – μ (E2) – μ 
(E3). Therefore, µ is grade-2 additive.
3.	 Regular

This proves that μ(A)=0⇒μ(A ⨃ B)=μ(B) and 
μ(A ⨃ B)=0⇒μ(A)=μ(B)

First, if μ (A)=0⇔ 
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it is known that A∩B=∅, hence, the following equations 
are obtained:

C∩B=∅,� (7)
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For A ⨃ B=∅, then A=∅ and B=∅, therefore 
μ (A) = μ(B). Furthermore, for A B C C 
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Because μ (A ⨃ B)=0, then
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This showed that (X, M, µ) is a quantum measure space.
4.	 Not Fuzzy Measure
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1 0, . ,
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monotony is not satisfied and µ is not a fuzzy measure.

Therefore, the quantum measure is not a 
generalized fuzzy measure.

Proof that fuzzy measure is not a quantum 
measure generalization

This is conducted with the following counter 
example. For example, X = {a,b} and M of algebra -σ 
from X, as well as define the µ measure, namely:

µ E
E X
E X

E( ) = =
≠





∈
1
0
;
;

with M � (11)

It is shown that (X, M, µ) is a fuzzy measure 
space, where µ is continuous (1), empty (2) and µ (A) ≤ µ 
(B) if A ⊂ B (3), though not a quantum measure space (4).
1.	 Continuous

When X is finite then µ satisfies the definition of 
continuous on the fuzzy measure.
2.	 Empty

Because Ø ≠ {a,b} = X then satisfies the 
definition of µ (Ø) = 0.
3.	 Monotone

When Ø ≠ X, {a} ≠ X, {b} ≠ X then 
μ(∅)=μ({a})=μ({b})=0 but μ(X)=1, hence

∅⊂{a} and apply μ(∅) = 0 ≤ 0 = μ({a}),
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∅⊂{b} and app ly μ(∅) = 0 ≤ 0 = μ({b}),
∅⊂X and apply μ(∅) = 0 ≤ 1 = μ (X),
{a}⊂X and apply μ({a}) = 0 ≤ 1 = μ (X),
{b}⊂X and apply μ({b})= 0 ≤ 1=μ(X)
This depicts that (X, M, µ) is a fuzzy measure space.

4.	 Not Quantum Measure
μ ({a})=0 but μ({a}⨃{b}) = μ({a,b}) = 1 ≠ 0 = 

μ({b}) This does not fulfill the regular properties, and the 
result is not a quantum measure.

Therefore, the fuzzy measure is not a 
generalization of the quantum measure.

Figure 1 illustrates the results obtained based 
on the above discussion.

Furthermore, a comparison of calculations will 
be carried out. Suppose X = [0,1], M is the σ- algebra of 
X, and v is the Lebesgue measure constrained to [0,1] 
Therefore E∈M, μ* and μ# are defined as:
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else
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
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
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1
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Subsection 3.2 and 3.3 showed that (X, M, μ*) 
is a quantum measure space but not a generalized fuzzy 
measure, and (X, M, μ#) is a fuzzy measure space but 
not a generalized quantum measure. Table  1 depicts 
the comparison between the calculation of measure, 
quantum measure, and fuzzy measure in a measurable 
space (X,M).

Discussion

Quantum and fuzzy measures appear 
separately, where the quantum measure starts from the 
need for measuring instruments in physical phenomena, 
while the fuzzy size arises from phenomena with fuzzy 
occurrences. It has been shown that although both 
quantum and fuzzy measures generalize to measure, 
they do not generalize to each other. Table  1 shows 
an example of a comparison of quantum and fuzzy 
measure calculations, where the results obtained 
differ significantly. This comparison is not intended to 
obtain a better measure, because each measure has 
its own application. However, acquiring a measure that 
can contain quantum and fuzzy measures is certainly 
needed to see causal relationships and arrange the 

layout between measure theories as well as add to 
the scientific repertoire of measure theory that can be 
applied to quantum physics phenomena and various 
vague events.

Conclusions

This study discusses the proof of quantum 
and fuzzy measures as a measure generalization on 
Boolean σ- algebra, and the conclusions obtained are 
as follows:
1.	 Quantum and fuzzy measures are measure 

generalizations
2.	 Quantum measure is not a generalization of 

the fuzzy measure
3.	 Fuzzy measure is not a generalization of the 

quantum measure.
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