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Abstract
BACKGROUND: The administration of high-fat and high-glucose in diet followed by a low-dose streptozotocin 
injection in rats could mimic hyperglycemia, prediabetic, or diabetic conditions in humans. However, whether the rat 
model may lead to early liver impairment was still unclear.

AIM: This study was aimed to investigate the possible changes in liver functions and morphology in the rat model of 
prediabetes after a short-term administration of a high-fat and high-glucose diet followed by low-dose streptozotocin 
injection.

METHODS: Eighteen male Wistar rats were divided into nine rats in the control group and nine in the prediabetic 
group. To induce prediabetic rats, high-fat high-glucose in daily diets for 3 weeks continued with once to twice low-
dose streptozotocin was given. Rats in control groups were fed with a standard diet for 2 months. Afterward, we 
analyzed glucose control parameters, liver functions, and liver histology of the rats.

RESULTS: High-fat, high-glucose diet combined with a low dose of streptozotocin successfully caused prediabetics 
in the rats. There was a significant increase in several liver enzymes, including aspartate aminotransferase (AST), 
alanine aminotransferase (ALT), and gamma-glutamyl transferase (GGT). However, no significant changes were 
found in the serum lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) levels. The histological changes 
in the liver confirmed the increase in liver enzymes.

CONCLUSION: Short-term administration of high-fat high-glucose in combination with low-dose streptozotocin 
triggers alterations in liver functions marker and liver morphology.
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Introduction

Prediabetes is characterized by elevated 
blood sugar but not high enough to meet the criteria of 
diabetes mellitus. Prediabetes is a significant risk factor 
for the development of diabetes mellitus [1]. Combining 
a high-fat diet with a low dose of streptozotocin (STZ) 
injection can induce initial β-cell dysfunction [2]. High-fat 
diet administration leads to obesity, hyperinsulinemia, 
hyperglycemia, and diabetes [3]. STZ administration 
after high-fat diet induction can reduce the functional 
capacity of the pancreatic β-cells without ultimately 
impairing insulin secretion [4]. Calories from fat 
(40−60%) can lead to metabolic disorder, hypertension, 
and the production of pro-inflammatory cytokines  [3]. 
The previous studies showed that high-fat diet 
administration for 2  months could induce metabolic 
syndrome associated with oxidative conditions [5]. 

Another study also showed that a high-fat diet combined 
with high-glucose induction has a greater risk of causing 
diabetes prevalence [6].

The liver is one of the primary organs which 
susceptible to glucose homeostasis. Several hormones 
are involved in the process of glucose homeostasis. 
Hepatocytes in the liver are the leading site of hepatic 
glucose metabolism. In diabetes, hepatocytes cannot 
respond to insulin-induced dyslipidemia and insulin 
resistance. This condition triggers diabetic liver 
complications [7]. The previous studies showed that 
diabetes is associated with several liver abnormalities, 
such as non-alcoholic fatty liver disease (NAFLD), 
abnormal glycogen deposition, abnormal elevated 
hepatic enzymes, acute liver disease, and liver 
fibrosis [8]. A high-fat diet induces fat accumulation in the 
liver, leading to insulin resistance. Hyperglycemia, fatty 
liver, and insulin resistance can destroy hepatocytes 
and increase patient morbidity. Hyperglycemia also 
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disrupts lipid metabolism then triggers inflammation 
cascade [9]. Inflammatory responses and oxidative 
stress worsen the condition of liver damage (NAFLD) 
in diabetes disease. NAFLD induces necrosis, hepatic 
inflammation, and fibrosis, which are symptoms of non-
alcoholic steatohepatitis (NASH)  [10]. STZ can cause 
diabetes and is associated with significant liver enzymes 
and morphology alterations [11]. The study shows that 
STZ 45 mg/kg body weight results in pathologic lesions 
in the liver and liver enzyme levels changes [12].

Many studies showed an association between 
diabetic conditions or complications in various organs, 
including the liver, but only limited data about the 
association between prediabetic and liver function. 
The present study was aimed to evaluate the changes 
in liver functions and morphology in the prediabetes 
rat model after a short period of high-fat and high 
glucose administration in diets followed by low-dose 
streptozotocin injection.

Methods

Animals and experimental design

We utilized 18  4-week-old male Wistar rats 
weighing 80–100 g. Standard laboratory settings included 
sufficient ventilation, temperature, relative humidity 
control, and standard light/dark cycle for all experimental 
animals. One week before the experiment began, all 
experimental rats were maintained acclimatized. The 
Faculty of Medicine Universitas Indonesia’s Ethics 
Committee approved all of the experimental procedures.

The Wistar rats were split into two groups, and 
each group included nine rats. The Ethics Committee 
approved the number of rodents used in the study. 
A  standard rodent diet (TestDiet, 5012 rat diet from 
Richmond, USA) was provided to the first group for 
3 weeks, followed by a saline injection at the end of 
the experiment. A  single injection of streptozotocin 
(STZ; 30  mg/kg BW intravenously) at a low dose 
was used to produce the prediabetic state in rats in 
the second group, which was administered at the end 
of three-week administration of high-fat diet (HFD) 
once daily ad libitum, together with high glucose (20% 
glucose) in drinking water. The second STZ injection 
would only be repeated three days after the first dose, 
at 15 mg/kg BW, if the parameters had not achieved 
the prediabetic threshold. On the occasion that after 
two doses of STZ, the rats did not reach prediabetic 
parameters, they were then excluded. Prediabetes 
was considered successful if the glucose control 
parameters met both criteria of fasting blood glucose 
(FBG) levels in the range of 100 and 125 mg/dL, or 
blood glucose levels between 140 and 199 mg/dL 2 h 
after glucose induction (OGTT).

Blood collection

After an overnight fast of 12  h, all rats were 
sedated with ketamine-xylazine, and blood samples 
were drawn for biochemical analysis from the retro-
orbital sinus. After centrifugation at 3000  rpm for 
10 min, all blood samples were placed into test tubes 
and stored. Until the time of analysis, the supernatants 
were kept at −80°C. The same steps were performed to 
collect blood samples for OGTT.

Biochemical analysis

The lactate dehydrogenase (LDH) and 
alkaline phosphatase (ALP) were determined in the 
rat serum using spectrophotometric kits provided by 
Diasys® Diagnostic System (Holzheim, Germany). 
Serum gamma-glutamyltransferase (GGT) levels were 
determined by applying a gamma-GT FS kit using the 
Szasz-Persijn method. The AST and ALT were measured 
using the Diasys® kit with a spectrophotometer at a 
wavelength of 340 nm at 37°C.

Histological studies

After 3 weeks of intervention, the animals were 
sacrificed, and liver tissues were quickly removed then 
fixed in 10% formal saline. The liver tissues were stained 
with Hematoxylin and Eosin, and then examined for 
liver histopathological conditions such as hemorrhage, 
necrosis, fat infiltration, sinusoid dilatation, and cloudy 
swelling using a ×400 magnification microscope.

Statistical analysis

The data were reported as mean SEM. An 
independent sample t-test was used to compare the two 
groups when the data distribution was normality and 
homogenous. Otherwise, Mann–Whitney U tests were 
used. A level of significance at 0.05 and a confidence level 
of 95% were used to determine statistical differences 
between the two groups. GraphPad Prism 9.1.2 software 
was used to analyze the data and generate bar graphs.

Results

Blood glucose control

After 3  weeks of high-fat and high glucose 
diet administration followed with STZ injection 
(30 mg/kg BW), prediabetic variables were determined 
by FBG and result from OGTT (Figure  1). The result 
showed that the fasting blood glucose and glucose 
level after OGTT from the prediabetic group were 
significantly higher (p < 0.001, t-test analysis) compared 
to the control group.
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Liver function test

The effect of 3 weeks of administration of high-
fat and high glucose diet followed with STZ injection 
on the serum level of liver injury markers among the 
experimental group is shown in Figure  2a-e. The 
liver functions of the rats in the control group were 
considered the normal value. The result showed that 
Gamma-glutamyl transferase (GGT), AST, and ALT 
were significantly higher (p < 0.05, t-test analysis) in the 
prediabetic group compared to the control group. ALP 
level in the prediabetic group was increased compared 
to the control group, although there is no statistically 
significant difference. Similarly, we found no significant 
difference in LDH levels in the two groups.

Histological observation

The comparison of the histological structure 
of the liver between control and prediabetic groups is 
shown in Figure 3. The section liver from the control 
group showed a healthy histological structure around 
the central vein, standard form of the sinusoid, 
and nuclei. The control group has no necrosis, fat 
infiltration, sinusoid dilatation, and cloudy swelling 
(Figure 3a). Slight hemorrhage (H) in the liver of the 
control rats was shown compared to the prediabetic 
group. After 3 weeks of administration of high-fat and 
high glucose diet on the prediabetic group, exhibited 
different hepatic necrosis (N), fat infiltration (F), and 
sinusoid dilatation (S) on hepatocytes (Figure 3b). The 
portal veins (PV) of the prediabetic group with high-
fat and high glucose diet were dilated compared to the 
control group.

Discussion

Many studies have confirmed that diabetes can 
cause liver impairment [8], [9], [10], [11]. [12]. However, 
whether the injuries had already started in prediabetic 
conditions was unclear. In prediabetes, inflammation 
and oxidative stress in the liver are exacerbated 
by hyperglycemia and insulin resistance [10], [11]. 
Therefore, our study investigated whether liver injuries 
had been shown in a prediabetic rat model.

In diabetes or prediabetes rat model, glucose 
intolerance, and insulin resistance are affected by the 
duration of high-fat and high glucose [13]. In this study, 
combining a 3-week high-fat high-glucose diet with a 
low dose streptozotocin was efficient in causing the 
development of a prediabetes state associated with FBG 
and OGTT impairment. To confirm hyperglycemias, the 
FBG of the rats was re-measured two days after STZ 
injections. Once the FBG was steadily increased, then 
the rats were considered prediabetes. The short duration 
of high-fat diet induction induces insulin resistance 
and glucose intolerance [14]. Short periods of high-fat 
diet feeding have been reported to stimulate insulin 
resistance in non-obese patients [15]. A  study from 
Guo et al. showed that a combination of a high-fat diet 
for 8 weeks followed by low dose streptozotocin could 
induce type 2 diabetes [16]. In this study, we showed 
that a shorter duration of a high-fat high-glucose diet 
successfully obtained a prediabetes model.

Excessive intake of a high-fat diet can induce 
fat accumulation in the body, which leads to obesity.[17] 
This condition can cause insulin resistance, leading 
to prediabetes or type  2 diabetes mellitus. High-fat 
diet induction is also associated with a spectrum of 
liver abnormalities [18]. Accumulated fat in the liver 
increases the risk of non-alcoholic fatty liver disease 
(NAFLD) [19]. In addition, a high-fat and high-glucose 
diet can decrease glucose uptake and cannot suppress 
insulin-stimulated hepatic glucose production [20]. The 
liver plays multiple functional roles, including hormone 
production, metabolism of carbohydrates and lipids, 
detoxification, and synthesis of clotting factors [21]. 
Liver morphology changes and is directly correlated to 
its function. In this study, high-fat and high-glucose can 
increase alanine aminotransferase (ALT) and aspartate 
aminotransferase (AST) levels. In the liver function test 
abnormality, AST and ALT levels increased 2–3  times. 
The leakage of ALT and AST can reflect liver damage 
into the plasma [22]. Increased ALT levels related to 
obesity and hyperlipidemia, whereas increased AST 
was notably related to diabetes mellitus [23]. A  study 
showed that high-fat diet induction in mice resulted in 
increased inflammation, liver fibrosis, and high plasma 
activity of liver enzymes [24], [25]. High-fat diets can 
induce diabetes mellitus complications by increased 
oxidative stress in the animal. An excessive amount 
of fat consumption results in an energy overload then 

Figure  1: The effect of high-fat, high-glucose, and low-dose 
streptozotocin or standard diet on (a) fasting blood glucose (FBG); 
(b) oral glucose tolerance test (OGTT). Data are presented as 
mean  ±  SEM. **Significant difference (p < 0.001  vs. control, after 
t-tests analysis). OGTT, oral glucose tolerance test; HGFD diet – STZ, 
high-fat and high glucose diet followed with STZ injection
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leads to the expansion of adipose tissue and metabolic 
inflammation. Circulating free fatty acids from fat 
accumulation can induce lipotoxicity to peripheral tissues 
such as the pancreas and liver [26]. Hepatic enzymes 
level of ALT and AST were also higher in STZ diabetic 
rats. STZ has been reported to significantly alter liver 
morphology and enzymes [12], [27]. In this study, a high-
fat diet combined with low dose STZ (30 mg/kg BW), 
as desired that STZ was not inducing β-cell destruction 
predominantly in prediabetes animal model.

Gamma-glutamyltransferase (GGT) is one 
of the liver enzymes and acts as a hepatobiliary 

disease biomarker [28]. Elevated GGT is related to the 
development of metabolic syndrome, cardiovascular 
diseases, and type  2 diabetes mellitus [29]. GGT is 
synthesized in the intrahepatic duct epithelial cells and 
is a clinical marker for inflammation and free-radical 
formation [30]. In this study, induction of high-fat and 
high-glucose significantly increases GGT levels. 
Our findings confirmed several other studies which 
presented significant correlations between GGT serum 
and insulin resistance [31], [32], [33]. An elevated level 
of GGT indicated hepatic steatosis, and fat deposition 
in the liver then may lead to diabetes [34].

Figure 2: The effect of high-fat and high glucose diet on (a) LDH, (b) ALP, (c) Gamma-glutamyltransferase, (d) AST, (e) ALT. Data are presented 
as mean ± SEM. LDH, lactate dehydrogenase; ALP, alkaline phosphatase; AST, aspartate aminotransferase; ALT, alanine aminotransferase. 
*Significant difference (p < 0.05 vs. control, after t-tests analysis)
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Lactate dehydrogenase (LDH) is one of the 
indicators of liver injury. In this study, no significant 
difference was found after high-fat diet induction. In 
contrast with this result, several previous studies showed 
that in diabetes conditions, LDH levels were significantly 
increased compared to the control group [35], [36], [37]. 
This difference was probably due to this study’s short 
induction period of a high-fat diet. In addition, the 
animal model in this study was prediabetic, not diabetic. 
Alkaline phosphatase (ALP) is an enzyme in the liver 
and elevates in type 2 diabetes [38]. In this study, the 
ALP level in the prediabetic group was higher than in the 
control group, but there was no significant difference. 
Another study found no significant association between 
ALP level and diabetes [39]. Elevated ALP can indicate 
decreased survival in diabetic patients with myocardial 
infarction [40].

Studies have confirmed that diabetic conditions, 
not prediabetics, clearly cause morphological changes 
in the liver [23]. A high-fat diet induces fat accumulation 
in the visceral of the liver (liver steatosis) [41]. This 
condition can progress into steatohepatitis and liver 
cirrhosis [42]. A  high-fat diet can cause abnormal 
mitochondria and mononuclear inflammation. In 
abnormal liver after induction of high-fat diet, found 
pericellular fibrosis, lobular inflammation, portal fibrosis, 
and hepatocellular ballooning [43]. In this study, a high-
fat diet and high-glucose induce slight hemorrhage, 
hepatic necrosis, fat infiltration, sinusoid dilatation, and 
cloudy hepatocyte swelling. The portal veins of the 
prediabetic group with high-fat and high glucose diet 
were dilated compared to the control group. Another 
study found that a high-fat diet induces hepatocytes 
liver necrosis, hepatocellular steatosis, liver shrinkage, 
mononuclear cell infiltrations, additional acidophile, and 
nuclear density [44]. High-fat diet administration for 
6  months induces liver damage associated with low-
grade inflammation [24]. Another study showed that 
STZ injection also causes veins dilatation, liver fibrosis, 
and lipid droplets in hepatocytes [12].

There were some limitations to our study, 
one of which was the short-term duration of the study. 
However, we discovered that even after a short period 
of a high-fat, high-glucose diet followed by a low-dose 
STZ, there were significant changes in liver function 
markers and morphology. Our study might suggest 

that a longer duration of diet-induced prediabetes or 
diabetes conditions would lead to more severe liver 
impairment.

Conclusion

This research is a comprehensive study 
of the prediabetes model in animals. After 3-week 
administration of a high-fat and high-glucose diet 
followed by low-dosage of streptozotocin, it showed 
pathological changes in the liver. It also alters the 
various enzymatic function of the liver. It may also be 
concluded that a high-fat diet can induce prediabetic 
conditions and may be attributed to liver morphology 
and liver enzymes level alterations.
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