Speckle-tracking Echocardiography in Early Diagnosis of Myocardial Dysfunctions of Women with Hypertension in the Perimenopausal Period

Zhanar Balmukhamedova*, Gulmira Derbissalina*, Natalya Zemlyanskaya*, Aliya Dzhohladasbekova*, Dariga Blyalova

Department of General Medical Practice with a Course of Evidence-Based Medicine, NJSC “Astana Medical University”, Astana, Kazakhstan

Abstract

AIM: This study aims to evaluate the role of speckle-tracking echocardiography in detecting early myocardial dysfunction of women with arterial hypertension in perimenopausal period.

MATERIALS AND METHODS: The study involved 50 women in the perimenopausal period aged 45–55 years. Perimenopause was diagnosed by clinical examination, including a gynecologist and female hormonal status studies. The sample of women was divided into two groups depending on the presence of arterial hypertension. The main group included 24 patients with arterial hypertension diagnosed in the perimenopausal period. The examination methods listed above also included electrocardiography, echocardiography, and speckle-tracking echocardiography.

RESULTS: According to the speckle-tracking echocardiography, statistically significant indicators were found in the basal anterior septal and lower basal segments (p = 0.016 and 0.001). The difference in the left ventricular myocardial mass index was statistically significant in both compared groups (p = 0.038). ROC analysis was used to assess the quality of the resulting regression model. The area under the ROC curve was 0.806 ± 0.065 (95% CI: 0.679–0.933, p < 0.001). These indicators show a good predictive model.

CONCLUSION: In the group women with arterial hypertension, the indicators for the basal anterior septal and basal inferior segments are more sensitive, which can be used as a significant indicator of dysfunction with unchanged indicators of standard echocardiography.

Introduction

Speckle-tracking echocardiography is a modern and promising technique for assessing structural and functional changes in the myocardium [1], [2]. The index of local and global longitudinal myocardial strain, assessed using speckle-tracking echocardiography, is more sensitive to early changes in the left ventricular contractility, as well as subclinical myocardial dysfunction [3]. The diagnostic capabilities of speckle-tracking echocardiography are reflected in the clinical guidelines of the European Society of Cardiology from 2016 to 2018, the European Association of Cardiovascular Imaging (EACVI), as well as American Society of Echocardiography from 2016 to 2018 [4], [5], [6], [7]. At present, much attention has been focused on the use of speckle-tracking echocardiography in such pathologies as heart failure [8], coronary pathology [9], valvular heart disease [10], the effect of cardiotoxicity during the treatment of oncopathology [11]. One of the areas of the use of speckle-tracking echocardiography in clinical practice is the study of myocardial function in diseases accompanied by the left ventricular hypertrophy, in particular, in arterial hypertension [12], [13], [14].

The current recommendations of the European Society of Cardiology (ESC) on hypertension emphasize that in patients with this pathology, a worsening of longitudinal strain of the left ventricle, which makes it possible to use this indicator for diagnostic purposes at an early stage of the disease progress [13], [15]. It is important that speckle-tracking echocardiography can be used not only for diagnosis but also for assessing the prognosis of cardiovascular events.

According to the WHO, arterial hypertension is one of the most common non-specific diseases, accounting for 30% of all deaths. According to a number of sources, the prevalence of arterial hypertension in general population in Kazakhstan varies from 15.2 to 27% and among women is about 40% [16].

Understanding the physiological changes that occur in the hearts of women during and after menopause is critical in determining why the incidence of cardiovascular disease increases dramatically...
and the outcomes worsen in postmenopausal women [17], [18], [19]. Therefore, the issue of maintaining and improving health states to improve the quality of life and life expectancy of this category of the population is becoming widespread and continues to be relevant.

The main objective of our research is to study the significance of speckle-tracking echocardiography in detecting early changes in the myocardium in women in the perimenopausal period with arterial hypertension. Perimenopause – the period combines premenopause and the 1st year after menopause. This period is determined by clinical data as well as the level of hormonal status [20].

Materials and Methods

The study involved 50 women in the perimenopausal period aged 45–55 years. The main group included patients with arterial hypertension diagnosed in the perimenopausal period. The control group consisted of women without arterial hypertension. According to the WHO, arterial hypertension is considered when systolic blood pressure ≥140 mmHg or diastolic blood pressure ≥90 mmHg [7], [13]. In addition to the general clinical examination and gynecological history taking, lipid profile, biochemical blood analysis, and hormonal status, all women were examined by echocardiographic examination. Anthropometric indicators such as weight, height, body mass index (BMI), and body surface area (BSA) were determined for all women during the survey. Biochemical analysis of blood was determined by immunochemiluminescent analysis.

Inclusion criteria

The following criteria were included in the study:
1. Presence of informed consent.
2. Perimenopausal period diagnosed after consulting a gynecologist.
3. Sinus rhythm on an ECG with a heart rate of 60–90 per min.

Exclusion criteria

The following criteria were excluded from the study:
1. Surgical menopause, taking menopausal hormone therapy
2. Various endocrine disorders (diabetes mellitus, premature ovarian failure syndrome, polycystic ovary syndrome, thyroid diseases, and hyperlipidemia)
3. Ejection fraction less than 50% on echocardiography
4. Congenital and acquired heart defects, the presence of acute diseases (acute coronary syndrome, arrhythmias) at the time of inclusion
5. Verified diagnoses of valvular defects, dilated and hypertrophic cardiomyopathy, acute myocardial infarction
6. Taking chemotherapeutic agents and radiation therapy.

Echocardiography research guideline

Echocardiography was performed for each patient using a GE VIVID E9 ultrasound scanner (USA) available at the Medical Centre Hospital of the President's Affairs Administration of the Republic of Kazakhstan.

Speckle-tracking echocardiography was used to assess the global longitudinal strain and rotation of the left ventricle. Three cycles of sinus rhythm were obtained for the study.

The echocardiographic protocol was consistent with the guidelines for cardiac chamber quantification from the American Society of Echocardiography and the European Association of Cardiovascular Imaging [4], [6]. Echocardiographic measurements were performed by a senior physician who is board certified in echocardiography and was blinded for clinical data and patient results.

The left ventricular ejection fraction and end-diastolic and end-systolic volumes were assessed using modified biplane Simpson’s rule. The left ventricular mass and its indexed values (related to body surface area in square meter) were calculated using the formula of Devereux et al. [21].

The left ventricular diastolic filling was assessed using pulsed-wave Doppler echocardiography using transmitral flow. The E-wave peak velocity (early filling wave), the transmitted Doppler E-wave deceleration time, and the A-wave peak velocity (late filling wave) were measured. Myocardial velocity in the basal interventricular septum was assessed using pulsed-wave tissue Doppler echocardiography in systole (Sm) and diastole (Em) [4], [22].

The E/Em ratio was calculated as a measure of the left ventricular filling pressure. The Valsalva test was used to assess the pseudonormal type of diastolic myocardial dysfunction. The volume of the left atrium was measured using biplane Simpson method in the apical four-chamber and two-chamber projections and was indexed according to the body surface area [6].

The left ventricle was divided into 16 segments by the software to assess the magnitude and timing of regional myocardial strain in accordance with the American Society of Echocardiography and the European Association of Cardiovascular Imaging.
guidelines. Three-dimensional wall movement tracking made it possible to determine simultaneously the total longitudinal, circumferential, and radial systolic strain, as well as the rotation of all 16 segments of the left ventricle. The mean rotation of six basal (anterior, anterior septal, inferior septal, inferior, inferior lateral, and anterior lateral) and four apical (septal, inferior, lateral, and anterior) segments was calculated [4].

The study did not contradict the principles of the Declaration of Helsinki and was approved by the local ethics committee (Minutes No. 1 dated December 19, 2019). All patients signed a voluntary informed consent for the examination.

Statistical analysis

Statistical analysis was performed using Microsoft Excel 2019, IBM SPSS Statistics for Windows, Version 23.0., USA.

Verification of quantitative signs for normal distribution in each group of patients was carried out using the Shapiro–Wilk test and graphical construction of histograms and normal distribution diagrams.

Depending on the distribution, quantitative indicators were compared using the Student’s t-test and the Mann–Whitney U-test. Qualitative characteristics were compared using Pearson’s Chi-square test and Fisher’s exact test.

To predict the development of arterial hypertension, binary logistic regression was applied. To assess the quality of the obtained model and calculate the separating values of quantitative features, the ROC analysis was used. Indicators with maximum and approximately equal values of sensitivity and specificity were chosen as a cutoff point.

Results

All 50 women participated in the study in different periods of perimenopause. The average age was 51.56 ± 5.27. There were no statistically significant differences between the studied groups of women by age (p = 0.07). By our sample, the average level of estradiol was 158 ± 45.47 pmol/l and follicle-stimulating hormone (FSH) 5.2 ± 1.23 mIU/ml.

According to Table 1, on anthropometric parameters and the status of the cardiovascular state, there were no statistically significant differences between the study groups. The average BMI of patients was 28.2 ± 4.5 kg/m², which corresponded to overweight state. I degree obesity was observed in 24 (48%) patients, 3 (6%) had II degree obesity, and 1 (2%) had obesity of III degree.

The average cholesterol level was 5.4 mmol/L, the maximum was 8.1 mmol/L, and the minimum was 3.8 mmol/L. A statistically significant indicator in the comparison groups is the level of high-density lipoprotein (HDL), which was higher in the group without hypertension (p = 0.020).

We also analyzed the indicators of the performed electrocardiography. All patients had sinus rhythm with the average heart rate of 66 beats/min. According to ECG, 6 (12%) of patients demonstrated a slowdown in intraventricular conduction along the right bundle branch, and 10 (20%) of patients showed impaired repolarization of the anterior wall of the left ventricle.

According to Table 2, it is demonstrated that there was no significant difference between the groups in terms of volumetric parameters of the left atrium and left ventricle. Patients with arterial hypertension in comparison with the group of patients without arterial hypertension had increased left ventricular myocardial mass index (87.2 vs. 76.1 g/m²). The only statistically significant difference in the compared groups was in the left ventricular myocardial mass index (p = 0.038). Concentric remodeling of the left ventricular geometry was observed in 15 (62.5%) patients with arterial hypertension.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Patients in total, n = 50</th>
<th>Group of patients with arterial hypertension, n = 24</th>
<th>Group of patients without arterial hypertension, n = 26</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (cm)</td>
<td>160.42 ± 4.97</td>
<td>159.46 ± 4.65</td>
<td>161.31 ± 5.62</td>
<td>0.186</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>72.58 ± 11.29</td>
<td>74.33 ± 9.34</td>
<td>70.96 ± 12.80</td>
<td>0.296</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>28.27 ± 4.58</td>
<td>29.23 ± 4.50</td>
<td>27.39 ± 5.31</td>
<td>0.059</td>
</tr>
<tr>
<td>BSA (m²)</td>
<td>1.75 ± 0.12</td>
<td>1.76 ± 0.11</td>
<td>1.74 ± 0.13</td>
<td>0.581</td>
</tr>
<tr>
<td>Office SBP (mm Hg)</td>
<td>128.0 ± 21.88</td>
<td>148.13 ± 10.92</td>
<td>109.42 ± 8.98</td>
<td><0.001</td>
</tr>
<tr>
<td>Office DBP (mm Hg)</td>
<td>78.90 ± 15.65</td>
<td>93.13 ± 9.19</td>
<td>67.50 ± 8.63</td>
<td><0.001</td>
</tr>
<tr>
<td>Creatinine (mmol/l)</td>
<td>67.42 ± 11.63</td>
<td>68.25 ± 10.25</td>
<td>66.65 ± 12.93</td>
<td>0.630</td>
</tr>
<tr>
<td>Cholesterol (mmol/l)</td>
<td>5.41 ± 0.92</td>
<td>5.34 ± 1.07</td>
<td>5.49 ± 0.79</td>
<td>0.571</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>1.54 ± 0.55</td>
<td>1.68 ± 0.58</td>
<td>1.41 ± 0.49</td>
<td>0.085</td>
</tr>
<tr>
<td>(mmol/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDL (mmol/l)</td>
<td>1.62 ± 0.34</td>
<td>1.50 ± 0.34</td>
<td>1.72 ± 0.31</td>
<td>0.020</td>
</tr>
<tr>
<td>Total protein (g/l)</td>
<td>71.34 ± 5.75</td>
<td>71.42 ± 6.25</td>
<td>71.27 ± 5.37</td>
<td>0.924</td>
</tr>
</tbody>
</table>

Table 2: Functional and volumetric indicators of echocardiographic examination

<table>
<thead>
<tr>
<th>Characteristics/parameters</th>
<th>Patients (total), n = 50</th>
<th>Group of patients with arterial hypertension, n = 24</th>
<th>Group of patients without arterial hypertension, n = 26</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDV (ml)</td>
<td>87.70 ± 14.55</td>
<td>89.83 ± 15.38</td>
<td>85.69 ± 13.74</td>
<td>0.320</td>
</tr>
<tr>
<td>ESV (ml)</td>
<td>23.78 ± 6.48</td>
<td>24.33 ± 6.30</td>
<td>23.46 ± 6.74</td>
<td>0.721</td>
</tr>
<tr>
<td>SV (ml)</td>
<td>64.12 ± 9.49</td>
<td>65.51 ± 10.03</td>
<td>62.25 ± 8.91</td>
<td>0.265</td>
</tr>
<tr>
<td>MV (l/min)</td>
<td>34.49 ± 7.25</td>
<td>35.91 ± 7.08</td>
<td>33.18 ± 7.30</td>
<td>0.185</td>
</tr>
<tr>
<td>LAV (ml)</td>
<td>48.76 ± 9.31</td>
<td>50.50 ± 8.57</td>
<td>47.15 ± 9.84</td>
<td>0.207</td>
</tr>
<tr>
<td>LAV (ml/m²)</td>
<td>27.42 ± 4.66</td>
<td>28.07 ± 4.27</td>
<td>26.81 ± 5.0</td>
<td>0.348</td>
</tr>
<tr>
<td>Ascending aorta (mm)</td>
<td>28.87 ± 3.11</td>
<td>29.21 ± 2.99</td>
<td>28.54 ± 3.26</td>
<td>0.464</td>
</tr>
<tr>
<td>Sinus of Valsalva (mm)</td>
<td>29.96 ± 2.78</td>
<td>29.83 ± 2.68</td>
<td>30.08 ± 2.93</td>
<td>0.759</td>
</tr>
<tr>
<td>RV/LV ratio</td>
<td>0.14 ± 0.06</td>
<td>0.14 ± 0.07</td>
<td>0.12 ± 0.06</td>
<td>0.369</td>
</tr>
<tr>
<td>LVM, grams/m²</td>
<td>81.50 ± 19.04</td>
<td>87.28 ± 18.61</td>
<td>76.16 ± 18.17</td>
<td>0.038</td>
</tr>
<tr>
<td>LVM (grams)</td>
<td>143 ± 36.3</td>
<td>151 ± 35.2</td>
<td>135 ± 36.3</td>
<td>0.117</td>
</tr>
<tr>
<td>Ejection fraction (%)</td>
<td>62.0 (60.0;63.0)</td>
<td>62.0 (60.0;63.0)</td>
<td>62.0 (60.0;63.0)</td>
<td>0.399</td>
</tr>
</tbody>
</table>

According to Figure 1 and Table 3, the area under the ROC curve of the correlation between the presence...
of hypertension and the basal septal segment of the left ventricle was 0.696 ± 0.075 (95% CI: 0.549–0.842, p = 0.018). The threshold value of the basal septal segment at the cutoff point was −19.50. When basal septal segment was equal to or higher than this value, a high risk of arterial hypertension was predicted. The sensitivity and specificity of the method were 70.8% and 57.7%, respectively.

The area under the ROC curve of the correlation between the presence of hypertension and inferior basal was 0.772 ± 0.068 (95% CI: 0.639–0.904, p = 0.001). The threshold value of the basal inferior segment at the cutoff point was −21.50. When the basal inferior segment was equal to or higher than this value, a high risk of hypertension was predicted. The sensitivity and specificity of the method were 87.5% and 65.4%, respectively.

The area under the ROC curve of the correlation between the presence of hypertension and the mid-lateral segment was AUC 0.692 ± 0.074 (95% CI: 0.547–0.838, p = 0.020). The threshold value of the mid-lateral segment at the cutoff point was −20.50. When the mid-lateral segment was equal to or higher than this value, a high risk of arterial hypertension was predicted. The sensitivity and specificity of the method were 70.8% and 50.0%, respectively.

A binary logistic regression was created to determine the probability of patients to belong to a group with hypertension, by introducing 2-basal septal, 4-basal inferior, and 11 mid inferior lateral parameters into the analysis by Wald's stepwise selection method (Figure 2). As a result, one logistic regression equation was chosen with a correct prediction rate of 80% with a sensitivity of 87.5% and a specificity of 73.1% (Table 4).

\[
P = \frac{1}{1 + e^{-z}}, \quad \text{where} \quad z = 8.226 + 0.197 X_1 + 0.236 X_2
\]

Where, 8.226 is a constant;
X1 – the value of the basal septal segment
X2 – the value of the basal inferior segment

The classification threshold in the model (cutoff value) was defined as 0.43. In cases when p < 0.43 was considered after calculations, it was considered that the risk of the presence of hypertension in a patient is higher than its absence.

Discussion

According to the WHO, mortality from cardiovascular pathology is the leading one. The

Table 3: Indicators of longitudinal strain of the myocardium

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Patients (total), n = 50</th>
<th>Group of patients with arterial hypertension, n = 24</th>
<th>Group of patients without arterial hypertension, n = 28</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLS_Avg (%)</td>
<td>18.95 (−19.60; −18.28)</td>
<td>−18.50 (−19.40; −18.13)</td>
<td>−19.0 (−19.95; −18.05)</td>
<td>0.061</td>
</tr>
<tr>
<td>Basal septal (%)</td>
<td>−18.90 ± 3.476</td>
<td>−17.58 ± 3.374</td>
<td>−19.92 ± 3.236</td>
<td>0.016</td>
</tr>
<tr>
<td>Basal inferior (%)</td>
<td>−19.50 (−23.00; −16.75)</td>
<td>−17.50 (−20.00; −15.00)</td>
<td>−22.00 (−24.00; −18.75)</td>
<td>0.001</td>
</tr>
<tr>
<td>Mid inferior lateral (%)</td>
<td>−20.00 (−22.25; −17.75)</td>
<td>−19.00 (−21.00; −17.00)</td>
<td>−20.50 (−26.00; −19.00)</td>
<td>0.019</td>
</tr>
</tbody>
</table>

GLS_Avg: Global longitudinal strain average.
Table 4: Results of the step-by-step construction of the logistic regression model

<table>
<thead>
<tr>
<th>Step</th>
<th>Value</th>
<th>Variable</th>
<th>Wald’s statistics</th>
<th>Standardized regression coefficient</th>
<th>Percentage of correct prediction, %</th>
<th>Odds ratio</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X1</td>
<td>Basal septal</td>
<td>3.974</td>
<td>0.97</td>
<td>73.1</td>
<td>1.217</td>
<td>0.046</td>
</tr>
<tr>
<td>2</td>
<td>X2</td>
<td>Basal inferior</td>
<td>7.90</td>
<td>0.236</td>
<td>87.5</td>
<td>1.266</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Impact of arterial hypertension on morbidity and complication of cardiovascular pathology remains a widely discussed issue. Speckle-tracking echocardiography is a non-invasive imaging modality that helps to objectively and quantify global and regional myocardial function [23]. Global longitudinal strain is the most clinically used parameter in speckle-tracking echocardiography. The clinical advantage of speckle-tracking echocardiography is that it can detect early myocardial dysfunction before any obvious cardiac dysfunction occurs, while traditional echocardiographic parameters such as left ventricular ejection fraction are normal [2].

Arterial hypertension is an ideal model for the assessment of changes in various types of deformities that develop following the development of concentric geometry of the left ventricle (concentric remodeling and concentric left ventricular hypertrophy) [24].

In the present study, perimenopausal women had similar ejection fraction parameters (p = 0.399). With normal systolic function, according to speckle-tracking echocardiography in two segments, there were statistically significant changes, mainly in the basal regions.

In their study, Hensel et al. demonstrated a decrease in the levels of peak systolic left ventricular strain and strain rate at rest in patients with mild hypertension, while conventional echocardiographic parameters such as ejection fraction and mid-wall fractional shortening remained unchanged in comparison with healthy patients [25].

Tanaka and Hidekazu reported that speckle-tracking echocardiography, sensitive marker of subtle anomalies of the LV myocardium, useful for predicting outcomes various heart diseases, and exceeds the usual echocardiographic indicators [26]. A prospective study by Chinese scientists presents a detailed deformity analysis to identify different characteristics of circumferential and longitudinal deformity in young people with hypertension. This systolic dysfunction can be easily and accurately detected by speckle-tracking echocardiography in young adults with hypertension [27].

New prognostic and diagnostic data continue to emerge as we continue to apply speckle-tracking echocardiography in a selected group of patients. We would also like to add further study of the left atrial and right ventricular speckle tracing in perimenopausal women.

Speckle-tracking echocardiography has a high sensitivity and specificity and can be used in general clinical practice as a simple and cost-effective indicator of the risk of subclinical arterial hypertension.

Conclusion

The routine electrocardiography and echocardiography did not show the effect of arterial hypertension on the left ventricular remodeling in perimenopausal women. Thus, only the use of speckle-tracking echocardiography in the assessment of the systolic function of the left ventricle in patients with arterial hypertension can reveal subclinical changes in the biomechanics of the heart at the stage of the preserved ejection fraction. Analysis of the basal segments of the left ventricle can be a prognostically significant indicator for women in perimenopausal women with the symptoms of arterial hypertension.

Authors’ Contributions

All authors have sufficiently contributed to the study and agreed with the results and conclusions.

References

PMid:29584751

PMid:28231932

PMid:31543199

https://oamjms.eu/index.php/mjms/index
PMid:25559473
PMid:30400022
PMid:31196460
PMid:32558395
PMid:28363204
PMid:32036347
PMid:31433283
PMid:29685849
PMid:30165516
PMid:29673470
PMid:26491098
PMid:25776297
PMid:34168377
PMid:17543757
22. Nagueh F, Smiseth OA, Appleton CR, Byrd 3
PMid:25776297
PMid:32036347
PMid:25389528

PMid:30278524