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Abstract
Incidences of diabetes are common among populations around the world. Diabetes may lead to other complications 
and increased morbidity and mortality. Many ways have been done to treat and prevent the development of diabetes. 
In addition to conventional pharmacotherapy, therapeutic therapy has shown good opportunities to maintain and 
improve diabetic conditions. Vitamin D is known as a nutraceutical and has a good opportunity to develop the 
medication for type 2 diabetes. The application of nanocarriers as a delivery system increases the bioavailability 
of vitamins, escalates cellular delivery, and optimizes the vitamin effect. By utilizing nanotechnology-based dietary 
supplements, the problem of vitamin administration, vitamin stability, absorption, and bioavailability will be resolved. 
In this review, we would try to compare the most relevant aspect of nanocarrier for Vitamin D as a nutraceutical in 
type 2 diabetes.

Edited by: Eli Djulejic
Citation: Maulana RA, Fulyani F, Anjani G. 

Nanocarriers System for Vitamin D as 
Nutraceutical in Type 2 Diabetes: A Review. 

Open-Access Maced J Med Sci. 2022 May 27; 10(F):427-436. 
https://doi.org/10.3889/oamjms.2022.9507

Keywords: Nanocarriers; Vitamin D; Diabetes mellitus; 
Encapsulation

*Correspondence: Gemala Anjani, Department of 
Nutrition Science, Medical Faculty, Diponegoro University, 

Indonesia. E-mail: gemaanjani@gmail.com 
Received: 22-Mar-2022
Revised: 15-May-2022

Accepted: 17-May-2022
Copyright: © 2022 Reza Achmad Maulana, 

Faizah Fulyani, Gemala Anjani
Funding: This study was supported through a grant from 
the Indonesian Ministry of Education, Culture, Research, 

and Technology (no. 187-13/UN7.6.1/PP/2021)
Competing Interest: The authors have declared that no 

competing interest exists
Open Access: This is an open-access article distributed 

under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (CC BY-NC 4.0)

Introduction

Diabetes is a major worldwide health problem 
that increasing every year. Data from International 
Diabetes Federation (IDF) in 2019 show that 9,3% 
world population aged 20–79 years old had diabetes. 
Indonesia gets 1st  rank country with diabetes in 
Southeast Asia with 10,7 million diabetic people [1]. 
The Indonesian Basic Health Research (RISKERDAS) 
in 2018 showed that the prevalence of diabetes in 
Indonesia was 2% in the population aged >15 years [2]. 
The increasing number of diabetes is influenced by 
Vitamin D deficiency. Patients with type  2 diabetes 
mellitus (T2DM) show lower levels of Vitamin D 
compared with normal people [3]. Vitamin D is known 
to have a positive effect on diabetes, but the prevalence 
of Vitamin D deficiency shows a large number. Many 
countries around the world report the incidence of 
Vitamin D deficiency. The United States and Europe 
show that 5,9% and 13% population have Vitamin D 
deficiency [4]. In Indonesia, 45.1% of children aged 
1–18  years and 82% of productive age women have 
Vitamin D deficiency [5].

Vitamin D has a significant role in diabetes to 
maintain blood glucose tolerance [6], decrease insulin 

resistance [7], and as a gene transcription factor [8]. 
This fat-soluble vitamin can be obtained from food intake 
and formed by the body but has low bioavailability. Food 
sources of Vitamin D are not much and the Vitamin D 
content in foodstuffs is low [9]. The nature of Vitamin D 
is easy to damage by heat, light, oxidation, and acid. 
That thing made the bioavailability of consumed Vitamin 
D low [10], [11]. To overcome this issue, the application 
of nanotechnology-based dietary supplements could 
be applicated. Vitamin D encapsulation would maintain 
vitamin bioavailability. The encapsulation method 
has two functions, as a carrier and protector agent of 
Vitamin D in the gastrointestinal tract.

The application of nanocarrier technology has 
provided many breakthroughs for the development of 
medicine around the world. When compared with the 
conventional method, the application of nanocarrier 
provides more advantages [12]. Nanocarrier involved 
in drug and vitamin delivery shows an increase in water 
solubility of water-insoluble substances, protecting 
against degradation from the environmental condition, 
and inactivation [13]. The application of nanotechnology 
as a nanocarrier system must pay attention to many 
aspects. The nature and action of the carrier should be 
investigated when planning to apply as drug delivery 
or vitamin delivery [14], [15], [16]. The most important 
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thing is the biocompatibility system of the nanocarrier. 
The system must be safe, non-toxic, and not trigger an 
immune reaction in the human body [17], [18], [19]. The 
objective of this review is to highlight the recent update 
on the development of nanocarrier for Vitamin D and 
the opportunity to be nutraceuticals in T2DM.

Diabetes Mellitus

Glucose is a product of carbohydrate 
metabolism. Blood glucose is a very important part 
of maintaining the body’s physiological functions as 
a source of energy. Blood glucose levels rise after 
meals and are usually low in the morning and before 
meals. Blood glucose levels are maintained to maintain 
balance in the body. Blood glucose levels are regulated 
by the pancreas gland. When blood glucose levels drop, 
the pancreas releases glucagon, a hormone that targets 
liver cells, which are glycogen stores. With the help of the 
hormone glucagon, glycogen is converted into glucose 
in the liver (the process of glycogenolysis) and glucose 
is released into the bloodstream. In conditions of high 
blood glucose levels, the hormone insulin is released 
from the pancreas. The hormone insulin increases the 
transport of glucose from the circulation to the muscles 
and liver. In the liver, glucose is converted to glycogen 
(the process of glycogenesis). In normal conditions, the 
homeostasis of the blood glucose in circulation will be 
balanced, but it not going well in diabetes. In a diabetic 
person, the blood regulation will be disturbed and causing 
many defects in the body due to the complications.

Diabetes mellitus (DM) is a chronic disease 
characterized by disturbances in carbohydrate, fat, and 
protein metabolism. Common symptoms of this disease 
are polydipsia, polyuria, polyphagia, and weight loss. 
This disease involves the endocrine hormones of the 
pancreas (insulin and glucagon) and is associated with 
the impaired physiological function of insulin. There are 
two types of DM disease based on endogenous insulin 
secretion, Insulin-Dependent Diabetes Mellitus (IDDM) 
or commonly known as type 1 diabetes mellitus (T1DM), 
and Non-Insulin-Dependent Diabetes Mellitus 
(NIDDM), commonly known as type 2 diabetes mellitus 
(T2DM)  (20). Worldwide, 90–95% of diabetics people 
have T2DM. The increasing prevalence of T2DM 
going rapidly influenced by sedentary lifestyles such 
as low physical activity, high intake of fast food and 
sweet sugar beverage, and low intake of fruits and 
vegetables [1], [20], [21]. Overweight, obesity or central 
obesity, and hyperglycemia in pregnancy are factors 
that influence the incidence of insulin resistance in 
people with T2DM [22].

Diabetes mellitus is a metabolic disease with 
the characteristic of insufficient insulin production or 
ineffective insulin physiological performance. Insulin 

is a key of the body to deliver blood glucose from 
circulation to the cell’s target [1]. T2DM is a metabolic 
disorder with the characteristic of insulin resistance, 
impaired insulin secretion, and increased glucose 
production. T2DM is preceded by abnormal sugar 
homeostases such as impaired fasting glucose or 
impaired glucose tolerance [23]. Insulin resistance (IR) 
is considered one of the mechanisms that developed 
T2DM. IR disrupts the glucose intake from blood 
circulation and is involved with the over-production of 
hepatic glucose [24]. To lead to T2DM, the IR condition 
usually occurs over a long time. Due to the IR condition, 
the human body will compensate for homeostasis in the 
form of producing large amounts of insulin hormone. 
The long-term condition of insulin overproduction would 
lead to pancreatic beta-cell dysfunction due to systemic 
inflammation. The pancreatic beta-cell dysfunction is 
associated with beta-cell death [25].

The condition of diabetes affects various 
physiological functions of the body, including the 
digestive tract. Some problems in the digestive tract 
that is often found in patients with diabetes are a longer 
gastric emptying time to the accompanying diarrhea 
problem. The physiological functions of the digestive 
tract, starting from the esophagus to the anus, will change 
in a person with diabetes. A vital function of the digestive 
tract to maintain life will be disrupted. The condition of 
diabetes will affect the ability of the gastrointestinal 
organs both directly and indirectly. Obstacles in the 
process of swallowing, movement of organs, breakdown, 
and absorption of nutrients, to the process of removing 
residual waste, will affect long-term health. Various 
digestive problems such as gastroesophageal reflux 
(GERD), nausea, vomiting, bloating, and diarrhea to 
constipation can accompany diabetic patients which will 
worsen the condition if not treated immediately [26]. By 
reducing the burden on the stomach and mild methods of 
giving oral therapy, diabetics person will be easier to carry 
out consumption therapy. In addition, proper and efficient 
administration of nutraceuticals will reduce unwanted 
signs and symptoms in undergoing therapy.

Vitamin D as Nutraceutical in Diabetes

Vitamin D is a non-essential fat-soluble 
vitamin that has a huge and important role in calcium 
homeostasis [27]. Structurally, Vitamin D is a derivative 
of steroid compounds in the body [28]. Vitamin D can be 
obtained from food intake and supplementation. It can 
be activated through exposure to sunlight in the form of 
Vitamin D3. The nature of Vitamin D is easy to damage 
by heat, light, oxidation, and acid. That thing made the 
bioavailability of consumed Vitamin D low [10],  [11]. 
However, the prevalence of Vitamin  D deficiency 
worldwide is still high [1]. Vitamin D supplementation can 
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be a solution to sufficient Vitamin D requirements, but it still 
does not cover a wide population. Vitamin D fortification is 
an alternative to reduce Vitamin D deficiency that has the 
potential effect to cover a wider population and potentially 
increase Vitamin D intake. The form of Vitamin  D 
used for fortification is Vitamin D2 or Vitamin  D3  [29]. 
Fortification of the active form of Vitamin D (Vitamin D3) 
is considered efficient in the supplying requirement of 
Vitamin D. Addition of Vitamin  D3 to food has shown 
an improvement in blood glucose and insulin status in 
diabetes mellitus  [30]. Vitamin D deficiency has been 
associated with decreasing insulin release, increasing 
insulin resistance, and type 2 diabetes mellitus. Vitamin D 
deficiency causes dysregulation of glucose metabolism 
by interfering with glucose-stimulated insulin secretion in 
the hyperglycemic phase [20]. Vitamin D intake affects 
insulin resistance and is positively correlated with insulin 
secretion in patients with type  2 diabetes mellitus. 
Supplementation of orally high-dose cholecalciferol 
(10,000  IU per day for 4  weeks) as a replacement 
dose showed an increased insulin sensitivity of 37% in 
subjects with fasting blood glucose disorder [31]. A study 
in diabetic Wistar rats has proven that fortification 
of Vitamin  D3 in foodstuffs can significantly reduce 
blood sugar levels  [32]. This thing happened because 
increasing serum Vitamin D concentration has a positive 
effect on insulin homeostasis [33].

Systemic inflammation is one of the causes of 
type 2 diabetes mellitus (T2DM) and insulin resistance 
occurs in it. Vitamin D has an anti-inflammatory 
effect and it is useful to overcome inflammation. 
In the metabolic process, Vitamin D3 plays a role 
in preventing and improving the status of diabetes 
mellitus. Vitamin  D can provide benefits for several 
disease prevention, such as multiple sclerosis, cancer, 
bacterial infections  [34], and diabetes [35]. Vitamin D 
is maintaining glucose tolerance through insulin 
secretion and sensitivity [6]. Vitamin D3 has a function 
in insulin synthesis and secretion by modulating the 
intracellular calcium homeostatic system. Vitamin D 
is protective against insulin resistance because it has 
anti-inflammatory effects. Pancreatic beta cells have a 
specific receptor for 1,25(OH)2D that regulates insulin 
secretion. Vitamin    D also stimulates insulin receptor 
expression and triggers insulin response to glucose. In 
another way, Vitamin D provides sufficient intracellular 
cytosolic calcium for insulin secretion through the 
regulation of calcium flux in the cell membrane [7]. The 
metabolism can be concluded that Vitamin D has a 
positive effect on insulin resistance [36].

Nanocarriers System

In simple terms, a nanocarrier is a nanoparticle 
that can be used as a transporter for therapeutic 

compounds or other compounds to their targets  [37]. 
The size of a nanocarrier compound has a diameter 
between 1 and 100 nanometers (nm) [38]. In the 
application of nanocarriers for therapeutic substances, 
the nanoparticle size must be <200  nm because the 
microcapillaries in the human body are 200  nm  [39]. 
Nanocarrier in the therapeutic provides good 
biocompatibility as a safe medium for transporting the 
substance. The nanocarrier is inactive generally so 
it is regarded as a safe medium. The application of 
nanocarriers for drug transport shows that in circulation, 
nanocarriers have a long-term period and sustained 
release of drugs overcome the endosome-lysosome 
mechanism [40]. The modification of the nanoparticle 
would affect the physicochemical properties of the 
nanocarriers such as the surface, composition, as 
well as its shape, which can enhance their activity 
with decreased secondary effects [41]. There are 
several unique features of the nanocarriers that have 
been known including enhanced biodistribution and 
pharmacokinetics, enhanced stability, enhanced 
solubility, reduction in toxicity, and sustained-targeted 
drug delivery [42], [43].

Encapsulation is a strategy that can be 
used to increase the bioavailability of a substance 
component. Encapsulation technology is carried out 
by packing solid, liquid, and gaseous materials in 
small closed capsules with a release that has been 
designed at a controlled rate within a certain period, 
through a trigger mechanism in the form of certain 
environmental factors such as temperature, enzymes, 
pH, or fermentation [44]. The encapsulation technology 
coating a bioactive material is referred to as the core 
material or internal phase. The coating material is 
called the capsule or carrier material. Encapsulation 
not only helps protect the core material from damaging 
environmental conditions but also allows the passage 
of small amounts of material through the capsule walls. 
The interior (core side) of a nanocarrier system can be 
filled with nutraceutical or drug molecules. Nanocarriers 
such as polymer nanocarriers, nanocapsules, and 
dendrimers can encapsulate the drug efficiently in its 
perforated cavity [45], [46]. The hydrophobic nature of 
the inner cavity (core side) of the nanocarrier system 
makes it possible to incorporate more hydrophobic 
molecules into the nanocarrier through hydrophobic 
interactions or hydrogen bonding. This encapsulation 
can also occur through physical interactions. The 
release of the molecule occurs through neutralization 
of the pH-prone or hydrolysis, thiolysis, and the 
mechanism of thermolysis [47]. The materials that 
have the opportunity as a nanocarrier for Vitamin D 
have been researched. Solid lipid, liposome, micelles, 
and liprotides are materials that have been observed 
for Vitamin D encapsulation. The previous studies 
showing the application of using nanocarriers as 
encapsulation materials for Vitamin D are shown in 
Table 1.
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Solid Lipid

The development of solid lipid as a nanocarrier 
has been used and developed a decade before the 
2000s. At the time, the solid lipid nanocarriers are 
used as a suitable carrier for hydrophobic drugs [37]. 
The special characteristic of solid lipid as nanocarriers 
makes it have a big opportunity as a delivery system 
for parenteral and oral delivery. The usual major 
component of solid lipid as nanocarrier is triglycerides 
and saturated fatty acid as neutral solid lipid, for lipophilic 
emulsifiers, polar phospholipid is used. Neutral lipids 
such as monoglycerides and diglycerides are naturally 
more polar than triglycerides and have different surface 
activities [48]. The variety of lipid properties is affected 
by the fatty acid composition [49]. In general, a lipid 
with long-chain saturated fatty acid is used as the 
components structure of nanocarrier. The unsaturated 
fatty acid and medium-chain fatty acid would be liquid 
lipids in the formulation of the nanocarrier [50], [51].

The solid lipid nanocarriers are prepared 
through the dispersion of melted solid lipids in water 
and stabilized by the way of giving emulsifiers 
through microemulsification or excessive pressure 
homogenization [52], [53]. The common materials for 
the preparation of solid lipid nanocarriers are usually 
formed from solid lipids such as free fatty acid; steroid or 
waxes; and triglycerides [54]. Based on the production 
circumstance and composition, the encapsulated 
molecules may be included in the matrix, shell, or core 
of the stable lipid. Nowadays, the solid lipid nanocarrier 
may be used to comprise ionic and hydrophilic anticancer 
drug materials at the side of the lipophilic drug. The 
polymer-lipid nanocarrier was explored to be an effective 
material for drug delivery from oral intervention [55]. The 
new generation of lipid-based nanocarrier was created 
to develop drawbacks of the previous generation of the 
lipid nanocarrier. This new-generation nanocarrier could 
be used for oral administration, parenteral intervention, 
and drug delivery through topical administration. Further 
development of lipid nanocarrier shows the opportunity 
as genes and nucleic delivery, controlled release of 
active agents [53], and targeted carrier of antitumor 
materials agent [56], [57].

Liposome

Liposomes are bilayer vesicles formed from 
cholesterol and phospholipids and have a liquid 
core located between the layers of the lipid bilayer. 
Assembled using distinctive features of the self-
company of phospholipids, liposomes can be defined 
as synthetic, small, spherical vesicles which can be 
each biodegradable and biocompatible. Phospholipids 
are amphipathic debris with a hydrophobic extension 
composed of two fatty acid sequences with several 
carbon atoms from 10 to 24, and a polar head that 
guarantees their hydrophilic characteristics. The desire 
for phospholipids is due to their bivalent shape since the 
formed bilayer can without problems modify its fluidity 
and influence the release ratio of the engulfed drug [58]. 
Liposomes are characterized using their particular 
structure, defined by way of the bilayer structure of 
lipids. Aside from phospholipids, cholesterol is another 
constituent that can be considered to obtain liposomes, 
because it guarantees more desirable stability of these 
structures [59], [60].

Liposomes are widely used as drug carrier 
systems or other substances because they are 
compatible with a variety of bioactive peptides [61]. This 
is due to the structure in which the liquid core is suitable 
for hydrophilic peptides and the interior of the bilayer 
is compatible with hydrophobic substances. Moreover, 
liposomes have a shape resembling a cell membrane, 
which helps protect polypeptides from enzymatic 
degradation and oxidation. Liposomes also have many 
other advantages; easy to prepare, absorbed directly 
through lymphocyte tissue, non-toxic, biodegradable, 
and non-immunogenic [62]. The previous studies have 
proven the effectiveness of liposomes as encapsulation 
materials where the antioxidant capacity of genistein 
is more optimal using liposomes than caseinate [63]. 
Two methods possibly can integrate medicinal  drugs 
or materials into liposomes: Passive and active 
carrier techniques. The passive envelopment strategy 
means that the bioactive molecules are entrapped in 
nanocarrier for the duration of their assembly, in case of 
the active loading, the therapeutic materials are packed 
into the intact liposomes [64].

Table 1: Previous studies of nanocarriers application for Vitamin D
Nanocarriers system Nature of nanocarriers Previous research

Vitamin D Solid Lipid A colloidal carrier that has good stability naturally degrades and 
is easy to modify [40].

A combination of vitamin d loaded with solid lipid nanocarriers combined with 
anti‑cancer materials improves the effectivity therapy in breast cancers [92].
The system of vitamin D and nanoparticles determined the increasing 
systemic absorption and prolonged presence of the bioactive materials in 
the blood plasma [93], [94].

Liposome A phospholipid bilayer nanocarriers that has low toxicity 
naturally degrades and is biocompatible [41], [42].

Anti‑aging agents that directly apply to the skin using liposomes with 
vitamin D3 loaded [95].
The stability of liposomes as nanocarriers is affected by vitamin D3 [96].

Micelles The colloidal aggregate of the molecules with amphiphilic nature 
has good biostability and dynamic system [52], [97].

The micelles have a role as a protective agent in vitamin D encapsulation 
with the intervention of UV‑light with deterioration induced [98].
The bioavailability of vitamin D diminished to 37% in micelles with chitosan 
use [99].

Liprotide Complex molecules are composed of fat (lipid) molecules and 
protein molecules. Potential to carry hydrophobic molecules in a 
hydrophilic environment [71], [72].

Vitamin D can be encapsulated and stabilized for the enrichment of clear 
beverages [72].
Optimal formulation of the liprotide as a nanocarrier [73].
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Micelles

Micelles are colloidal particles with nanosized 
diameters and spherical shapes and have a non-polar 
nature interior with a polar outer surface [12]. This 
system was introduced in 1913 as colloidal aggregates 
from detergent in a water mixture [37]. The amphiphilic 
molecules formed from the hydrophobic tail that 
faces the center and the hydrophilic head on the 
surface. This type of nanocarrier could carry bioactive 
molecules agents either inside the hydrophobic side 
or sure covalently to the surface of micelles [65]. 
The big gain of the micelles is composed in the truth 
that they may be designed and synthetic to hold fat-
soluble medicinal drugs or materials right away. Simply 
above their threshold attention, micelles are built due 
to the self-aggregation of the amphiphiles in aqueous 
situations, consequently engulfing passively the fat-
soluble bioactive compound partitioning into the 
hydrophobic medium of the micelle core [66], [67], [68]. 
The capabilities of micelles also are altered by utilizing 
the encompassing situations. As an instance, blood 
consists of particular compounds that could affect the 
potential chemical gradient created among monomeric 
fractions within the micelles and the surrounding 
aqueous section, therefore increasing the critical 
micelle awareness. As a result, the solid micelles 
in saline answer can also show to have a negative 
balance in the blood and purpose them to disperse and 
discharge the carried capsules earlier [69], [70].

Liprotide

Liprotides are complex molecules composed 
of fat (lipid) molecules and protein molecules. Protein 
has a role as a shell while fat is a core. The core-shell 
structure formed from the liprotides complex can be 
used to encapsulate other molecules. The primary 
function of the protein coat is to increase the solubility 
of fatty acids. This ability makes liprotides the potential 
to carry hydrophobic molecules in a hydrophilic 
environment. Another function of the protein coat is to 
carry and deliver fatty acids to target cells or hydrophobic 
surfaces. Liprotides can stabilize small aliphatic 
molecules such as retinol and tocopherols by inserting 
the molecules into the fatty acid core [71]. Liprotides 
can protect tocopherols better than tocopherol-binding 
proteins such as beta-lactoglobulin and protein transfer 
α-tocopherol. Liprotides can be used to stabilize and 
deliver a wide variety of hydrophobic small molecules 
with potential health benefits [72]. In general, liprotides 
can increase the stability and solubility of molecules 
to be able to form complexes. Liprotides can easily 
deliver the carried compound into the membrane 
target but can decrease the stability of the complex 

matrix under various conditions. Liprotides consisting 
of α-lactalbumin and oleic acid can dissolve Vitamin D, 
increasing Vitamin D stability against UV rays by 
9  times, and increasing the stability of Vitamin D at 
37°C up to 1000  times [72], [73]. α-lactalbumin can 
interact strongly with monolayer oleic acid by diffusion 
and absorption on the surface, incorporation with films, 
and protein-lipid complexes between molecules by 
hydrophobic interactions [74]. Liprotides can release 
Vitamin D by transferring Vitamin D to phospholipid 
vesicles. Vitamin D encapsulated by liprotides using 
α-lactalbumin-oleic acid and β-lactoglobulin can 
increase the availability of Vitamin D in clear beverage 
products with neutral pH [75]. Many compounds can be 
used to form a liprotides system, but there is a specific 
component that has been developed to form a liprotides 
system such as α  -lactalbumin, β-lactoglobulin, and 
oleic acid.

α-Lactalbumin

α-lactalbumin is one of the whey proteins in 
cow’s milk than can be a good candidate for vitamin 
encapsulation. α-lactalbumin can bind hydrophobic 
ligands such as retinol and hydrophobic peptides. Bio 
macromolecules such as proteins have a potential 
opportunity for vitamin encapsulation. Based on 
research conducted by Delavari et al., α-lactalbumin 
has one binding site for Vitamin D3 [76]. When 
hydrophobic interactions form, the conformation of 
the protein changes, and the hydrophobic surface of 
α-lactalbumin increases. The secondary structure 
of α-lactalbumin is changed in the presence of 
Vitamin  D3. α-lactalbumin is a small globular protein 
with 123 amino acids and a molecular mass of 
14.2  kDa. α-lactalbumin is the predominant protein 
in human milk. In cow’s milk, the concentration of 
α-lactalbumin is 1–1.5  g/L (3.4% total protein). The 
natural structure of bovine α-lactalbumin consists of a 
large helical domain and a small beta layer domain, 
both of them are connected by a loop. α-lactalbumin 
has a hydrophobic site and made α-lactalbumin 
has one binding site to bind other compounds, like 
Vitamin D3  [76]. The solubility of α-lactalbumin can 
be affected by certain conditions of pH, temperature, 
and ionic state [77]. α-lactalbumin is relatively resistant 
to protease digestive enzymes (pepsin and trypsin) 
because of its globular and dense structure [78]. 
Whey protein isolate contains 17% of α-lactalbumin 
and α-lactalbumin contains 48  mg of tryptophan and 
48 mg of cysteine per gram of protein [79]. Tryptophan 
in α-lactalbumin can increase the tryptophan levels 
in the blood which can help synthesize and increase 
the availability of serotonin in the brain. α-lactalbumin 
also accelerates wound healing [80], for recovery from 
various types of sports [81].
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β-Lactoglobulin

β-lactoglobulin is a component is found in 
milk whey and soluble in salt solutions. β-lactoglobulin 
belongs to the lipocalin protein group [82] and has 
been shown to bind various hydrophobic molecules 
such as fatty acids [83], retinol, and Vitamin D [84]. 
β-lactoglobulin can bind fatty acids such as oleic acid and 
linoleic acid. The research showed that the complex of 
β-lactoglobulin and oleic acid could increase the tertiary 
structure. β-lactoglobulins have more binding sites for 
oleic acid than linoleic acid which interacts with van der 
Waals bonds and hydrogen bonds [85]. Encapsulation of 
Vitamin D3 with β-lactoglobulin with lysozyme modification 
could increase the bioavailability, resistance to pH, and 
solubility [86]. β-lactoglobulin has 162 amino acid residues 
and a molecular weight of 18.4  kDa. β-lactoglobulin is 
the main component of whey protein in milk that can 
freeze and denature when milk boils. After denaturation, 
β-lactoglobulin forms a film layer on the milk surface. It 
happens because β-lactoglobulin protein molecules can 
form a transparent gel when heated for a long time at low 
pH and low ionic strength [86]. β-lactoglobulin is known 
as an allergen, the manufacturers need to prove the 
presence or absence of β-lactoglobulin content to ensure 
that the labeling meets the requirements. Food testing 
laboratories can use enzyme immunosorbent assay 
methods to identify and measure β-lactoglobulin in food 
products. Polymerization of β-lactoglobulin by microbial 
transglutaminase reduces its allergenicity in children and 
adults with immunoglobulin E (IgE)-mediated cow’s milk 
allergy [87].

Oleic Acid

Oleic acid is an unsaturated fatty acid that 
is easily obtained and can be extracted from several 
different sources, one of which is olive oil. Apart from 
olive oil (55–80%), these fatty acids are also contained 
in industrial waste from palm oil, sunflower oil, rapeseed 
oil, and grape seed oil. The availability of oleic acid in 
nature is very abundant and is commonly used in the 
manufacture of surfactants, soaps, plasticizers, and 
food and drug emulsifiers [88]. This acid is composed 
of 18°C atoms with one double bond between the 
9th and 10th C atoms. The oleic acid structure has two 
functional groups, alkenes, and carboxylic acids. The 
presence of alkenes with Z isomer, the bond between 
oleic acid molecules becomes stronger and made oleic 
acid in the liquid phase at room temperature. In polar 
solvents, oleic acid forms a bilayer structure [88]. As 
part of liposomes, oleic acid has limitations in its use 
due to the tendency to break down and cause release. 
One method to increase its stability is by coating it with 
protein to form a complex called liprotides [89].

Delivery Mechanism

The human digestive system is a complex 
system that aims to digest food into nutrients. During 
the digestion process, food will mix with enzymes. 
Enzymes function as catalysts in biological processes 
that can provide speed, specification, and control of 
reactions in the body by increasing the rate of chemical 
reactions by 108–1011 times faster [90]. Each enzyme 
has maximum activity at a certain temperature. When 
the temperature increases, the enzyme activity also 
increases until the optimum temperature is reached. 
After passing the optimum temperature, the enzyme 
activity decreased [91]. In addition to enzymes, stomach 
acids contribute to the breakdown of food into nutrients. 
However, the acidic pH of the stomach can affect the 
stability of Vitamin D, because the vitamin is not stable 
in acidic conditions [10].

Encapsulation of Vitamin D with nanocarrier 
could be the new perspective of nutraceutical therapy 
in type  2 diabetes. The nanocarriers system has a 
potential opportunity as a transporter of Vitamin D. 
The system can carry and protect Vitamin D from the 
gastrointestinal tract until absorbed into blood circulation. 
After Vitamin D encapsulated with a nanocarrier system 
has been consumed by oral administration, the system 
would protect the vitamin in the gastric environment. The 
gastric environment is acidic and contains a variety of 
digestive enzymes such as pepsin and gastric acid. The 
shell of the nanocarriers system that forms from organic 
properties will be affected by the gastric environment 
but the vitamin is still safe in the core of the system. 
After passing through the gastric, the system will enter 
the intestine. The intestine system will be affected by 
an intestine enzyme such as trypsin, chymotrypsin, and 
pancreatic fluid. Due to the environmental condition 
in the intestine, Vitamin D will be released from the 
system. Vitamin D that is protected by the nanocarrier 
system still has a good condition after passing through 
the gastrointestinal system and is ready to be absorbed 
in the intestinal with good bioavailability.

Future Perspectives

One of the challenges in the medical field 
today is the use of nutraceutical therapy that returns to 
its natural state. The application of nanotechnology in 
the development of the world of health is an important 
point in the treatment of a disease. At present, there 
have been many studies related to the application of 
nanotechnology which is used as a delivery agent 
and protector of substances and vitamins. The design 
and development of nanoparticle-based nutraceutical 
therapy as an alternative treatment for degenerative 
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diseases has shown good results. Vitamin D is known 
to have a positive effect on improving diabetes status 
and is used for alternative therapies for diabetic 
patients. However, there are many obstacles, both in 
terms of absorption and bioavailability of Vitamin D. The 
nanoencapsulation method has a chance to increase 
the bioavailability of Vitamin D. Nutraceuticals therapy 
using Vitamin D3 encapsulated with nanocarrier could 
be a new alternative for oral therapy of diabetes type 2.

Conclusion

Recently, nanotechnology has been developed 
as the approach for vitamin delivery agents. The 
nanocarrier technology brings the development in 
vitamin delivery. Exploration of nanocarrier systems in 
the application of supplemental vitamin administration 
shows a better prospect than direct administration of 
vitamins. There are many challenges to producing 
an economical nanocarrier system with good quality. 
The application and manufacture of standardized 
nanocarrier systems will have a very potent impact on 
the application of vitamin delivery in the body. In the 
future, the application of nanocarriers in various fields 
including vitamin delivery in the body will continue to 
grow. The encapsulation of Vitamin D provides another 
point of view in the implementation of therapy in patients 
with type 2 diabetes mellitus. The use of encapsulation 
of Vitamin D with nanocarrier is expected to help treat 
type 2 diabetes patients to improve their quality of life.
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