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Abstract
BACKGROUND: Hepatorenal syndrome (HRS) is a devastating consequence of liver cirrhosis that is clinically 
categorized into two subtypes. Acute malfunction of renal role, as measured by an elevation in blood creatinine, 
significantly underestimates the loss in renal function in cirrhotic individuals; more accurate biomarkers are 
desperately required in cirrhotic patients.

AIM: The present study set out to uncover new biomarkers for the early prediction of AKI in cirrhotic cases. 
A comprehensive panel of biomarkers was investigated to get a clear insight into the pathogenesis of HRS.

PATIENTS AND METHODS: Participants in this study were 70 individuals from the hepatogastroenterology unit of 
the Theodor Bilharz Research Institute (TBRI). Detailed medical data and a physical examination were recorded. 
Three groups of patients have been identified; Group 1: 30 cases with compensated liver cirrhosis and normal kidney 
functions. Group 2: 20 cases with decompensated liver cirrhosis and normal kidney functions. Group 3: 20 cases 
with decompensated liver cirrhosis proved hepatorenal syndrome Type 2 h. The following biomarkers were detected 
in serum using the sandwich-ELISA method: Human L-arginine ELISA kit, human neutrophil gelatinase related 
lipocalin (NGAL), human noradrenaline (NA), human asymmetrical dimethylarginine (ADMA), human symmetric 
dimethylarginine (SDMA), human nitric oxide (NO), and human renin.

RESULTS: There was a highly significant difference between Groups 1 and 2 in NITRIC and ADMA. Significant 
differences between Groups 2 and 3 in NGAL, noradrenalin, and SDMA were observed. There was a significant 
difference (Group 2 vs. Group 3) in renin, NITRIC, ADMA, and L-ARGININE. There was highly significant 
differentiation (Group 2 vs. Group 3) in NGAL, noradrenalin, and SDMA. There was highly significant variation as per 
odd ratio and confidence interval between (Group 3 vs. Group 2) in NGAL.

CONCLUSION: Assessment of renal biomarkers in individuals with decompensated cirrhosis gives critical 
information on the etiology of AKI. Further, it may aid in the diagnosis and prognosis of AKI. Renin, NITRIC, ADMA, 
and L-ARGININE could be used as biomarkers to indicate HRS in individuals with advanced cirrhosis.
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Introduction

HRS is a serious side effect of liver cirrhosis 
related to a raised risk of death and disease, glomerular 
filtration rate decreases because of anomalies in the 
renal circulatory system that exceed compensatory 
measures. As cirrhosis, alcoholic hepatitis, or metastatic 
tumors are the most common causes of portal 
hypertension, people with this condition might suffer from 
fulminant hepatic failure for any reason [1], [2]. A liver 
transplant or the utilization of vasoconstrictor medicines 
can enhance renal function by maintaining enough renal 
blood flow. The hepatorenal syndrome was categorized 
into two clinical subtypes: Type 1 is a rapid decline in 
renal function manifested by a doubling of initial serum 
creatinine to at least 2.5 mg/dL or a 50% decrease 
in initial 24-h creatinine clearance to < 20 mL/min at 
< 2 weeks and Type 2 is as a progressive decline in 
renal function that did not meet the Type 1 criteria [3]. 

HRS Type 1 was dubbed HRS-AKI by the international 
ascites Club (IAC). HRS-NAKI (non-AKI) is a term used 
to describe functional kidney injury in persons with 
cirrhosis but does not match HRS-AKI guidelines [4].

Type 1 and Type 2 HRS are separate 
manifestations of the same underlying illness [5]. 
Although the disease’s pathogenesis is complex, 
difficult, and incompletely understood, its hallmark 
features include splanchnic vasodilation, which results 
in effective central hypovolemia, which results in 
cardiovascular abnormalities with vasoconstriction and 
renal hypoperfusion. Thus, HRS is a functional illness 
defined by the renal arteries’ significant vasoconstriction 
due to hyperactivation of various vasoconstrictor 
systems to compensate for the systemic vasodilation 
generated by the initial splanchnic vasodilation. HRS 
is generally associated with advanced circulatory 
failure and is followed by hyponatremia and ascites [1]. 
HRS can advance in the presence of infection, most 
commonly after spontaneous bacterial peritonitis 
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(SBP), resulting from the sepsis-induced exacerbation 
of circulatory dysfunction [6]. HRS can also develop 
with large-volume paracentesis (LVP) [7]. Bile cast 
(or choleric) nephropathy has been found in cirrhosis 
cases and increased serum bilirubin levels over a long 
time [8].

Acute renal impairment, as defined by an 
elevated in serum creatinine, underestimates the 
decrease in renal function observed in cirrhotic 
individuals because of impaired hepatic generation 
of creatine (creatinine precursor), inaccurate 
measurement of creatinine by calorimetric techniques 
in elevated serum bilirubin, and decreased muscle 
mass, and creatinine tubular secretion. Consequently, 
more precise indicators are required in persons with 
cirrhosis [9]. Tubular proteins upregulated in response 
to injury (neutrophil gelatinase-associated lipocalin 
(NGAL), liver-type fatty acid-binding protein, and kidney 
injury molecule-1), tubular proteins secreted throughout 
cellular damage (N-acetyl-β-D- glucosaminidase, 
α-glutathione S-transferase), inflammation markers 
(interleukin-18), and plasma proteins with diminished 
tubular reabsorption (retinol-binding protein, 
α-1-microglobulin, and β-2-microglobulin) [10]. 
Individuals with cirrhosis have the most investigated 
biomarker, NGAL, differentiating ATN from AKI-HRS 
with the maximum diagnostic accuracy. In addition, 
urine NGAL levels are a powerful predictor of sudden 
death in the short-term. Nonetheless, the findings are 
encouraging and need additional investigation [11].

Aim of the work

This study targeted identifying novel biomarkers 
for the diagnosis of HRS in cirrhotic individuals. 
A comprehensive panel of biomarkers was investigated 
to get a clear insight into the pathogenesis of HRS.

Patients and Methods

Study population and demographic 
information

This work was conducted at Hepato-
Gastroenterology Department, Theodor Bilharz 
Research Institute, Egypt, and all subjects signed 
a written informed permission form under the 1975 
declaration of Helsinki’s ethical standards. This work 
was approved by the ethics committee at TBRI.

Between January 2019 and March 2022, this 
trial enrolled a total of 70 individuals. All individuals 
involved in this study underwent a full thorough 
history and clinical examination. All individuals were 
hospitalized in the clinic for gastroenterology in TBRI. 
All subjects had liver cirrhosis. HRS was diagnosed in 

20 patients with cirrhosis, while 50 patients did not have 
HRS. The hepatorenal syndrome was diagnosed by the 
latest criteria suggested by the International Ascites 
Club. The criteria included: Cirrhosis with ascites, low 
glomerular filtration, serum creatinine over 133 μmol/L 
(over 1.5 mg/dL), proteinuria < 500 mg/day, absence 
of shock, absence of bacterial infection, loss of fluid, 
impaired kidney function after cessation of diuretic 
treatment (serum creatinine value which remains at the 
level of ≥ 133 μmol/L for at least 48 h, after administration 
of albumin dose 1–100 g/kg a day), treatment without 
nephrotoxic drugs, and absence of parenchymal 
renal disease (patient does not have proteinuria > 
500 mg/day, no microhematuria >50 erythrocytes, and 
no pathological findings of ultrasound examination of 
the kidneys).

Individuals were categorized into three groups: 
Group 1: 30 cases with compensated liver cirrhosis 
and normal kidney functions. Group 2: 20 cases with 
decompensated liver cirrhosis and normal kidney 
functions. Group 3: 20 cases with Type 2 h.

Sample collection and storage

About two vacutainer tubes were used to 
withdraw venous blood samples through a single 
aseptic venipuncture from patients. 2 ml were collected 
into EDTA vacutainer for CBC. 2 ml were collected into 
a serum separator vacutainer tube for blood chemistry 
and special investigations. Blood was permitted to 
clot by keeping it undisturbed for 10–20 min at room 
temperature. Centrifugation at 2000–3000 rpm for 
20 min was used to dislodge the clot. The supernatant 
was carefully collected and stored at –20°C until used 
for viral marker assays.

Laboratory investigations involving

Qantas, an automated cell counter made 
by Boule Diagnostics in Sweden, was used to get 
a complete blood picture. Blood chemistry such as 
(serum albumin, aspartate aminotransferase (AST), 
urea, alanine aminotransferase (ALT), and creatinine) 
was conducted on Olympus AU480 Chemistry 
Analyzer, Beckman Coulter, USA. The viral markers 
such as hepatitis B surface antigen (HBsAg), and 
HCV immunoglobulin G (HCV IgG) were carried out on 
ADVIA Centaur CP Immunoassay System, Siemens, 
Germany.

Special investigations

The biomarkers of interest were detected in 
serum using the sandwich-ELISA method. Human 
L-arginine ELISA kit (Cat No In-Hu4073), Human 
Neutrophil Gelatinase Associated Lipocalin (NGAL) 
ELISA kit (Cat No In-Hu3931), Human Noradrenalin (NA) 
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ELISA kit (Cat No In-Hu3281) all from Bioneovan Co., 
Ltd, China (www.bioneovan.com). Human asymmetrical 
dimethylarginine (ADMA) ELISA kit (Cat No BYEK2502), 
Human symmetric dimethylarginine (SDMA) ELISA kit 
(Cat No BYEK 2917), Human Endothelin 1(ET1) ELISA 
kit (Cat No BYEK 1310), Human Nitric oxide (NO) ELISA 
kit (Cat No BYEK 2618), and Human Renin ELISA kit 
(Cat No BYEK 2619) all from Biospes, Co., Ltd, China 
(www.biospes.com). The manufacturer’s instructions 
and procedures were strictly followed. Standard and 
test samples’ optical densities (OD) were assessed 
using a microplate reader (Tecan, Sunrise™Japan). 
The validity of the assays was confirmed according to 
the OD criteria of standards. Data were processed using 
Magellan™ software to generate a log/log standard 
curve from which the concentrations of tested samples 
were calculated by multiplying the dilution factor.

Imaging study (renal duplex)

Ultrasonographic examination on renal vessels 
will be performed using a 3.5–5 MHz high-resolution 
probe to detect renal resistive index.

Statistical analysis

Data were assessed by IBM SPSS Statistics 
version 23 (IBM Corp., Armonk, NY, USA) and MedCalc® 
version 19.1. The mean, standard deviation (SD), 
lowest, and maximum values for quantitative variables 
were calculated. Qualitative variables were represented 
by the percentages (percent) and numbers (N).

Comparisons among quantitative variables 
were performed after normality data were evaluated 
by the Kolmogorov–Smirnov normality test. In contrast, 
the Student’s t-test (parametric testing) was utilized 
for the means of two groups. When the test findings 
demonstrated that the data were not normal, the 
Mann–Whitney test was utilized to contrast them (non-
parametric tests).

The Chi-square test (χ2) was used to contrast 
qualitative variables. Fisher’s exact test was employed 
rather than the Chi-square test when one or more cells 
were predicted to be ≤ 5. All findings were represented 
in p: p < 0.05 was regarded as significant, p < 0.001 
was regarded as highly significant, and p > 0.05 was 
deemed non-significant.

Results

There was significant variation among 
(Group 2 vs. Group 1) (p < 0.05) in hemoglobin, 
neutrophil, lymphocyte, monocyte, bilirubin, renin, 
NITRIC, and noradrenalin, and there was a highly 
significant difference between (Group 2 vs. Group 1) 
(p < 0.01) in RBCs, hematocrit, platelet, AST, ALT, 
albumin, creat, urea, INR, and ADMA. There was no 
significant difference between (Group 2 vs. Group 1) in 
L-ARGININE, SDMA, NGAL, eosinophil, TLC, age, and 
sex (Table 1 and 2).

Our findings showed a significant difference 
between (Group 3 vs. Group 1) (p < 0.05) in neutrophil, 
bilirubin, L-ARGININE, SDMA, and there was a highly 
significant difference between (Group 3 vs. Group 1) 
(p < 0.01) in RBCs, hemoglobin, hematocrit, lymphocyte, 
PLT, AST, ALT, albumin, creat, urea, INR, renin, NITRIC, 
NGAL, noradrenaline, and ADMA. However, there was 
no significant variation between (Group 3 vs. Group 1) 
in eosinophil, monocyte, and TLC (Table 1 and 2). 
These results demonstrated a significant difference 
between (Group 3 vs. Group 2) (p < 0.05) in hemoglobin, 
hematocrit, bilirubin, renin, NITRIC, L-ARGININE, 
and ADMA. In addition, there was a highly significant 
difference between (Group 3 vs. Group 2) (p < 0.01) in 
monocyte, PLT, albumin, creatinine, urea, INR, SDMA, 
NGAL, and noradrenaline. Table 1a and b showed no 
significant difference between (Group 3 vs. Group 2) in 

Table 1: Demographic data and laboratory investigations
Parameters Group 1 N = 30 Group 2 N = 20 Group 3 N = 20 p-value

Group 2 versus Group 1 Group 3 versus Group 1 Group 3 versus Group 2
Demographic data

Age 40.2 ± 14.1 43.6 ± 13.5 53.3 ± 12.7 0.4 0.001** 0.02*
Sex

Female 21 (70.0%) 15 (71.4%) 14 (70.0%) 0.9 0.9 0.9
Male 9 (30.0%) 5 (28.6%) 6 (30.0%)

Laboratory investigations
Hgb 12.1 ± 2.0 10.8 ± 1.7 9.3 ± 2.3 0.04* 0.001** 0.04 *
RBCs 4.9 ± 0.5 3.5 ± 0.7 3.2 ± 1.0 0.001** 0.001** 0.3
Hct 37.8 ± 5.9 32.0 ± 4.5 26.1 ± 8.6 0.001** 0.001** 0.01*
TLC 7.4 ± 1.8 8.2 ± 4.7 7.2 ± 3.3 0.5 0.8 0.5
Neutrophil 57.4 ± 12.1 68.0 ± 12.2 70.3 ± 15.3 0.01* 0.01* 0.6
Lymph 36.9 ± 11.3 26.0 ± 12.1 22.6 ± 11.9 0.01* 0.001** 0.4
Mono 3.7 ± 1.1 5.1 ± 1.9 3.2 ± 1.2 0.02* 0.2 0.001**
Eoso 2.2 ± 0.6 2.3 ± 0.9 1.9 ± 0.6 0.8 0.07 0.2
Platelets 274.5 ± 63.0 163.8 ± 49.3 76.3 ± 20.5 0.001** 0.001** 0.001**
AST 19.8 ± 7.4 77.4 ± 58.6 65.6 ± 14.2 0.001** 0.001** 0.4
ALT 17.6 ± 11.2 55.7 ± 38.9 52.0 ± 30.2 0.001** 0.001** 0.7
S. albumin 4.1 ± 0.4 3.0 ± 0.7 2.2 ± 0.6 0.001** 0.001** 0.001**
Creatinine 0.8 ± 0.2 1.2 ± 0.2 5.7 ± 1.3 0.001** 0.001** 0.001**
Urea 26.6 ± 9.0 39.7 ± 9.2 181.6 ± 55.1 0.001** 0.001** 0.001**
INR 1.1 ± 0.1 1.7 ± 0.3 2.7 ± 0.5 0.001** 0.001** 0.001**
BIL 0.4 ± 0.2 3.5 ± 5.5 7.9 ± 11.4 0.03* 0.02* 0.01*

Age, Hgb, RBCs, Hct, TLC, Neutrophil, Lymph, Mono, Eoso, Platelets, AST, ALT, S. Albumin, Creatinine, Urea, INR, and BIL are expressed as Mean ± SD. While sex is expressed as frequency and percent. *p<0.05 is 
significant, **p<0.01 is greatly significant.
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RBCs, neutrophils, lymphocytes, TLC, eosinophil, AST, 
and ALT.

The results indicated a significant difference 
between (Group 2 vs. Group 1) (p < 0.05) regarding 
renin (cutoff >11.3, sensitivity 71%, specificity 66%) 
and in noradrenalin (cutoff >21.2, sensitivity 100%, 
specificity 36%) (Table 3, Figures 1 and 2). Our findings 
demonstrated a highly significant variation between 
(Group 2 vs. Group 1) (p < 0.01) in NITRIC (cutoff > 4.2, 
sensitivity 100%, specificity 46%), and ADMA (cutoff > 99, 
sensitivity 100%, specificity 63%) (Table 3, Figures 1 
and 2). As shown in (Table 3, Figures 1 and 2), there 
was no considerable difference between (Group 2 vs. 
Group 1) in the remaining markers.

(Table 3, Figures 1 and 2) demonstrated a 
significant variation between (Group 2 vs. Group 3) 
(p < 0.05) regarding renin (cutoff >61.5, sensitivity 
75%, specificity 71%), NITRIC (cutoff >23.8, sensitivity 
85%, specificity 61%), ADMA (cutoff >237, sensitivity 
100%, specificity 42%) and L-ARGININE (cutoff 
>119.7, sensitivity 65%, specificity 90%). (Table 3, 
Figures 1 and 2) indicated a greatly significant variation 
between (Group 2 vs. Group 3) in NGAL (cutoff >145, 
sensitivity 50%, specificity 100 %) and in noradrenalin 
(cutoff >116, sensitivity 90%, specificity 71%), and in 
SDMA (cutoff >3.3, sensitivity 90%, specificity 76%).

Table 4 showed a greatly significant difference 
regarding NGAL (p < 0.01) between (Group 3 vs. 
Group 2) according to the odd ratio and confidence 
interval.

As demonstrated in (Table 4), there was a 
significant difference regarding renin, NO, noradrenalin, 
SDMA, and L-Arginine (p < 0.05) between (Group 3 vs. 
Group 2) according to odd ratio and confidence 
interval. There was a significant variation regarding 
NGAL (p < 0.05) between (Group 2 vs. Group 1), as per 
the odd ratio and confidence interval (Table 4).

Proteomic bioinformatics analysis of 
studied biomarkers

STRING network. Every different colored line 
that attaches proteins demonstrates a separate proof 
channel for the particular interaction, including text 
mining (green), experiments (magenta), and databases 
(blue) (Figure 3).

Discussion

Hepatorenal syndrome (HRS) is a disorder in 
which persons with severe liver disease have reduced 
kidney function. People with hepatorenal syndrome 
do not have a known cause of kidney impairment, 
and their kidneys are structurally normal [2], [3]. This 
distinguishes HRS as a distinct pathophysiological 
condition that enables the study of the interaction 
of vasoconstrictor and vasodilator systems in renal 
circulation [4], [8], [12]. The present study enrolled 

Table 2: Studied biomarkers
Studied  
biomarkers

Group 1 N = 30 Group 2 N = 20 Group 3 N = 20 p-value
Group 2 versus Group 1 Group 3 versus Group 1 Group 3 versus Group 2

Studied biomarkers
RENIN 4.5 (1.3–120.1) 43.9 (4.9–144.4) 133.1 (52.2–202.0) 0.03* 0.001** 0.02*
NITRIC 5.1 (3.6–16.0) 20.1 (7.0–77.5) 86.2 (46.6–140.6) 0.01* 0.001** 0.02*
NGAL 27.7 (16.3–63.5) 45.0 (23.5–130.5) 150.5 (87.7–211.9) 0.1 0.001** 0.001**
Noradrenalin 58.8 (14.6–98.5) 84.3 (59.4–129.9) 143.1 (129.9–424.7) 0.04* 0.001** 0.001**
SDMA 2.9 (2.0–5.7) 2.9 (2.1–4.2) 4.5 (3.8–8.3) 0.9 0.01* 0.001**
ADMA 80.8 (40.0–281.5) 259.9 (175.1–549.2) 450.8 (334.2–653.7) 0.002** 0.001** 0.03*
L-ARGININE 27.3 (3.6–75.0) 50.5 (24.1–115.8) 128.9 (24.7–206.0) 0.1 0.01* 0.01*

Renin, Nitric, NGAL, NA, SDMA, ADMA, and L.ARGININE are expressed as median with interquartile range (25–75%), *p<0.05 is significant, **p<0.01 is highly significant.

Table 3: Diagnostic performance
Studied markers Studied markers Cutoff Sn. Sp. PPV NPV Accuracy AUC 95%C.I p
Group 2 vs Group 1 RENIN >11.3 71.43 66.67 60.0 76.9 38.10 0.676 0.531–0.800 0.02*

NITRIC >4.2 100.00 46.67 56.8 100.0 46.67 0.732 0.589–0.846 0.001**
NGAL >107.9 38.10 96.67 88.9 69.0 34.76 0.627 0.480–0.758 0.1
Noradrenalin >21.2 100.00 36.67 52.5 100.0 36.67 0.675 0.529–0.799 0.02*
SDMA >3.3 23.81 56.67 27.8 51.5 19.52 0.510 0.366–0.652 0.9
ADMA >99.6 100.00 63.33 65.6 100.0 63.33 0.759 0.619–0.867 0.001**
L-ARGININE >15.8 100.00 43.33 55.3 100.0 43.33 0.634 0.488–0.765 0.08

Group 3 vs Group 2 RENIN >61.5 75.00 71.43 71.4 75.0 46.43 0.710 0.547–0.840 0.01*
NITRIC >23.8 85.00 61.90 68.0 81.2 46.90 0.714 0.552–0.844 0.01*
NGAL >145.88 50.00 100.00 100.0 67.7 50.00 0.795 0.640–0.905 <0.0001**
Noradrenalin >116.4 90.00 71.43 75.0 88.2 61.43 0.838 0.690–0.934 <0.0001**
SDMA >3.3 90.00 76.19 78.3 88.9 66.19 0.793 0.638–0.903 0.0001**
ADMA >237.7 100.00 42.86 62.5 100.0 42.86 0.690 0.527–0.825 0.03*
L-ARGININE >119.7 65.00 90.48 86.7 73.1 55.48 0.727 0.566–0.854 0.01*

PPV: Positive predictive p-value, Sn: Sensitivity, Sp: Specificity, NPV: negative predictive value, AUC Area under curve, and C.I: 95% Confidence Interval. *p < 0.05 is significant, **p < 0.01 is greatly significant.

Table 4: Prognostic performance of studied biomarkers
Studied  
biomarkers

Group 2 versus Group 1 Group 3 versus Group 2
OR (95% CI) p value OR (95% CI) p value

Renin 1.00 (1.001.01–) 0.3 1.01 (1.00–1.02) 0.02*
Nitric Oxide 1.01 (1.00–1.02) 0.1 1.01 (1.00–1.03) 0.03*
NGAL 1.02 (1.00–1.03) 0.03* 1.02 (1.01–1.03) 0.001**
Noradrenalin 1.00 (1.00–1.01) 0.7 1.01 (1.00–1.03) 0.02*
SDMA 0.95 (0.821.11–) 0.5 1.47 (1.07–2.02) 0.02*
ADMA 1.00 (1.00–1.00) 0.5 1.00 (1.00–1.01) 0.07
L-Arginine 1.00 (0.99–1.01) 0.7 1.01 (1.00–1.02) 0.02*
CI: Confidence Interval, OR: Odd Ratio, p value measured based on logistic regression analysis. *p < 0.05 
is significant, **p < 0.01 is highly significant.
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90 individuals with liver cirrhosis at the TBRI’s 
Hepatogastroenterology Department. They were divided 
into three groups: Group 1 comprised 30 individuals with 
compensated liver cirrhosis and normal kidney function; 
Group 2 comprised 20 individuals with decompensated 
liver cirrhosis and normal kidney function; and Group 3 
comprised 20 cases with decompensated liver cirrhosis 
and renal impairment.

We investigated many biomarkers and their 
relationship with HRS in this study. Regarding NGAL, 

our result showed a significant difference between 
Group 3 and Group 1 (p = 0.001), and Group 2 
(p = 0.001). This result is similar to other findings, which 
indicated another result by Yap and his colleagues, who 
found that the baseline urinary NGAL was significantly 
associated with HRS development [13]. Further study 
showed that urine NGAL is highly effective at identifying 
ATN from other forms of AKIs in cirrhosis [14].

Nitric oxide (NO) is a vasodilator that is 
thought to be involved in renal perfusion. Preliminary 

Figure 1: Box plot of the studied biomarkers: Demonstrate HRS markers level between different groups
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evidence, primarily from animal tests, indicates that 
persons with cirrhosis produce more nitric oxide, 
even though NO suppression has no finding in renal 

vasoconstriction due to changes implemented in 
PG synthesis. When both NO and PG generations 
are suppressed, a significant vasoconstriction of 
the kidney occurs. Vasoconstrictor action may well 
be the dominant system in HRS, although it is not 
clear whether this is due to decreased vasodilatory 
activity, or the other way around. Our results showed 
a substantial difference between Groups 3 and 1 
(p = 0.001), and 2 (0.02). In several individuals with 
decompensated cirrhosis, systemic endotoxemia is 
hypothesized to boost NO production in cirrhosis. 
Increased plasma nitrite/nitrate levels in individuals 
with decompensated cirrhosis are symptomatic 
of increased NO generation [15]. Cirrhosis cases 
and ascites had higher plasma RAAS activity and 
antidiuretic hormone levels, and a high serum NO 
level is related to reduced urine salt excretion as well 
as elevated plasma RAAS activity and antidiuretic 
hormone concentrations [15], [16].

NO is more concentrated in portal venous 
plasma than peripheral venous plasma, implying 
enhanced splanchnic NO generation [17]. While there 
is widespread agreement that NO plays a role in 
peripheral vasodilation, there is still debate on whether 
an important factor in hyperdynamic circulation’s 
emergence and maintenance is NO [18]. Even though 
the vasodilating effect of NO would be expected to 
offset renal vasoconstriction, this is not the case in 
HRS, despite increasing levels of NO. To date, no one 
knows why this is happening, but one theory put up by 
Lluch et al. [19] is that the high levels of asymmetric 
dimethylarginine in terminal liver failure act as an Figure 3: Protein-protein interaction network of the studied biomarkers

Figure 2: (a and b) ROC Curve analysis of the studied biomarkers in the studied groups
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antagonist to the high levels of NO in the blood, causing 
renal vasoconstriction in HRS.

In cases with HRS, the sympathetic nervous 
system is hyperactive, culminating with renal 
vasoconstriction and increased salt retention [20]. 
Our findings indicated a significant difference in 
noradrenaline levels between Groups 3 and 1 (p = 0.001) 
and 2 (p = 0.001). Numerous investigations have 
demonstrated increased catecholamine release in 
the renal and splanchnic vascular beds [21]. Since 
the 1980s, the relevance of hepatorenal innervation 
has been recognized. The increased intrahepatic 
pressure enhanced the function of the efferent renal 
sympathoadrenergic system [22]. Vasoconstriction 
of the kidney’s afferent arterioles decreased renal 
plasma flow and GFR while increasing sodium and 
water reabsorption through the tubules. More than half 
of individuals with decompensated liver disease have 
activated the renin-angiotensin-aldosterone system 
(RAAS), which is heightened in those with HRS [23], [24]. 
Our findings indicated that Group 3 had a significantly 
greater renin level than Group 2 (p = 0.02), Group 1 
(p = 0.001), as well as Group 2, had a significantly 
higher renin level than Group 1 (p = 0.03). Increased 
angiotensin II levels protect the kidneys by selectively 
constricting the efferent glomerular arterioles.

Increased plasma renin release followed by 
an increase in angiotensin II formation was found in 
refractory ascites and HRS, indicating a role of RAAS 
in the development of HRS. Angiotensin II helps to 
maintain vascular tone in patients with advanced 
liver disease, but has no role in healthy controls or 
patients with compensated cirrhosis, suggesting that 
this mediator contributes to vascular dysfunction in 
cirrhosis [25].

ADMA is an endogenous direct inhibitor of the 
enzyme nitric oxide (NO) synthase, which participates 
in NO synthesis. NO participates in the maintenance 
of vascular tonus. Increased concentration of ADMA 
in the blood of patients with decompensated liver 
cirrhosis reduces the synthesis of NO, whereby 
intrahepatic vascular resistance is increased [26]. 
ADMA is hydrolyzed by the action of the enzyme 
dimethylarginine dimethylaminohydrolase (DDAH). 
Compared to ADMA, SDMA has indirect inhibitory 
effect on NO synthase. SDMA can disturb the synthesis 
by competing in the transport against Larginine on the 
level of cell membrane [27], [28].

Our study shows an increased level of 
ADMA and SDMA in Group 3, compared to Group 2 
and Group 1. Some studies [29] have demonstrated 
that increased ADMA level in blood of patients with 
decompensated liver cirrhosis is probably the result 
of DDAH enzyme activity exhaustion. Increased level 
of ADMA has a causative role in the development of 
HRS. Accumulation of ADMA in patients with liver 
cirrhosis causes liver damage. Accumulation of ADMA 
inhibits NO synthase thereby causing vasoconstriction 

of the kidney blood vessels. Thus, blood flow through 
the kidney is interrupted, in other words, glomerular 
filtration is reduced and SDMA is retained in the kidney. 
Compared to ADMA, SDMA is not broken down by the 
action of DDAH enzyme but is excreted as such through 
the kidneys [30], [31].

Conclusion

Renin, Nitric Oxide, ADMA, SDMA, and 
L-arginine may act as biomarkers for advanced cirrhotic 
patients to indicate HRS. Integrating biomarkers into 
clinical decision-making can enhance therapy accuracy 
by identifying patients who have structural injury 
underlying their AKI. Additional study is required to 
characterize biomarkers unique to HRS.
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