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Abstract  

BACKGROUND: Genomic imprinting is the inheritance out of Mendelian borders. Many of inherited 
diseases and human development violates Mendelian law of inheritance, this way of inheriting is 
studied by epigenetics.  

AIM: The aim of this review is to analyze current opinions and options regarding to this way of 
inheriting.  

RESULTS: Epigenetics shows that gene expression undergoes changes more complex than 
modifications in the DNA sequence; it includes the environmental influence on the gametes before 
conception. Humans inherit two alleles from mother and father, both are functional for the majority 
of the genes, but sometimes one is turned off or “stamped” and doesn’t show in offspring, that gene 
is imprinted. Imprinting means that that gene is silenced, and gene from other parent is expressed. 
The mechanisms for imprinting are still incompletely defined, but they involve epigenetic 
modifications that are erased and then reset during the creation of eggs and sperm. Genomic 
imprinting is a process of silencing genes through DNA methylation. The repressed allele is 
methylated, while the active allele is unmethylated. The most well-known conditions include Prader-
Willi syndrome, and Angelman syndrome. Both of these syndromes can be caused by imprinting or 
other errors involving genes on the long arm of chromosome 15. 

CONCLUSIONS: Genomic imprinting and other epigenetic mechanisms such as environment is 
shown that plays role in offspring neurodevelopment and autism spectrum disorder.  

 

 

 

 

Introduction 

 

Genomic imprinting is the inheritance out of 
Mendelian borders. Many of inherited diseases and 
human development violates Mendelian law of 
inheritance, this way of inheriting is studied by 
epigenetics. Epigenetics shows that gene expression 
undergoes changes more complex than modifications 
in the DNA sequence; it includes the environmental 
influence on the gametes before conception. 

When epigenetic changes occur in sperm or 
egg cells that lead to fertilization, epigenetic changes 
are inherited by the offspring [1]. 

Genomic imprinting is a process of silencing 
genes through DNA methylation. The repressed allele 
is methylated, while the active allele is unmethylated. 

Some questions still await conclusive 

answers, particularly those concerning why mammals 
alone among vertebrates use imprinted genes to 
regulate embryonic and neonatal growth [2]. 

The aim of this review is to analyze current 
opinions and options regarding to this way of 
inheriting. 

 

 

Results and Discussion 

 

The classical definition of epigenetics refers to 
the mitotically and/or meiotically heritable changes in 
gene activity that does not involve alterations in DNA 
sequence [3]. Genomic imprinting occurs when two 
alleles at a locus are not functionally equivalent and is 
considered the primary epigenetic phenomenon that 
can lead to the manifestation of parent-of-origin 
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effects [4]. Genomic imprinting affects both male and 
female offspring and is therefore a consequence of 
parental inheritance, not of sex [2]. Epigenetic 
changes can be induced by environmental factors at 
different times in life. Epigenetic control operates on 
three major levels, on DNA, histones, and 
nucleosomes [3]. Epigenetic mechanisms encode 
information above and beyond DNA sequence and 
play a critical role in brain development and the long-
lived effects of environmental cues on the pre- and 
postnatal brain [5] and [6].  

When epigenetic changes occur in sperm or 
egg cells that lead to fertilization, epigenetic changes 
are inherited by the offspring [1].  

Genomic imprinting is a process of silencing 
genes through DNA methylation. The repressed allele 
is methylated, while the active allele is unmethylated. 
This stamping process, called methylation, is a 
chemical reaction that attaches small molecules called 
methyl groups to certain segments of DNA [3]. DNA 
methylation is a biochemical process crucial for 
normal development in higher organisms, and it is the 
most thoroughly studied epigenetic mark. Methylation 
entails the covalent attachment of a methyl (CH3) 
group to the C5 position of a cytosine residue, forming 
5-methylcytosine (5 mC) [3]. DNA methylation is 
mediated by the cellular DNA methylation machinery, 
comprising Dnmt1, Dnmt3a, Dnmt3b and Dnmt3L. 
DNA methylation is a dynamic process during early 
embryonic development and undergoes parent and 
lineage dependent genome-wide changes [3] and [7]. 

There are now more than 25 identified 
imprinted genes, and estimates based on mouse 
models indicate that as many as 100 to 200 may exist 
[8]. The first endogenous imprinted gene identified 
was mouse insulin-like growth factor 2 (Igf2), which 
encodes for a critical fetal-specific growth factor [8] 
and [9]. 

Many theories have attempted to explain the 
evolution of genomic imprinting, but the most 
prominent are the kinship theory [10] and the sex-
specific selection theory [11]. The kinship theory relies 
on asymmetries in relatedness between individuals' 
maternally and paternally derived alleles [12]. The 
kinship theory predicts that genes increasing an 
offspring's share of maternal resources, such as 
growth enhancers that act in development, will be 
expressed from the paternally derived allele and 
repressed on the maternally derived allele [13]. For X-
linked loci, inheritance is asymmetric with respect to 
parental origin, and imprinting allows expression from 
such loci to be sexually dimorphic [10]. Under weak 
selection, quantitative genetic models of X-linked loci 
suggest that when selection is stronger against one 
sex, expression in the offspring of alleles derived from 
the other sex should be higher [10]. 

Although the exact molecular mechanisms 
involved in establishing and maintaining genomic 

imprints remain undetermined, much is known about 
the basic details [14]. Imprinted genes often occur in 
clusters that contain one or more imprinting control 
regions (ICRs). ICRs often exhibit different patterns of 
DNA methylation depending on whether the allele is 
paternally or maternally inherited [15]. The parental 
allele-specific epigenetic marks are heritable to the 
daughter cells, but must be reset in each successive 
generation to establish parental specific imprints. In 
mammals, two major genome-wide epigenetic 
reprogramming events take place during 
gametogenesis and early embryogenesis [15]. 

How does transcription lead to DNA 
methylation in oocytes? Oocyte availability is a 
challenge to molecular studies, but Kelsey and Feil 
[16] have speculated that the act of transcription 
results in a constellation of chromatin modifications 
that are conducive to interaction of DNMT3A and 
DNMTL, whereas other transcribed regions might be 
protected from methylation by CXXC-domain proteins. 

Genomic imprints template their own 
replication, are heritable, can be identified by 
molecular analysis, and serve as markers of the 
parental origin of genomic regions. Beyond merely 
labeling homologous genetic alleles as descendent 
from father or mother, genomic imprints have the 
significant functional consequence of stifling gene 
expression from one of the parental alleles, resulting 
in unbalanced gene expression between homologous 
alleles. 

 

The life cycle of imprints 

Genomic imprints change in characteristic 
ways during the life cycle of the organism [17] and 
[18]. Imprints are ‘established’ during the development 
of germ cells into sperm or eggs. After fertilization, 
they are ‘maintained’ as chromosomes duplicate and 
segregate in the developing organism. In the germ 
cells of the new organism, imprints are ‘erased’ at an 
early stage [17]. This is followed by establishment 
again at a later stage of germ-cell development, thus 
completing the imprinting cycle. In somatic cells, 
imprints are maintained and are modified during 
development [17]. The imprints that are introduced in 
the parental germlines, maintained in the early 
embryo and fully matured during differentiation, they 
need to be read. Reading means the conversion of 
methylation or chromatin imprints into differential gene 
expression [17] and [18]. As a result of imprinting, 
there is biased allelic expression that favors 
expression from one parental locus over the other. 

The dispersed patterns of CpG dyads in the 
early-cleavage embryo suggest a continuous partial 
(and to a low extent active) loss of methylation 
apparently compensated for by selective de novo 
methylation [18] and [19]. A combination of passive 
and active demethylation events counteracted by de 
novo methylation are involved in the distinct 
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reprogramming dynamics of DNA methylomes in the 
zygote, the early embryo, and PGCs [19].  

 

Imprinted genes code for what?  

A majority of the known imprinted genes code 
for proteins, others code for untranslated RNA 
transcripts. 

Another category of parental genomic imprint, 
to be contrasted with well characterized examples of 
monoallelically expressed genes, are those 
methylation parental imprints scattered throughout the 
genome which are not demonstrated to be functional 
or associated with specific genes [18]. 

Clusters of imprinted genes are often 
controlled by an imprinting center that is necessary for 
allele-specific gene expression and to reprogram 
parent-of-origin information between generations. An 
imprinted domain at 15q11–q13 is responsible for 
both Angelman syndrome and Prader–Willi syndrome, 
two clinically distinct neurodevelopmental disorders 
[20]. 

The imprinted gene cluster on 15q11–q13 
contains a number of paternally and maternally 
expressed transcripts and is reasonably well 
conserved, in terms of both gene content and 
imprinting status, between mammals [21] and [22]. 
The cluster has been studied intensely as loss of 
expression, through genetic and epigenetic mutation, 
leads to two distinct neurodevelopmental disorders, 
namely Prader- Willi Syndrome, which results as a 
consequence of loss of paternal gene expression, and 
Angelman Syndrome, which arises as a consequence 
of loss of maternal gene expression [22] and [23].  

Prader-Willi syndrome is characterized by 
abnormal feeding and appetite, and learning disability, 
individuals with PWS may also develop a severe 
affective psychotic illness which is similar to bipolar 
disorder. This includes loss of antisense transcripts 
which represses the expression of UBE3A, which 
encodes E6-AP (E6-associated protein) ubiquitin 
ligase from the paternal chromosome. As a 
consequence, the paternal copy of this gene, which is 
only normally expressed from the maternal 
chromosome, becomes reactivated leading to 
increased dosage [22]. 

AS is a neurodevelopmental disorder 
characterized by severe cognitive disability, motor 
dysfunction, speech impairment, hyperactivity, and 
frequent seizures. AS is caused by disruption of the 
maternally expressed and paternally imprinted 
UBE3A, which encodes an E3 ubiquitin ligase. 

In addition to AS and PWS, the 15q11–q13 
imprinting region has also been linked to a number of 
non-syndromic neuropsychiatric illnesses. For 
instance, maternal duplication of this interval is 
associated with the incidence of autism [24]. 

Several studies have reported differential 
expression of imprinted genes between control and 
IUGR placental samples [24]. In other words, some 
may act to reduce fetal growth, resulting in IUGR 
(negative effectors), while others may act to enhance 
fetal growth in a compensatory manner to save a 
pathogenically growth restricted fetus (positive 
effectors) [25]. 

Some questions still await conclusive 
answers, particularly those concerning why mammals 
alone among vertebrates use imprinted genes to 
regulate embryonic and neonatal growth [2]. At this 
stage, it is clear that genomic imprinting uses the 
cell’s normal epigenetic machinery to regulate 
parental-specific expression, and that everything is set 
in motion by restricting this machinery in the gamete 
to just one parental allele [2]. An improved 
understanding of genomic imprinting will undoubtedly 
continue to provide an important model to discover 
how the mammalian genome uses epigenetic 
mechanisms to regulate gene expression [2]. 

In conclusoon, genomic imprinting is 
important process of inheritance that plays important 
role in future genetic studies. It is a complex process 
that is based on DNA metylation in alleles of 
chromosomes. Numerous external cues influence 
DNA methylation, which may determine disease onset 
or progression. Genomic imprinting is a fairly rare 
phenomenon in humans, most genes are not 
imprinted, and most of studies are done in mice or 
plants, so we have a lot to do in this field. Although we 
do not yet know the precise mechanisms underlying 
epigenetic gene regulation in the pathogenesis of 
several diseases, there are finding that the 
progression of such diseases can be altered by 
modulating epigenetic programs. 
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