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Abstract 

BACKGROUND: Corneal blindness resulting from various medical conditions affects millions worldwide. The 
rapid developing tissue engineering field offers design of a scaffold with mechanical properties and transparency 
similar to that of the natural cornea. 

AIM: The present study aimed at to prepare and investigate the properties of PVA/chitosan blended scaffold by 
further cross-linking with 1-Ethyl-3-(3-dimethyl aminopropyl)-carbodiimide (EDC) and 2 N-Hydroxysuccinimide 
(NHS) as potential in vitro carrier for human limbal stem cells delivery. 

MATERIAL AND METHODS: Acetic acid dissolved chitosan was added to PVA solution, uniformly mixed with a 
homogenizer until the mixture was in a colloidal state, followed by H2SO4 and formaldehyde added and the 
sample was allowed to cool, subsequently it was poured into a tube and heated in an oven at 60°C for 50 
minutes. Finally, samples were soaked in a cross-linking bath with EDC, NHS and NaOH in H2O/EtOH for 24 h 
consecutively stirred to cross-link the polymeric chains, reduce degradation. After soaking in the bath, the 
samples were carefully washed with 2% glycine aqueous solution several times to remove the remaining amount 
of cross-linkers, followed by washed with water to remove residual agents. Later the cross-linked scaffold 
subjected for various characterization and biological experiments. 

RESULTS: After viscosity measurement, the scaffold was observed by Fourier transform infrared (FT-IR). The 
water absorbency of PVA/Chitosan was increased 361% by swelling. Compression testing demonstrated that by 
increasing the amount of chitosan, the strength of the scaffold could be increased to 16×10−1 MPa. Our 
degradation results revealed by mass loss using equation shows that scaffold degraded gradually imply slow 
degradation. In vitro tests showed good cell proliferation and growth in the scaffold. Our assay results confirmed 
that the membrane could increase the cells adhesion and growth on the substrate. 

CONCLUSION: Hence, we strongly believe the use of this improved PVA/chitosan scaffold has potential to cut 
down the disadvantages of the human amniotic membrane (HAM) for corneal epithelium in ocular surface surgery 
and greater mechanical strength in future after successful experimentation with clinical trials. 

 
 

 

Introduction 

 

The cornea is a clear, avascular, multi-laminar 
structure plays an important role in vision [1]. The 
World Health Organization (WHO), an agency of the 
United Nations has recognised corneal diseases as a 
major cause of blindness in the world, next to 
cataract, which affects more than 10 million people [2] 
[3]. At present, the corneal transplantation is the only 
existing therapy of choice [4] [5]. Besides, a severe 
scarcity of fresh donor corneas [6] and an unknown 
threat of immune rejection had seen with routine 

heterograft; hence, it is very imperative and crucial to 
construct a corneal equivalent to replace pathologic 
corneal tissue.  

Corneal tissue engineering has appeared as a 
viable approach to developing corneal tissue 
alternates [7] [9]. The design of a scaffold with 
mechanical properties and transparency similar to that 
of the natural cornea is significant for the regeneration 
of corneal tissues but also able to resist the culture 
conditions, flexible to the shape of the cornea and 
quite strong for surgical manipulation including the 
suturing [10]. Currently, the substratum commonly 
used is the human amniotic membrane (HAM) [11], 
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which includes denuded HAM over an intact 
membrane [12]. However, many inherent problems 
still exist like the thinness, wrinkling nature, sterile 
storage and early degradation, its possible danger for 
the spread of pathogens and the risk of immune-
mediated graft rejection etc. [13]. Since HAM has 
many disadvantages, there has been a substantial 
amount of research to find a good alternative source 
for replacement. 

The key challenge in tissue engineering is 
the designing of an artificial extracellular matrix 
(ECM) component because it can support cell growth 
and allow deposition of the natural ECM proteins 
over it during the initial stages [14]. Although various 
biomaterial scaffolds are available for many 
applications like sutures, bone plates, heart valves 
and screws [15] [16], recent years had also 
witnessed tremendous research attention towards 
the improvement of few other naturally derived 
biopolymers like silk [17] and purified ECM based 
molecules like collagen, elastin and 
glycosaminoglycan (GAGs) [18] [19]. Besides the 
above, polylactic acid (PLA), polycaprolactone (PCL) 
[20] [21], and the PVA membranes as well as their 
blends, have been widely used in the production of 
scaffolds for various biomedical applications [20] [21].  

The development of chitosan-based 
biomaterial attracted much attention [22] recently for 
various applications because of its novel potentials 
like minimal foreign body reactions and intrinsic 
antibacterial property [23]. Also, the biocompatibility, 
biodegradability and chitosan's ability to mould into 
various forms and geometries make it to suitable for 
cell ingrowth and conduction [24] [25]. Since chitosan 
alone is not sufficient to support cell growth, 
enhancing its mechanical strength needs another 
partner like polyvinyl alcohol (PVA), a biodegradable 
polymer/or its blends often used in tissue engineering 
applications. The addition of chitosan to the PVA 
solution has an effect of thickener, increasing the 
viscosity and giving rise to uniform nanofibers, even 
for low PVA concentration [26]. These favourable 
intermolecular interactions between PVA and chitosan 
influence the culture of corneal epithelial stem cells. 
Chitosan containing hydroxyl and amine groups has, 
therefore, the potential to miscible with PVA due to the 
ability to form hydrogen bonds. 

On the other hand, stem cells provide a 
potentially boundless source of cells for treating a 
plethora of human diseases [27] [28]. The corneal 
limbus, located at the corneoscleral junction, believed 
to harbour the cornea stem cells in the basal layer of 
the epithelium [29] [30]. These limbal epithelial stem 
cells (LESCs) possess all of the properties of an adult 
stem cell population [31] and are responsible for 
maintaining and regenerating the corneal epithelium 
throughout the life. Also, limbal stem cells also act as 
a "barrier" to conjunctival epithelial cells and 
normally prevent them from migrating on to the 
corneal surface [32]. Extensive studies performed to 

investigate the feasibility of explant culture method of 
cultivating corneal epithelial cells and their 
characteristics in comparison to the limbal explant 
culture [33]. Hence, the present study employed 
cultured corneal epithelial cells (HCEC), as an ideal 
substitute to test the ability of PVA cross-linked 
chitosan together with amine coupling through EDC-
NHS scaffold to facilitate their growth. 

The present study objectives were as follows: 
(i) to develop a biodegradable and non-toxic PVA 
cross-linked chitosan scaffold by further cross-link 
with EDC and NHS; (ii) to characterize its 
physiochemical properties to support the growth of 
HCEC, so that it had the ability to facilitate enhanced 
adhesion, expansion and proliferation of HCEC; while 
maintaining its mechanical properties (iii) to 
investigate the corneal epithelial marker and 
antimicrobial peptide expression in the HCEC. With 
consideration of the ultimate goal to use the methods 
in clinical applications, we were mindful of the 
potential risks of using culture media containing 
defined or undefined animal derivatives. Such 
components have the potential to transmit 
communicable diseases and provoke immunological 
problems during transplantation. To reduce the 
potential harmful complications and to minimise any 
risk for future patients, we used a culture medium that 
was free of supplements containing non-human 
animal derivatives.  

 

 

Subjects and Methods 

 

Polyvinyl alcohol (87-89% hydrolysed), the 
average molecular weight of 72000 gmol−1), acetic 
acid (AA 35% pure), and glutaraldehyde (GA) (25% 
aqueous solution) were purchased from Merck (Merck 
Specialities Pvt Limited Mumbai, India). Chitosan [poly 
(β-(1-4)-2-amino-2-deoxy-D-glucopyranose)] (75% 
degree of deacetylation) (medium molecular weight of 
190,000–310,000) was purchased from Himedia, 
Mumbai, India.  

The chitosan powder was separately 
dissolved in 1% acetic acid (20 mL) at room 
temperature. The PVA (4 g) was dissolved completely 
in Milli-Q water (20 mL) by heating. The chitosan was 
added to the PVA solution and mixed uniformly with a 
homogeniser at 300 rpm and 90°C for 30 minutes until 
the mixture was in a colloidal state. After adding 
H2SO4 (10 mL) and formaldehyde (5 mL) and stirring, 
the sample was cooled to room temperature. Finally, 
the sample was poured into a tube and heated in an 
oven at 60°C for 50 minutes. Finally, samples were 
soaked in a cross-linking bath with EDC, NHS and 0.1 
M NaOH (4 mg/mL) in H2O/EtOH 2:1 for 24 h 
consecutively stirred to cross-link the polymeric 
chains, reduce degradation, and enhance the 
biomechanical properties of the scaffolds for delivery 
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or tissue repair. After soaking in the bath, the samples 
were carefully washed with 2% aqueous glycine 
solution several times to remove the remaining 
amount of cross-linkers, followed by washing with 
water to remove residual agents. The present study 
experimented on trial base with few scaffolds 
sterilised with either ethylene oxide gas or alcohol by 
complete immersion in 75%, 50%, 25%, 5% and 1% 
alcohol solution with an incubation time of 10min. 
Eventually, the scaffold was washed twice with water 
and incubated for 10 min. Each, followed by dried, 
separated and used for plating of cells. The scaffold 
preparation and related experiments were carried out 
at the Polymer Nanotechnology Center of B.S Abdur 
Rahman Crescent University (BSA), Vandalur, 
Chennai, India. 

The viscosity of solutions was measured by 
Brookfield Model DV-III viscometer (Brookfield 
Engineering Laboratories Inc, Stoughton, MA) before 
the cross-linking process was begun. 

The samples were examined by FT-IR 
analysis with a Perkin Elmer, model 2000 
spectroscopy. For IR analysis, 2-6 mg of the scraped 
samples (about 10 µm thick) were carefully mixed with 
500mg of KBr (infrared grade) and pelletized under 
vacuum. Then, pellets between 4000-400 cm

−1
 were 

analyzed with 120 scans averaging 4- cm
−1

 resolution 
in attenuated total reflection (ATR) mode. The FT-IR 
analysis was used to characterise the presence of 
specific chemical groups of PVA and chitosan, 
chemical interactions and the crosslinking effect in the 
polymeric scaffolds and to identify the effects of the 
above process on functional groups.  

The optical clarity of the scaffolds is a major 
pre-requisite for the scaffold platform as they serve 
the purpose of an artificial extracellular matrix for the 
cornea, whose primary role to participate in the visual 
activity [34]. Hence, the scaffold samples were 
examined for optical clarity by using a Beckman DU-
800 spectrophotometer and scanning was done within 
the visible range of wavelengths (400-800 nm).  

Three dumbbell-shaped specimens of 4mm 
wide and 10mm length were punched out from each 
scaffold using a dying instrument. Mechanical 
properties such as tensile strength (MPa) and 
percentage of elongation at break (percentage) were 
measured using a universal testing machine 
(INSTRON model 1405) at an extension rate of 5 
mm/min. 

The quantity of water imbibed by a material is 
an important property, as it greatly contributes to the 
biocompatibility of the end material and decides if the 
material may be useful for biomedical purposes. To 
access the water sorption potential of the prepared 
scaffold, the PVA/Chitosan nanofibrous scaffolds were 
oven dried at 50°C and placed in a 24-well plate. Each 
well-contained 1mL of a phosphate buffered solution 
(PBS; pH 7.4). The scaffolds were incubated in vitro at 
37°C for different periods (1, 3, 7, and 10 days) [35]. 

After immersion of the scaffolds in PBS solution for 
these different periods, excess PBS was wiped from 
the swollen saturated PVA/Chitosan scaffold, the 
amount of fluid uptake was determined by careful 
removal of samples from the medium after wiping off 
excess fluid with filter paper. The swelling ratio value 
(S) was calculated using the following formula 1: 

S = (Ww−Wd)/Wd×100 (1) 

For this test, the samples were weighed for 
determination of the wet weight (Ww) as a function of 
immersion time and dried weight (Wd) of the samples. 

The degradation study of the scaffolds was 
carried out in vitro by incubating the samples in PBS 
at pH 7.4, 37°C for different periods. After each 
degradation period, the samples were washed and 
subsequently dried in a vacuum oven at room 
temperature for 24 hours. To find out the degradation 
index (Di), the weight of the samples (Wt) and the 
degradation index was calculated before and after the 
degradation test using the mass loss using equation 
2: 

Di = (W0−Wt)/W0×100 (2) 

Human corneal epithelial cells (HCEC) were 
obtained from the commercially available source as 
primary corneal epithelial cells (Normal, Human 
(ATCC® PCS-700-010). On every passage, cells 
obtained by trypsinisation using 0.5% trypsin™ were 
cryopreserved as secondary cells. The in vitro 
cytotoxicity of the prepared scaffolds was tested using 
both NIH3T3 fibroblasts cell line and HCEC. Cells 
(10

5
) were seeded into each well of 24 wells plate. 

The culture liquid contained DMEM (Dulbecco’s 
modified Eagle’s medium), 10% fortified bovine calf 
serum (FBS), and 1% penicillin-streptomycin solution. 
The cell culture of PVA/Chitosan scaffold cycles 
lasted for three days. After 72 hours of incubation, 3-
(4,5-dimethylthiazol-2-yl) - 2,5-diphenyltetrazolium 
bromide (MTT) solution (5 mg/mL) (Sigma, Munich, 
Germany) was added into each well and incubated for 
90-120 minutes. Then, all the media was discarded 
and 600 μL DMSO was added to each well. An ELISA 
reader at 590 nm measured the optical density (OD) 
values after 30 minutes with a reference filter of 620 
nm. 

Cells were formalin fixed and paraffin 
embedded for routine histological processing and 
stained with hematoxylin and eosin (H&E) to visualise 
the cell attachment and proliferation on the scaffold. 
The same procedure was followed for cells plated in 
the Petri plate, which was used as a control. The 
processed samples were observed by using a light 
microscope with specific image analysis software from 
Zeiss [36]. 

The scaffold washed thrice with PBS, followed 
by washed with Dulbecco’s Modified Eagle’s Medium 
(DMEM) twice and incubated in a CO2 incubator. After 
thorough checking HCEC cells viability, they were 
seeded onto the scaffold with 4 ml of Epilife medium. 

https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Thiazole
https://en.wikipedia.org/wiki/Phenyl
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The same procedure adopted for control. 

After the plated cells reached confluency, they 
were trypsinised (0.02%), and RNA isolation was 
done (using a QIAGEN kit method) for further 
expression studies. With a housekeeping gene, 
glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH), an an internal control, the mRNA 
expression of different molecular markers for corneal 
epithelial stem cells and antimicrobial peptides were 
analyzed by semiquantitative reverse transcriptase-
polymerase chain reaction (RT-PCR) as described by 
previous reports [37] [38]. PCR amplification of the 
first-strand cDNAs was performed with specific primer 
pairs, designed from published human gene 
sequences (Table 1) for different markers in a 
GeneAmp PCR System 9700 (Applied Biosystems) 
and resultant product of amplification and documented 
in BioRad gel documentation system; Bio-Rad 
Laboratories, UK. 

All experiments were performed in triplicate. 
Summary of data was reported as-as mean ± 
standard deviation (SD). For statistical analysis, SPSS 
version 12.0 was used. To compare the different 
groups, the statistical Student's t-test was used, due 
to the small sample size, considering a significance 
level at p < 0.05. 

Table 1: Human primer sequences used for semi-quantitative 
RT-PCR 

Gene Name Primer sequence - 3’-5’ Annealing 
temperature 

(°C) 

Base pair 
size (bp) 

Corneal Epithelial Stem Markers 
ABCG2 FP: 5' AGTTCCATGGCACTGGCCATA 3' 

RP: 5' TCAGGTAGGCAATTGTGAAGG 3' 
62 379 

Cytokeratin 3 FP: 5' GGCAGAGATCGAGGGTCTC 3' 
RP: 5'GTCATCCTTCGCCTGCTGTAG 3' 

64 145 

Connexin 43 FP:5
´
 CCTTCTTGCTGATCCAGTGC 3

´
 

RP 5
´
 ACCAAGGACACCACCAGCAT 3

´
 

63 150 

Antimicrobial peptide – AMP 
hBD-1 FP: GCCTCCAAAGGAGCCAGCGT 

RP: CTTCTGGTCACTCCCAGCTCA 
54 287 

hBD-2 FP: CAGCCATCAGCCATGAGG 
RP: TGGCTTTTTGCAGCATTTT 

55 204 

hBD-3 FP: AGCCTAGCAGCTATGAGGATC 
RP: CTTCGGCAGCATTTTCGGCCA 

61 205 

 

 

Results  

 

The viscosities of the solutions were 
measured by Brookfield Model DV-III viscometer. The 
viscosity of the PVA solution was 557 centipoise, and 
that of the PVA/chitosan solution (with the weight ratio 
of 90/10) was 1726 centipoise. This is in line with the 
results by Paipitak et al., [39], who reported a linear 
increase in the viscosity of the PVA solution after 
blending with increasing amounts of chitosan. The 
high viscosity increases the interaction of two 
polymers, mainly through hydrogen bonding, and 
decreases the effects of surface tension. This will 
result in the formation of fibres with uniform 
morphology [40]. 

The optical clarity of the scaffold was done 

with the wavelength in the visible range of 400-800 
nm. Our results showed that PVA/chitosan scaffold 
was found to be highly transparent with 88% of optical 
transparency compared with standard cornea as a 
positive control that showed a range of 72-82% of 
transparency, whereas, the human amniotic 
membrane (HAM) has an optical transmission of 78% 
only. 

FT-IR spectroscopy was used to assess the 
chemical groups of the polymers. Figure 1a and 
1b show the FT-IR spectra of PVA/chitosan and HAM. 
Typical FT-IR spectra of PVA/chitosan blended films 
having various absorption bands compared to IR 
spectra of denuded HAM. The specific intensity of 
absorption bands of chitosan/PVA blend and HAM are 
indicating the similar presence of protein. In Figure 1a, 
for the chitosan sample, the major characteristic 
peaks around 611 and 1152 cm

−1
 related to the 

saccharide structure (as the repeating unit of 
chitosan) are observable [41] [42]. Also, the strong 
absorption peaks at 1653, 1553 and 1346 cm

−1
 are 

shown, which are characteristic of chitosan and have 
been reported as amide I, II, and III peaks, 
respectively. The sharp peaks at 1335 and 1452 
cm

−1
 could be assigned to the CH3 symmetrical 

deformation mode. Also, the broad peaks at 1079 and 
1152 cm

−1
 indicate the C–O stretching vibration in 

chitosan, and another broad peak at 3333.60 cm
−1

 is 
caused by amine N–H symmetrical vibration. The 
peak observed at around 2936 cm

−1
 is due to the 

typical C–H stretch vibrations [43]. Besides the above, 
all major peaks related to hydroxyl and acetate groups 
are shown in the FT-IR spectrum of PVA. More 
specifically, the broadband observed at 3753.62 
cm

−1
 is associated with the O–H stretch from the 

intermolecular and intramolecular hydrogen bonds.  

(a) 

 
(b) 

 
Figure 1: FTIR spectra of the PVA/chitosan cross-linked (a) and 
HAM scaffolds (b) 
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The vibrational band observed between 
2936.82 and 2153.09 cm

−1
 is the result of the C–H 

stretch from alkyl groups and the peaks between 1653 
and 11553 cm

−1
 are due to the C═O and C–O 

stretches from the remaining acetate groups in PVA 
(saponification reaction of polyvinyl acetate) [44] [45] 
[46]. These observations indicate the existence of 
good miscibility between chitosan and PVA and this is 
most likely due to the formation of intermolecular 
hydrogen bonds between the amino and hydroxyl 
groups in chitosan and the hydroxyl groups in PVA.  

Figure 1b shows the FT-IR spectra of HAM. 
The absorption band around 1600–1640 
cm

−1
 corresponds to amide-I protein absorption band 

and is mainly attributed to C=O stretching mode, and 
the other absorption band around 1510–1560 
cm

−1
 corresponds to amide-II protein absorption 

band which attributed to N–H bending mode and C–
N stretching mode [47]. The peaks at around 1210–
1300 and 1070–1080 cm

−1
 attributed to protein 

(amide III) and also to the phosphodiester group of 
nucleic acids, glyco- and phospholipids. The amide 
III bands resulted from an in-phase combination of 
C–N stretching and N–H in-plane bending, with some 
contribution from C–C stretching and C=O bending 
vibrations [48]. Compared with FT-IR spectra of HAM, 
the peak intensity of the PVA/chitosan blend related to 
the amide groups tends to decrease, suggesting the 
formation of intermolecular hydrogen bonds between 
the polymer chains [23]. Such a result may explain the 
high stability of the cross-linked PVA with chitosan, 
during at least 1-2 weeks of immersion. 

Fluid uptake is an important parameter, which 
influences the chemical and physical characteristics of 
the scaffolds after and before cell seeding. Herein, 
swelling experiments were performed after cross-
linking of PVA and PVA/chitosan and immersed in 
phosphate buffered saline (PBS) for a defined period, 
taken out and gently pressed in between the filter 
papers and weighed. A representative result of fluid 
uptake behaviour is shown in Figure 2 for PVA and 
PVA/Chitosan cross-linked scaffolds. Our results 
revealed that chitosan strongly influences the swelling 
volume of the scaffold and increases it from 440% to 
1590% over the period (1-24 h). The increased 
swelling volume could be attributed to a more flexible 
or relaxed network formed by the inter- and intra-
polymer reactions and also to the more of hydrophilic 
groups in PVA/Chitosan blend. The results may be 
attributed to the fact that chitosan is a cationic 
biopolymer, and its content in the scaffold results in 
loosening of the network chains due to existing 
repulsion between the cationic chains of 
chitosan. This observation is in agreement with 
previous studies which reported that chitosan 
increases the swelling rate when blended with PVA; 
however the degree of swelling rate increase or 
reduction depends on factors such as weight ratio of 
the components, pH, temperature, and so on [35] [43] 
[44] [45] [46]. 

 

Figure 2: Swelling as a function of PVA and chitosan scaffold at 
various composition percentages (%) over the period (1-24 h). 
Graphical data are presented as mean (n = 3) ± standard deviation 
of three independent experiments 

 

Degradation is the process through which 
useful physicochemical properties of the polymers are 
lost. This can include loss of polymer mass through 
mechanisms such as solvation and depolymerisation. 
Degradation behaviour of PVA and PVA/Chitosan 
scaffold using the PBS immersion method was shown 
in Figure 3. It was observed that the degradation rate 
of PVA/Chitosan scaffold was much slower than of 
PVA samples. PVA/Chitosan scaffolds started to 
degrade from 6

th
 day onwards, and this slow 

degradation was continued until day 16. This could be 
due to the higher density of chemical cross-linking 
between cross-linkers and amine groups of chitosan 
and leads to slower depolymerisation [49] [50]. 

 

Figure 3: Measurement rate of breakdown of PVA/chitosan 
scaffolds. Dry weight ratio or degradation behaviour (%) of PVA and 
chitosan/PVA hydrogels was measured using PBS at different time 
points. Graphical data are presented as mean (n = 3) ± standard 
deviation of three independent experiments 

 

The mechanical properties (Young's modulus, 
tensile strength and elongation at break percentage 
(%) of PVA/Chitosan blend scaffold was investigated 
in dry and wet states, and the observation was shown 
in Table 2. The mechanical properties of a scaffold 
used for tissue engineering are very important due to 
the need for the structural stability to oppose the 
various stresses incurred during culture in vitro or 
implantation in vivo while the surgeon is handling the 
membrane. 
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Table 2: Mechanical properties of PVA/Chitosan blend 

S. No Scaffold Tensile strength 
MPa 

Elongation at Break 
(%) 

Tearing maximum 
strength load (N) 

1. PVA/Chitosan 4.38 ± 0.09 20.58 ± 0.36 2.87 ± 0.02 
2. Positive control HAM 1.68 ± 0.08 10.09 ± 0.8 Nil 

 

The cytotoxicity of the pure PVA, Chitosan, 
PVA/chitosan blend scaffolds have been evaluated by 
MTT assay. This assay is based on the conversion of 
MTT to blue formazan by mitochondria in living cells. 
The amount of formazan formed indicates the level of 
cell metabolism. However, it does not accurately 
represent the number of living cells.  

 

Figure 4: H&E staining of cultured HCEC in HAM and PVA/Chitosan 
scaffolds 

 

Each experiment was repeated three times, 
and a low standard deviation of assay results was 
found. The optical density of formazan at 570 nm was 
measured for 24h, 48h and 72 h of incubation, 
respectively. The MTT assay indicated that both 
NIH3T3 and the cultured human corneal epithelial 
cells (HCECs) viability, was highest from days 3 to 5, 
and was not affected by the concentration of PVA 
used to prepare membranes. The viability of NIH 3T3 
(90%) and HCECs cultured on PVA/chitosan (91%) 
was higher compared with either NIH3T3 or HCECs 
cultured on PVA alone (78% and 80%). However, it 
was less when compared with non-treated control 
cells (98%). H & E stained cells further confirmed the 
cell viability (Figure 4).  

 

Figure 5: Semi-quantitative RT-PCR for SC-associated markers 
ABCG2 (379 bp), differentiation-associated markers, K3 (145 bp), 
and connexin 43 (154 bp) expressed by corneal epithelial cells (a, 
b, and c); A 100 bp DNA ladder is shown in the first left lane. 
GAPDH, a housekeeping gene, was used as an internal control (d) 

 

Therefore, these results clearly showed that 
the PVA/Chitosan blend scaffolds are not deleterious 
for cell activity and may be safe for their use as a 
delivery substrate, wound dressing or soft tissue 
repair [51] [52] [53]. 

 

Figure 6: PCR amplification for AMPs expression by human corneal 
epithelial cells. Semi-quantitative RT-PCR for AMP-associated 
markers hBD1 (215 bp), hBD2 (204 bp) and hBD3 (205 bp) 
expressed by corneal epithelial cells (a, b, and c); A 100 bp DNA 
ladder is shown in the first left lane. GAPDH, a housekeeping gene, 
was used as an internal control (d) 

 

Besides the above, the present study have 
also investigated the expression of different molecular 
markers for corneal epithelial stem cells (ABCG2, 
connexin43 and cytokeratin 3) (Figure 5, a, b, and c) 
and antimicrobial peptides (AMP) such as, hBD 1, 2, 3 
and LL37 in cultured corneal epithelial cells (Figure 6, 
a, b, c, and d). Our results show that culture corneal 
epithelial cells were expressed hBD 1, 2, 3 and LL37 
and the stem cell markers confirming the corneal 
epithelial nature of the cells. 

 

 

Discussion 

 

Tissue engineering in the cornea has often 
maintained the use of a carrier system for delivery of 
corneal stromal stem cells and corneal endothelial cell 
progenitors [54] [55]. Natural materials, such as 
collagen, silk and gelatin, which have excellent 
biocompatibility, biodegradability and low 
immunogenicity, have been extensively utilised for 
corneal tissue engineering [18] [19]. Although, 
scaffolds are preferentially a biodegradable one while 
providing a favourable microenvironment for cell 
adherence and proliferation but also expected to 
degrade gradually, allowing surrounding tissues to 
replace and sustain the scaffold function [56] [57]. In 
this regard, cross-linking reagents commonly used to 
modify scaffolds for enhancing both physical and 
chemical stability. For instance, in recent years, fibrin 
[58], human amniotic membrane (HAM) [59], and 
cellular feeder layers such as 3T3 fibroblasts [58] [60] 
have facilitated the expansion of corneal epithelial 
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cells. However, each of these agents has their own 
merits and some drawbacks. 

In this study, we have modified polyvinyl 
alcohol (PVA) fibres by blending with chitosan to 
fabricate a Nanofibrous scaffold by cross-linking with 
EDC and NHS. The PVA/chitosan scaffolds have 
been found to exhibit physicochemical and biological 
properties, which we compared with HAM scaffolds to 
better meet the requirements of cultured corneal 
epithelial cells. The FT-IR spectra provide information 
about the functional groups of constituent polymers 
present in the scaffold. The IR spectra shown 
in Figure 1a indicates the presence of poly (vinyl) 
alcohol and chitosan, as evident from the peaks 
observed. It is clear from the IR results on the peaks 
that constituent polymers PVA and chitosan are 
present in the cross-linked scaffold. Whereas in the 
spectrum of denuded HAM (Figure 1b), nine 
characteristic absorption bands at the frequencies of 
3306, 2954, 1651, 1548, 1451, 1394, 1241, 1077, and 
645 cm

−1
 were observed. 

The water absorption capacity of scaffold 
results clearly shows that water intake capacity 
constantly increases when the wt. Fraction increases 
from 1 to 4.0 and after that the equilibrium swelling 
constantly decreases (data not shown). Thus, an 
optimum swelling is reached at a PVA/chitosan wt. 
The fraction of 4.0. The results may be explained as 
follows, since both the constituent polymers, that is 
PVA and chitosan are hydrophilic, their increasing wt. 
Fraction results in enhanced hydrophilicity of the 
matrix, which results in an increased water sorption 
capacity. However, beyond 4.0 wt. Fraction of PVA, 
the water sorption capacity falls, which may be 
explained by the fact that when the PVA content is 
high, and the resulting scaffold is enriched in 
crystalline region of PVA, this accounts for lower 
water sorption tendency of the PVA. A similar 
observation was observed with chitosan. The results 
may be attributed to the fact that chitosan is a cationic 
biopolymer, and its increasing content in the scaffold 
results in loosening of the network chains due to 
existing repulsion between the cationic chains of 
chitosan. 

It is well established that chitosan is a 
potential scaffold for in vitro bovine corneal epithelial 
cell culture with the ability to preserve the corneal 
epithelial cell phenotype to maintain biological function 
to a certain extent [61] [62] [63]. Hence, the cellular 
behaviour of a biomaterial is an important factor 
determining the biocompatibility of a biomaterial [64]. 
After cells contact biomaterials, cells will undergo their 
morphological changes to stabilise the cell and 
material interface. In our study, we monitored cell 
viability on PVA cross-linked chitosan using an MTT 
assay and observed cell morphology periodically to 
assess any differences in cell morphology. No obvious 
difference noticed with HCEC and NIH3T3 
morphology in cultured cells using light microscopy. 
Our result implies that HCEC could favourably attach 

and proliferate on the PVA/chitosan surface, and cells 
were able to infiltrate the scaffolds and successfully 
form a 3D corneal epithelium [65] with appropriate 
pre-clinical and clinical experimentation in future. 

Also, the cultured epithelium displayed a 
phenotype similar to human corneal epithelium as 
stem cells have certain unique characteristics, which 
include longevity, high capacity of self-renewal with a 
long cell cycle time and a short S-phase duration, 
increased the potential for error-free proliferation, and 
poor differentiation [66]. Semi-quantitative reverse 
transcriptase polymerase chain reaction (RT-PCR) 
was done on the cultured cells at varying intervals of 
time for expression of ABCG2, connexin43 (Cnx43), 
and keratin 3 (K3). The cells cultured over 
PVA/chitosan were able to maintain the expression of 
putative stem cell markers ABCG2, Cnx43 and K3. 

Previous studies have shown that the 
connexins are gap junction proteins involved in cell-
cell communication, and are important cell 
differentiating factors. To date, Cx-43 and Cx-50 are 
the only two gap junction proteins that have been 
identified in the corneal epithelium. Cx-43 is abundant 
on the basal corneal epithelium but is absent from 
limbal stem cells; thus, Cx-43 is proposed as a 
negative corneal stem cell marker [67]. Therefore, 
according to the phenotype of the HCECs cultured on 
the PVA/chitosan, they were HCE, but not limbal stem 
cells.  

Antimicrobial peptides (AMPs) form an 
integral part of the innate immune system and provide 
defence against a range of pathogens as well as 
modulating immune responses [68]. This help 
provides a baseline defence against invading 
pathogens, and several are up-regulated in response 
to infection and inflammatory stimuli [69] [70] [71] and 
play a critical role as a microbial barrier [72] (Alison et 
al., 2004). The human β-defensins (hBD) and the 
cathelicidin LL37 [73] are peptides expressed by 
epithelia throughout the body including epithelia of the 
oral cavity. There are now 28 known β-defensin genes 
found in human. However; expression of hBD1, 2, and 
3 have been most investigated [74]. Despite the 
constant threat from pathogenic microbes in the air 
and foreign objects around in the laboratory, the 
incidence of infection in the culture condition is 
expected amazingly low [75]. However, in spite of the 
presence of antibiotics in the culture medium or 
having an intact sterile surface condition, our results 
found the expression of all three defensin group AMPs 
in oral epithelial cells. This model can serve as a 
useful basic tool for the study of tissue innate immune 
responses as a purely epithelial model. 

In summary, we modified chitosan by cross-
linking its polymers with the naturally occurring cross-
linker PVA in a safer and faster way and characterised 
the phenotypes of HCECs cultured on PVA/chitosan. 
We demonstrated that the improved development of 
PVA/chitosan showed good biocompatibility for cell 
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adhesion, expansion, and proliferation. Besides the 
above, this polymer scaffold will be promising scaffold 
alternative to AM for clinical use in the future for the 
transplantation of cultivated limbal stem cells onto the 
ocular surface with successful clinical trial and 
experimentation. Therefore, future applications of safe 
and rapid development of PVA/chitosan membranes 
can be considered for reconstruction of the cornea 
and other tissue engineering applications. About 
biocompatibility, although PVA/Chitosan scaffold 
produced no or low toxic tissue response, it is yet to 
be determined whether they produce any 
inflammatory response, as they are clinically 
significant. Therefore, further studies are necessary to 
investigate to rule out the possibility of any possible 
concerns in their use. 
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