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Abstract 

BACKGROUND: Genetic variation in the genes that encode metformin transporters has been proven to cause 
pharmacokinetic variability and various glycemic response to metformin. Organic Cation Transporter (OCT) 1 
protein encoded by the SLC22A1 gene is primarily responsible for the process of metformin influx to the 
hepatocytes as the target of antihyperglycemic action as well as metformin elimination through the renal. This 
study aimed to determine the allele frequency distribution of the SLC22A1 Met420del gene in OCT1 among the 
Javanese population, the largest ethnic group in Indonesia with T2DM. 

METHODS: The research involved 100 adult patients from 9 healthcare facilities in Yogyakarta Province. The 

PCR-RFLP method was employed as a genotype analysis to detect polymorphism using 5'-
AGGTTCACGGACTCTGTGCT-3' forward primer and 5'-AAGCTGGAGTGTGCGATCT-3' reverse primer. 

RESULTS: No AA variant (wild type) type was found in the SLC22A1 Met420del gene, and only 4% of the 
subjects had Aa heterozygote type. The allele frequencies of A and a were 2.0% and 98.0% in all subjects, 
respectively. 

CONCLUSION: The allele frequencies in the Javanese-Indonesian population were almost the same as those in 
the studies involving Japanese, Chinese-Han, and Asian-American populations. This study recommends further 
research on the correlation between the influence of methionine deletion at codon 420 on the variability of 
pharmacokinetic profiles and the glycemic response to metformin as well as the incidence of gastrointestinal 
intolerance due to metformin administration. 

 
 
 
 
 
 
 
 

Introduction 

 

The prevalence of diabetes mellitus in 
Indonesia continues to increase, reaching 2.1% 
compared to the last 6 years [1]. Meanwhile, the 
International Diabetic Federation estimates that DM 
prevalence in Indonesia will reach 14.1 million in 2035 
[2]. Therefore, good management of glycemic control 
is required to prevent as well as reduce morbidity and 
mortality due to diabetes mellitus [3]. 

From 2013 to 2017, metformin remained in 
the list of Indonesia’s National Formulary as one of 
the oral antidiabetic drugs available up to primary 

healthcare facilities. The ability of metformin to reduce 
HbA1c levels in the range of 1.0-2.0% and the low 
hypoglycemic effects are among its advantages over 
other oral antidiabetic drugs. However, the glycemic 
response to metformin use is varied as 35 to 40% of 
patients have yet to reach the target of fasting blood 
glucose levels [4]. Variability in patients’ response to 
antidiabetic drugs can result from genome variations 
that lead to variations in disposition and response to 
antidiabetic drugs including metformin [5].  

Our previous study found a variety in the 
minimum as well as maximum metformin steady-state 
concentrations, reaching > 100-fold and 15-fold 
respectively, in 82 T2DM patients who received 
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metformin at the similar dosage (1000 mg/day) [6]. As 
a drug with renal excretion as the primary route of 
elimination, metformin has > 0.6 rGC (genetic 
component), indicating that variations in steady-state 
concentration can result from the involvement of 
genetic factors during the renal clearance of 
metformin [7]. 

As a hydrophilic base existing at physiological 
pH as a cationic species (> 99.9%), the effectiveness 
of metformin pharmacokinetics depends on the 
function of the transporters involved [8]. One of the 
major transporters known to play an important role in 
metformin pharmacokinetics to date is Organic Cation 
Transporter 1 (OCT1), a protein mainly expressed in 
liver sinusoidal cells, renal basolateral membrane [9], 
and apical membrane of tubule cells [10], which 
transports metformin to hepatocytes as the target of 
its antihyperglycemic action as well as plays a part in 
the elimination and reabsorption in the renal tubules. 
Variations in SLC22A1 gene have led to changes in 
the function of OCT1 protein, which results in varied 
plasma concentrations of metformin and decreased 
amount of metformin in the receptors, making the 
therapeutic response to metformin decline. Such 
genetic variations can take the form of methionine 
deletion at codon 420 located in the ninth 
transmembrane domain of SLC22A1, which is the 
highest functional variant in the gene. Several studies 
have found that SLC22A1 gene variants cause 
variability in both steady-state concentrations of 
metformin and glycemic response [11], [12], [13], [14]. 
Also, recent research showed that genetic variations 
in the gene are related to the level of gastrointestinal 
intolerance due to the use of metformin [15], [16]. 

This research is a part of pharmacogenetic 
studies of metformin use among the Indonesian 
population suffering from T2DM. Analysis of genetic 
variants in the target gene that encodes metformin 
transporters is important to provide information on the 
profile of genetic variation in Indonesian population 
which can then be further researched on the 
implications for the use of metformin as a first-line 
antidiabetic drug for T2DM and its safety for the 
gastrointestinal tract. Therefore, this study aims to 
determine the allele frequency distribution of 
SLC22A1 Met420del gene encoding OCT1 among the 
Javanese population, the largest ethnic group in 
Indonesia with T2DM. 

 

 

Methods 

 

Recruitment of Subjects 

T2DM patients were recruited from 9 existing 
healthcare facilities in Yogyakarta Special Province 
categorised as Javanese based on their three 
previous generations from Javanese ethnic. Informed 

consent was obtained from each patient who was 
willing to be involved in the study. The research has 
obtained ethical clearance from the Ethics 
Commission of the Faculty of Medicine of Gadjah 
Mada University. 

 

Genotype Analysis of SLC22A1 Met420del 
in OCT1 

Genotyping at SLC22A1 Met420del was 
carried out using PCR followed by Restriction 
Fragment Length Polymorphism (RFLP). The PCR 
primer design used the forward primer 5'-
AGGTTCACGGACTCTGTGCT-3' and the reverse 
primer 5'-AAGCTGGAGTGTGCGATCT-3'. The PCR 
conditions for amplification consisted of initial 
denaturation at 93°C for 3 minutes followed by 35 
denaturation cycles at 93°C for 45 seconds, annealing 
at 58°C for 35 seconds, and extension at 72°C for 35 
seconds as well as a final extension at 72°C for 5 
minutes. The amplification products (600bp) were 
then analysed in 1% agarose gel for 30 minutes at 
100 Volt followed by restriction digestion using BspHI, 
incubated for ± 12 hours at 37°C. BspHI enzyme cut 
T-CATGA sequence at the 197

th
 base of DNA 

template. AA genotype was recognised and digested 
by the enzyme. PCR products with the T-CATTT 
sequence would not be recognised by the BspHI 
enzyme, leaving the product undigested. The resulted 
products were then analysed in 1% agarose gel and 
quantified using floor safe. Digestion of amplification 
products resulted in 600 bp fragments for AA (wild 
type) genotype as well as 403 bp and 197 bp 
fragments for aa (mutant) genotype, and 600 bp, 403 
bp, and 197 bp for heterozygotes (Aa). 

The results were presented in percentage 
using the Hardy-Weinberg principle. Referring to the 
previous research, the A allele (wild type) showed a 
GAT base deletion on DNA target sequences, and an 
allele (mutant) indicated GAT base insertion in DNA 
sequences [13]. 

  allele   
                              

                         
 

a allele   
                             

                         
 

 

 

Results  

 

A total of 100 Javanese-Indonesian patients 
with T2DM were involved for the genotype analysis of 
the SLC22A1 Met420del gene in OCT1. 
Characteristics of the research subjects are described 
in Table 1. 

The patients involved in this study were 
mainly female (69%) with an average age and BMI of 
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52.88 ± 8 years old and 25.47 ± 4.5 kg/m
2
, 

respectively. 

Table 1: Characteristics of subjects for the genotype analysis 
of the SLC22A1 Met420del gene in OCT1 

Patient Characteristic      Male   Female p-value 
n  n  

Age (years) 
< 50  
≥ 50  

 
7 

24 

 
 

 
24 
45 

 
 

0.22 

BMI (kg/m
2
) 

< 30  
≥ 30 

 
28 
3 

 
 

 
58 
11 

 0.54 

SLC22A1 Met420del genotype
 

AA 
Aa 
aa 

 
0 
0 

31 

  
0 
4 

65 

 * 

*
Presented only in descriptive statistics  

 

Table 1 shows no differences in patient 
factors of both age and BMI between male and female 
patients with T2DM (P > 0.05). Also, there was no 
type of AA variant (wild type) found in the SLC22A1 
Met420del gene, and only 4% of the subjects had the 
Aa variant. The electrophoretic display of the results 
of the enzyme digestion for detecting polymorphism in 
SLC22A1 Met420del is shown in Figure 1. 

 
Figure 1: Result of analysis of the cutting region in BspHI restriction 
enzyme of Met420del polymorphism in SLC22A1 gene; aa 
homozygous/mutant (lane 7a-11b: 403bp and 197bp), Aa 
heterozygous variants (lane 6a and 6b: 600bp, 403bp, and 197bp). 
Note: lane M = marker/ladder 1 kbp; lane 6a and 6b = samples of 
heterozygote type in; lane 7a-11b = samples of mutant type; lane C 
= negative control; lane U = undigested sample 

 

Also, to examine the allele frequencies in 
SLC22A1 for both male and female patient groups, a 
descriptive analysis was employed with the results 
presented in Table 2. 

Table 2: Allele frequency in the SLC22A1 gene and SLC47A1 
gene according to gender 

Allele Variant Male (%) Female (%) 

A allele 0 2.90 
a allele 100 97.10 

 

Table 2 shows the highest proportion of allele 
in OCT1-Met420del of this study, namely mutant allele 
a (> 95%) in both male and female patients, and even 
in the male patient group, 100% of them had typed a 
mutant allele. 

 

 

Discussions  

 

No AA variant type was found in the SLC22A1 
Met420del gene in this study. Such non-existence of 
AA type was similar to the results of studies that 

involved 116 patients of Japanese, Chinese-Han, and 
Asian-American populations [17], [18], [19]. 
Meanwhile, among African-American and European-
American populations, each with 200 research 
subjects, the frequencies of the mutant allele was 
found to be 2.9% and 18.5%, respectively [19]. In 
contrast, in studies involving 117 Iranian T2DM 
patients [20], 232 healthy Caucasian subjects [21], 
and 103 healthy Caucasian subjects in another study 
[10], as well as 246 T2DM patients in Latvian 
population [22] and 361 Danish patients [12], the 
frequency of wild-type genotype (AA) was higher than 
that of mutant genetic variant (aa) and heterozygote 
(Aa). Although infrequently conducted, 
pharmacogenomics studies that involve Indonesian 
population tend to find genetic profiles that are similar 
to those of Southeast Asian populations [23] and other 
Asian populations such as Chinese population [24] 
when compared to the genetic profiles of other 
populations. Different frequencies of Met420del 
genetic variants in OCT1 were also found in this 
study. This has certainly reinforced the importance of 
genetic profiles as a consideration in personal drug 
selection, effective dosage for a population/human 
race that is rarely involved in research into the safety 
and efficacy of novel drugs, such as in Indonesia. 

Despite being performed only on experimental 
animal models, there were no differences in the 
expression of OCT1 in renal cells based on gender 
[25], [26]. Therefore, the difference in sex-type 
proportions in a pharmacogenomics study involving 
OCT1 transporters can be ignored, or no matching 
technique is needed in the data analysis for this 
patient-factor. 

Several studies have been conducted to 
analyse the association of genetic variation in the 
SLC22A1 gene with its effects, such as the variability 
of expression, disposition, and therapeutic response 
of a drug. A study of liver tissue samples from 
subjects of the Caucasian population identified the 
genetic variation as a critical factor of OCT1 hepatic 
expression [27]. This could lead to changes in the 
function of OCT1 as a protein transporter for several 
drugs that have liver as the action target, such as 
metformin. Expert studies of OCT1 distribution 
showed that such protein is found in the stomach, 
small intestine, kidney, and skeletal muscles in 
human, and is mainly expressed through the liver [28], 
[29]. Although early studies reported that OCT1 is 
found in the basolateral membrane [30], some other 
studies reported that the apical surface of intestinal 
epithelial cells also becomes the location of OCT1 
[31], [32], [33]. To date, studies of the reduced 
function of OCT1 transporter in the intestine has been 
more associated with the level of gastrointestinal 
intolerance of metformin use because of the possibly 
higher effect on increasing local concentrations of 
metformin in the intestine (lumen and enterocytes) 
when compared to the level of metformin transported 
to the blood [15]. Thus, genetic variation in SLC22A1 

600 bp 

403 bp 

197 bp 
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as an OCT1 encoding gene affects not only the 
absorption of metformin but also the function of OCT1 
involved during the distribution to hepatocytes as the 
primary action target of such antidiabetic drug as well 
as during the reabsorption in the renal tubules. This 
analysis has been justified in several studies that 
found the effects of polymorphism on the 
pharmacokinetic and pharmacodynamic variability of 
metformin. 

Methionine deletion at codon 420 (Met420del) 
located in the ninth transmembrane region of the 
SLC22A1 gene, the polymorphism target of this 
research, has been the most commonly studied 
functional variant. In contrast to the majority of other 
functional SLC22A1 variants that are population 
specific, the Met420 deletion can be found in some 
populations in different regions in the world [34], [35], 
[36], [37]. Such polymorphism causes a decrease in 
the activity of metformin transporter, leading to a 
reduced antihyperglycemic response [38]. This is also 
proven by a study of 20 healthy subjects receiving 
metformin as much as 1850 mg/day that indicates the 
presence of polymorphism, one of which is 
Met420del, causing the variant allele group to have 
higher AUC of plasma metformin concentration but 
lower volume of distribution in oral administration 
compared to the wild-type group [39]. Therefore, the 
metformin concentration transported to the 
hepatocytes as its action target is reduced, resulting in 
a decreased antihyperglycemic response [24]. Also, a 
study of 108 Iranian patients newly diagnosed T2DM 
and using metformin for 12 weeks also showed that 
the Met420del variant causes lower FBG reduction 
compared to the wild-type group [20]. Other studies 
also found a variation in the scores of metformin 
clearance in the kidney and the metformin uptake to 
the liver which will eventually affect blood glucose 
levels followed by an effect on the appropriate dose to 
administer to T2DM patients [37], [40]. In contrast, the 
research involving 1531 patients in GoDART study 
revealed that 420del does not affect A1C reduction in 
T2DM patients receiving metformin [41]. These 
contradictory differences require further research 
using more improved methods. 

It is widely acknowledged that the effect of 
420del polymorphism in SLC22A1 on the expression 
of OCT1 in the apical membrane of renal tubule cells 
can reduce re-absorption in the renal tubule, leading 
to a decrease in the plasma metformin concentration, 
including its steady-state concentrations [42]. A 
significant reduction in the minimum steady-state 
concentration of metformin also occurs in patients with 
a heterozygous deletion of rs72552763 (Met420del) 
when compared to the wild-type group (P 0.06) [12]. 

As previously studied, OCT1 is also found in 
the basolateral membrane of intestinal cells, so 
polymorphism in OCT1 causes a decrease in the 
amount of metformin absorbed into the systemic 
circulation and increased its concentration in 
enterocytes. This has been believed to contribute to 

the occurrence of metformin intolerance [15]. A 
prospective study involving 92 newly diagnosed T2DM 
patients who received metformin found that Met420del 
variant in the group of patients with R61C 
(rs12208357) variant has twice higher OR to 
experience gastrointestinal side effects [43] and even 
4 times higher OR in the group of patients who have 2 
alleles of OCT1 functional variant including Met420del 
[44], but different types of polymorphism are found in 
another study involving 246 T2DM patients [22]. 

Also, although contradictory findings remain 
to appear, particularly related to the effect of 
Met420del polymorphism in SLC22A1 gene on the 
glycemic response to metformin and gastrointestinal 
intolerance, the high frequency of mutant alleles in 
Javanese-Indonesian population requires further 
research. This is in line with the minimum involvement 
of the Indonesian population in the development of 
new drugs. Additionally, OCT1 is also an important 
transporter for several other drugs. Therefore, further 
studies of pharmacokinetic variability and therapeutic 
response to the use of other drugs that also require 
OCT1 in their pharmacokinetics, such as oxaliplatin, 
sorafenib, and lamivudine, are recommended [27], 
[45]. 

In conclusion, the results of allele frequency 
study on OCT1 involving the Javanese-Indonesian 
population is a novelty in the initial study of 
pharmacogenetics of metformin use which has never 
been conducted. The frequency of an allele in 
SLC22A1 Met420del among the Javanese population 
in Indonesia is reasonably high (> 95%). Therefore, 
further studies are suggested to investigate the effect 
of genetic variation of these polymorphisms on the 
pharmacokinetic profile and glycemic response to 
metformin in Indonesian patients with T2DM. 
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