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Abstract 

Nanotechnology has been widely exploited in recent years in various applications. Different sectors of medicine 
and treatment have also focused on the use of nanoproducts. One of the areas of interest in the treatment 
measures is the interaction between nanomaterials and immune system components. Engineered nanomaterials 
can stimulate the inhibition or enhancement of immune responses and prevent the detection ability of the immune 
system. Changes in immune function, in addition to the benefits, may also lead to some damage. Therefore, 
adequate assessment of the novel nanomaterials seems to be necessary before practical use in treatment. 
However, there is little information on the toxicological and biological effects of nanomaterials, especially on the 
potential ways of contacting and handling nanomaterials in the body and the body response to these materials. 
Extensive variation and different properties of nanomaterials have made it much more difficult to access their 
toxicological effects to the present. The present study aims to raise knowledge about the potential benefits and 
risks of using the nanomaterials on the immune system to design and safely employ these compounds in 
therapeutic purposes. 

 

 

 

 

 

 
 
 

Introduction 

 

Nanomaterials have structures smaller than 
100 nm with physicochemical properties capable of 
affecting biological processes [1]. The nanomaterials 
can be synthesised from a wide range of materials, 
the most common of which being silicates, non-oxide 
ceramics and metal oxides. Nanomaterials have many 
features and capabilities with unique structural 
characteristics such as desirable size, greater 
solubility, easier to pass through cellular barriers and 

more reactivity [2]. The application of nanotechnology 
has created new hopes in solving today’s human 
problems. In recent decades, the nanotechnology has 
been introduced as a factor affecting different 
industries, and the use of nanomaterials has 
expanded rapidly in various fields. The 
pharmaceutical and medical industries have also 
benefited by the use of nanotechnology such that it 
has led to the introduction of new applied products 
into the market [3], [4]. 

Nanotechnology has been used in the fields 
of prevention, diagnosis and treatment of various 
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diseases. However, the interaction of nanomaterials 
and the immune system remains somewhat unknown. 
Previous studies have shown that the nanomaterials 
can cause excitation or suppression of immune 
responses through binding to blood proteins. 
Adsorption of these proteins bound to nanomaterials 
is recognised by various immune cells. Also, they 
affect the interaction of nanoparticles (NPs) with other 
blood components [5], [6]. Nanomaterials contribute to 
the activity of the adjuvant by increasing antigen 
presentation to the immune system as well as the 
enhancement of the innate immune responses. 
Determining the degree of biocompatibility of 
nanomaterials with the immune system is largely 
fulfilled by their surface chemistry. Today, the 
nanotechnology is widely used to improve targeted 
immune responses to the prevention and treatment of 
infectious and non-infectious diseases. Localised 
nano immunotherapy through the reduction of 
systemic toxicity improves the immunostimulatory 
molecules [7]. The applications of nanotechnology in 
medicine and immunology are extensive. This study 
has reviewed some applications of nanomaterials in 
medicine, the use of nanomaterials in the treatment of 
autoimmune diseases, the effect of nanomaterials on 
immune responses, the use of nanomaterials in 
vaccine design and the effects of nanomaterials on 
the body and the immune system. 

 

 

The nanomaterials and their application in 
medicine 

 

Despite the medical advances in recent years, 
some diseases such as AIDS [8], [9], cancer [10], [11], 
infectious diseases [12], diabetes [13], chronic pain 
[14], [15] and autoimmune diseases [16], [17], have 
not been treated. Since nanoparticles are the 
foundation of nanotechnology, their use in the medical 
branch has opened new perspectives in therapy [18]. 
Accordingly, the properties of nanoparticles should 
first be evaluated; and if approved, they will be then 
used for therapeutic purposes. Nanomedicine deals 
with the ever-increasing advances in theories, devices 
and nanoscale apparatuses as well as with 
nanostructures specific for the diagnosis, prevention, 
or treatment of diseases. The use of nanomaterials in 
medical interventions has led to direct contact of the 
nanomaterials with the human body [19]. The 
nanomedicine can be accomplished by detecting, 
restoring and regenerating damaged tissues at the 
molecular levels. Another research topic in the 
nanomedicine is the extensive design and the use of 
various research tools to produce drugs with a 
targeted release in the body. In this drug delivery 
method, the drug is directed to the target cells and 
delivered to the desired site [20]. 

Considering the antimicrobial properties of 

different types of nanoparticles, such as nanosilver, 
nano titanium and copper nanoparticles, one of their 
important applications is to control a variety of 
pathogens. Also, recent results have shown that gold 
nanoparticles and also magnetic nanomaterials due to 
their unique properties can be recruited in various 
areas of treatment and nanomedicine [21], [22], [23]. 
Researchers, through the exploitation of the outer 
surface of nanomaterials, have established nanoscale 
interactions between materials and biological systems 
to dramatically enhance their performance and create 
new structures [24]. The use of intelligent devices in 
medicine with the least damage to surrounding tissues 
is another application of the nanomaterials. Another 
application of nanomaterials in the medical field is the 
production of compatible components in sensor 
systems that can diagnose and prevent diseases. 
Environmental sensors are designed on a very fine 
chip to complete the experiments that communicate 
with the outside of the patient’s body reveal the 
internal body conditions such as heart attack, tumour, 
or localised infections [25], [26]. Magnetic resonance 
imaging (MRI) is an advanced and non-invasive 
technique for the early diagnosis of many diseases, 
including cancer [27]. Several diseases can be 
currently diagnosed with a drop of blood-based on 
laser systems in the infrared, visible, and ultraviolet 
frequency ranges. New approaches for producing 
DNA-based nanoscale tools also show the 
advancement of nanotechnology in life sciences and 
medicine [28], [29]. The use of these new therapies 
makes many diseases detectable and treatable at the 
onset. However, despite all the advantages of 
nanoparticles (such as identifying the disease location 
and drug delivery), they should escape somehow from 
the immune system, which is recognised as an 
invader. The defence system able to destroy 
nanoparticles is a major barrier to using 
nanotechnology in medicine. The applied 
nanoparticles are systematically trapped within 
minutes and then removed from the body. Cell 
membrane-coated nanoparticles can stay intact for 
several hours without any damage in the body. 
Among these particles, protein nanoparticles are of 
interest because of numerous benefits such as easy 
access to their resources, renewable resources, 
reasonable cost, biocompatibility, biodegradability, the 
presence of multiple functional groups to carry high 
doses of the drug, and the ability to link 
simultaneously targeting groups to target 
nanoparticles to certain cells or tissues [30], [31], [32]. 

 

 

The nanomaterials and the treatment of 
autoimmune diseases 

 

In the autoimmune diseases, the immune 
invasion to certain tissues endangers their structural 
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and functional compatibility [16], [17]. The 
nanomaterials have been engineered to modulate the 
antigen-presenting cells (APCs), as well as to 
downregulate innate immune signals that reinforce 
adaptive autoimmune responses [33]. In a study by 
Schweingruber et al., [34] on the pharmacological 
treatment of experimental autoimmune 
encephalomyelitis (EAE), glucocorticoid loaded 
liposomes were found effective at doses lower than 
conventional glucocorticoid therapy through affecting 
the macrophages. One of the main limitations of 
conventional specific antigen-based methods for the 
treatment of autoimmune diseases is the antigenic 
complexity of autoimmune diseases and the need to 
target the multiple characteristics of autoreactive T 
cells. The nanoparticles coated by peptide-loaded 
major histocompatibility complex (pMHC) increase 
CD4

+
 regulatory T cells with lower acidity. These 

nanoparticles in the target tissue also inhibit 
polyclonal autoimmune responses through a targeted 
selection of autoantigen loaded APCs [35], [36], [37]. 
New compounds of nanoparticles, such as 
nanoparticles with multiple surfaces, will help to 
develop the future generation of nano-based drugs for 
the treatment of autoimmune diseases [38], [39]. 

 

 

The effect of nanomaterials on the 
immune responses 

 

The innate immunity is, in fact, a non-specific, 
natural, non-clonal, germline-encoded and non-
anticipatory system, while the adaptive immunity is a 
specific, clonal, somatic, and anticipatory system [40]. 
The nanoparticles properties such as size, 
hydrophobicity, surface charge and coating agents 
determine their level of interaction with the immune 
system [41]. Adsorption of molecules on the NPs in 
specific microenvironments makes them be 
recognised as foreign agents by the innate immune 
system, resulting in an inflammatory response. The 
NPs have no direct contact with innate immune cells, 
except with molecules ornamented on their surface. 
On the other hand, a large amount of NPs loaded in 
chemotherapies for antitumor therapy is taken by 
leukocytes. Therefore, there is a potential loss of 
innate immune response [42]. 

Delayed adaptive immunity occurs based on 
the type and extent of innate immune responses and 
can expand and enhance inflammatory responses. 
The adsorption of body molecules on the surface of 
NPs causes their deformation, folding and 
immunogenicity, resulting in the adaptive immune 
response. The induction of NPs interferes with the 
molecular mechanisms of dendritic cells (DCs), affects 
the peptides presented to T cells and thus modulates 
the adaptive immune responses [43], [44]. In a study 
by Gustafsson et al., [45] TiO2 NPs injected 

intravenously to rats caused an early immune 
response in the lungs and resulted in a consequent 
increase in the IFN-γ, IL-4 and IL-10 levels after 
several days. 

 

 

The application of nanomaterials in 
vaccine design 

 

The success of human papillomavirus (HPV) 
and hepatitis B virus (HBV) based particles in humans 
have led to the development of various virus-like 
particles (VLPs) and virus-based nanoparticles VNPs 
vaccine. One of the concerns about the use of 
engineered nanoparticles is their potential toxicity in 
the human body. Some of the contributing factors to 
the toxic effects of some materials in the human body 
are the low rate of biodegradability, high surface area 
to volume ratio, the ability of biological membrane 
coatings, and high reactivity. Self-assembly ability of a 
large variety of viral capsid subunits in VLPs shows 
advances in the vaccine design. The VLPs have a 
regular and multifaceted structure that is not usually a 
component of the host proteins, so they form 
pathogen-associated molecular patterns (PAMPs), 
which create the mechanisms for assessing the innate 
immune [46], [47]. 

Also, most of the VLPs enclose nucleic acids 
during production, as they may stimulate specific Toll-
like receptors (TLRs). The features of the VLPs can 
be used in the vaccine design because they facilitate 
their taking by the antigen presenting cells (APCs), 
producing long-term cytotoxic T lymphocyte (CTL) 
responses and antibody responses [48], [49]. The 
VLPs are better and safer than other subunit vaccines 
because of lacking any genetic material. Although the 
production of synthetic particles usually has 
undesirable immunogenicity and conditions for 
removing in the body, their production is easier and 
safer than the VLPs [50]. 

The biocompatible and biodegradable 
microparticles are used in oral immunisation to induce 
local and systemic immune responses. One of the 
biodegradable materials is poly (lactic-co-glycolide) 
(PLGA) copolymers that can be manipulated by 
altering the polymer composition and molecular 
weight. PLG microspheres are commonly used as 
carriers of bacterial vaccines, and few are studied for 
viral vaccines [51]. Liposomes are composed of two 
layers of phospholipids that are associated with 
cholesterol to stabilise the artificial membrane [52]. 
Also, the liposomes are mostly unable to provoke 
potent immune responses that require the use of 
adjuvants. Immune stimulating complexes (ISCOMs) 
are spherical micelles with a diameter of about 40 nm 
consisting of a mixture of Quil A saponins as strong 
adjuvants, cholesterol and phospholipids. The use of 



Review Article 
_______________________________________________________________________________________________________________________________ 
 

_______________________________________________________________________________________________________________________________ 

4                                                                                                                                                                                                   https://www.id-press.eu/mjms/index 

 

ISCOMS for rotavirus and herpes simplex virus type 2 
(HSV-2) vaccines is allowed in horses. Despite the 
advances in ISCOMS, their use is limited due to 
problems similar to those of the liposomes. Also, 
nanoemulsions (NEs) based vaccines are 
noninflammatory mucosal adjuvants that can be an 
appropriate candidate for use in the vaccine platform. 
Although the process of developing new vaccines 
continues to be improving, formulations that work well 
in laboratory animals are usually expensive in human 
clinical trials, and there is little hope for their 
applications [53], [54]. In this regard, human 
experiments need to anticipate an outbreak of the 
disease so that to be able to protect against them. 
Since vaccines are of the most effective strategies to 
improve health worldwide, ongoing efforts are needed 
to improve vaccine immunity and efficacy. 

 

 

Nanotoxicology 

 

Nanoscale materials have found new 
properties and function over non-nano equivalent 
materials because of their small size and large 
surface area. Studies have shown that those 
properties of nanoparticles that lead to changes in 
their physicochemical properties [55], [56] can also 
cause potential toxicity. The nanotechnology is 
developing rapidly and has undoubtedly both 
beneficial and harmful effects on humans and the 
environment. Therefore, it is very necessary to apply 
different methods for evaluating the toxicity of 
nanomaterials, particularly the presence of 
nanoparticles in airborne workplace pollutants that 
could affect the health of workers. In cellular models, 
dendritic cells, epithelial cells and macrophages are 
commonly used to evaluate the toxicological and 
immunological effects of engineered nanomaterials 
(ENM). The standardisation of the ENM 
immunotoxicity test and the effect of the ENM on the 
body should be further investigated [57]. During usage 
or production of the ENM, the body is usually exposed 
through the lungs. It has been evidenced that the 
nanoparticles stimulate more strongly than particles 
with a larger size and can induce inflammatory and 
toxic responses in the lungs. Calu-3 and A549, which 
are human epithelial cell lines, are widely used to 
investigate the response of immune cells exposed to 
the ENM. The exposure of the respiratory tract to zinc 
oxide nanoparticles stimulates eosinophils and thus 
upregulates the serum IgE levels. Also, exposure to 
nanoparticles can cause the proliferation of respiratory 
epithelial cells, cell hyperplasia, and pulmonary 
fibrosis [58], [59]. Most toxicology studies have been 
carried out on nanomaterials such as metals, metal 
oxides, carbon nanotubes, fullerenes, polymer 
nanoparticles, and quantum dots. Wang et al., [60] 
showed that the distribution status of multiwalled 
carbon nanotubes (MWCNTs) also affects the 

profibrogenic cellular responses and pulmonary 
fibrosis in addition to inducing pulmonary toxicity. 

Schinwald et al., [61] reported that graphene-
based nanoplatelets through the pharyngeal 
aspiration and direct intrapleural installation could 
enter the lung and the pleural space and cause 
inflammation. Based on different results, researchers 
have concluded that nanoplatelets emphasise the 
complexity of nanoparticle toxicology and are likely to 
pose a nanohazard about the toxicity of the structure. 
Studying titanium dioxide nanoparticles indicated that 
the release of these nanoparticles from membrane-
bound organelles could interact with cellular signalling 
to activate cell activation. Rossi et al., [62] exposed 
asthmatic rats to titanium dioxide particles and 
observed that ovalbumin (OVA) induced allergic 
pulmonary inflammation was significantly suppressed, 
indicating significantly decreased levels of cytokines, 
chemokines, leukocytes and antibodies in allergic 
asthma. Various studies have also shown that the 
changes caused by the nanoparticles, for example, 
and surface coating can lead to alterations in 
toxicological properties. 

According to several studies, the skin is an 
important route for the penetration of nanoparticles in 
both occupational and consumer areas [63]. Although 
zinc oxide and titanium dioxide nanoparticles, the 
members of metal oxide nanoparticles, are commonly 
used in personal care formulations as protective 
agents against UV light, they are unable to penetrate 
the stratum corneum [64]. In contradiction to the 
previous report, Gulson et al., [65] exhibited that low 
amounts of zinc from zinc oxide nanoparticles used in 
sunscreens can pass through the protective layers of 
the skin and are found in the blood and urine. Several 
studies have shown that the safety and toxicity of 
nanoparticles in both in vitro and in vivo conditions are 
important for clinical applications. 

 

 

Conclusion 

 

The use of nanoparticles, according to their 
unique immunological characteristics, which are 
determined by size, shape, charge, porosity and 
hydrophobicity, enables researchers to change the 
immune responses arbitrarily using new and 
unexpected approaches. In the future, the application 
of nanotechnology in immunology may affect novel 
strategies for preventing or treating human diseases. 
In this context, nanotechnology will continue to 
introduce remarkable insights into the nature of 
immune responses and will create increasingly new 
materials and products based on nanoparticles. 
Moreover, nanoparticles because of their desirable 
surface area to volume ratio are highly reactive, which 
leads to their harmful interaction with biological 
systems and the environment, thereby creating 
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toxicity. Moreover, the small size of nanomaterials will 
allow them to penetrate into deeper areas of biological 
systems that are inaccessible to larger particles. Due 
to different properties of the nanoparticles, their 
application for therapeutic purposes, especially the 
effect on the immune system, requires further 
attention and research. 
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