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Abstract 

AIM: This study was aimed to prepare in situ cross-linked N-maleoyl chitosan – oxidised sodium alginate (MCS – 
OSA) hydrogel loaded with metronidazole (MTZ) for drug delivery applications. 

METHODS: The hydrogel was prepared by in situ cross-linking via Schiff base reaction between amine (-NH2) 
groups from MCS and aldehyde (-CHO) groups from OSA at the different ratio, and the MTZ was loaded into the 
hydrogels along with the gelatin processes. 

RESULTS: The highest drug entrapment efficiency (DEE) was exhibited by MTZ-H3 (5: 5) with DEE of 99.20% 
and a gel fraction of 97.52%. FTIR results revealed that Schiff base reaction was occurred by the absorption peak 
of –C = N- groups at 1628 cm

-1
 and indicated that there is insignificant alteration at different ratio of MCS and 

OSA. The best sustained of in vitro release profiles of MTZ was shown by MTZ-H3, which is 74.92% and 75.65% 
at pH 1.2 and 7.4 for 12 h of release, respectively. 

CONCLUSION: The optimised ratio between MCS and OSA to prepare in situ cross-linked hydrogels were found 
to be 5:5 according to the results of DEE and in vitro drug release profiles of MTZ and the MTZ loaded MCS-OSA 
hydrogels have a great potential which can be applied in biomedical applications. 

 

 

 

 

 

 

Introduction 

 

Polysaccharide-based polymer hydrogels 
such as cellulose, chitosan, starch, alginate, dextrin 
and it's derivatives have attracted attention of 
researchers for drug delivery applications which can 
be controlled and applied at specific sites owing to the 
ease of preparation, good encapsulation properties of 
variation drugs, good biocompatibility and responsive 
to external stimulant [1], [2], [3], [4], [5]. Smart and 
controllable based drug delivery hydrogels considered 
as a preferable alternative which can improve in 
decreasing the dosage and side effects compared to 
the single unit release of tablet [6], [7]. However, the 
applications of chitosan in controllable drug delivery 
systems are limited due to its solubility [8], [9], [10]. 

Hence, to enhance the solubility of chitosan in water 
and different pH of aqueous solutions, modification by 
amine (-NH2) and hydroxyl (-OH) functional groups 
were conducted as reported in Mohamed and Fahmy 
(2012) [11] and Wang et al., (2016) [12] works, such 
as acylation of chitosan for N-maleoyl chitosan (MCS) 
preparation. 

MCS can be synthesized via acylation of 
maleoyl group to N-terminal in glucosamine chitosan 
unit. Recently, the utilisation of chitosan derivative 
such as MCS in polymer-based drug delivery has 
drawn the attention of researchers besides using 
pristine chitosan. Some advantages of MCS are non-
toxic, degradable, good hydrophilicity and 
biocompatibility which also soluble in any medium at 
different pH. The solubility of MCS depends on the 
degree of substitution of maleoyl in water and 
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physiological pH [13], [14], [15]. Therefore, in this 
research, MCS was assumed to be cross-linked with 
natural bifunctional cross-linking agents (e.g. 
dialdehyde alginate) and in situ hydrogel can be 
obtained. 

Oxidised sodium alginate can be prepared by 
oxidation reaction using oxidising agents (periodic 
acid or sodium periodate) to oxidise 2,3-O-dihydroxyl 
alginate for dialdehyde alginate preparation [12]. The 
OSA has been widely used as natural macromolecule 
cross-linking agent for hydrogels preparation due to 
the minimum or non-toxic properties which can 
replace the relatively toxic chemical cross-linking (e.g. 
formaldehyde, acetaldehyde and glutaraldehyde) [16]. 
Also, OSA has good biodegradable and intrinsic 
biochemical characteristics such as good solubility in 
a variation of pH, containing aldehyde functional 
groups, abundant nature, and ease of covalently 
cross-linking. 

Several studies have reported synthesising in 
situ-forming hydrogels via Schiff base covalent cross-
linking without any chemical cross-linking agents 
between modified-chitosan derivative and dialdehyde 
alginate. For example, in situ-forming hydrogels via 
Schiff base covalent cross-linking between –NH2 

groups from N, O-carboxymethyl chitosan and –CHO 
groups from OSA containing silver nanoparticles 
(AgNPs) for antibacterial and bioactive compound 
delivery applications has been published by Fan et al., 
(2011) [17]. The N, O-carboxymethyl 
chitosan/oxidised alginate hydrogels containing BSA 
[18], curcumin and nano curcumin [19], RGD-grafted 
oxidised sodium alginate–N-succinyl chitosan-based 
for bone tissue engineering [20], hydroxypropyl 
chitosan and sodium alginate dialdehyde for the 
reconstruction of the corneal endothelium [2]. 

In this study, MTZ loaded MCS-OSA hydrogel 
is prepared through in situ Schiff base reaction 
between amine (-NH2) groups from MCS and 
aldehyde (-CHO) groups from OSA which has not 
been reported before and the schematic reaction is 
illustrated in Figure 1. Moreover, the effects of the 
different ratio between MCS and OSA on 
physicochemical properties, drug entrapment 
efficiency (DEE) and in vitro drug release profiles of 
MTZ including the kinetic modelling at pH 1.2 and 7.4 
were evaluated. 

 

Figure 1: Schematic of in situ drug loading in MCS-OSA hydrogels 
via Schiff base cross-linking reaction 

 

Material and Method 

 

Materials 

The materials used in this experiment were N-
maleoyl chitosan (MCS) (degree of substitution = 
0.66) and oxidized sodium alginate (OSA) (aldehyde 
contents = 7.43 mmol/g) which were synthesized 
according to our previous research [21], [22], HCl, 
NaCl, phosphate buffer solution (PBS) (pH 7.4) and 
metronidazole (MTZ) was a gift from PT. Kimia Farma 
Plant Bandung Indonesia. All chemicals were used as 
received without further treatment. 

 

Preparation of MCS-OSA hydrogels 

MCS and OSA were dissolved separately in 
0.1 M PBS solution (pH 7.4) with a desired 
concentration of 2% (w / v). Then, each solution of 
MCS and OSA were mixed at room temperature at a 
different ratio which is abbreviated as H1 (9: 1), H2 (7: 
3), H3 (5: 5), H4 (3: 7), and H5 (1: 9). Before the 
characterisation, the obtained hydrogels were washed 
several times by distilled water, followed by drying for 
further characterisation [23], [24], [25]. 

 

Preparation of in situ MTZ loading in MCS-
 OSA hydrogels 

MTZ-MCS-OSA hydrogel was fabricated by 
dissolving an amount of 25 mg MTZ in a total volume 
of 10 ml mixture solution of MCS-OSA at room 
temperature. Initially, MTZ was mixed well in MCS 
solution before mixing between MCS and OSA at a 
different ratio. Then, the obtained MTZ-MCS-OSA 
hydrogels were dried for further analyses and oxidised 
[23], [24], [25]. 

 

FTIR analysis 

Samples were analysed as a powder mixed 
with KBr powder by Fourier transform infrared (FTIR) 
method. Spectra were collected in the wavenumber of 
4000-400 cm

-1
, a scan number of 64 and a resolution 

of 4 cm
-1 

using a Shimadzu IR Tracer-100 
spectrometer. 

The surface morphology of hydrogels was 
observed with a ZEISS EVO MA10 (Germany) at an 
accelerating voltage of 10 kV and magnification of 
1000 x. Before the scanning process, the hydrogels 
were dried to prevent the shrinkage of samples and 
then coated by a thin layer of platinum through the 
sputtering method. 

 

XRD analysis 

The crystallinity of prepared hydrogels was 
determined using a Bruker D2 Phaser X-ray 
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diffractometer at 2ϴ = 10-70° (scanning rate = 6°/min) 

in Cu K radiation ( =0.151418 nm) with a working 
voltage of 30 kV and current of 10 mA. 

 

Physiochemical properties of MCS-OSA 
 hydrogels 

In this study, physicochemical properties 
comprise of gel-forming time, gel fraction and swelling 
ratio (both pH 1.2 and 7.4) of the H1-H5 hydrogels. 

 

Gel forming time 

Gel forming time was observed visually at 
room temperature while the mixture solution of MCS 
and OSA losing the fluidity from viscous solution to 
elastic (rubber) or solid phase. The time when the 
solution turns to solid than was recorded as gel-
forming time [23]. 

 

Gel fraction 

The samples (Wo) were immersed in 50 mL 
distilled water for 24 h until equilibrium swelling was 
achieved, to remove the soluble parts MCS-OSA in 
the hydrogels. Afterwards, the hydrogels were dried at 
50°C in the oven and reweighed (We). The gel 
fraction (GF) was performed in triplicate and 
calculated by the following equation [23]: 

       
  

  
        (1) 

 

Swelling ratio 

The swelling experiments were conducted in 
solution pH 1.2 and pH 7.4 separately. The hydrogels 
were immersed in 50 ml of each solution at 37°C, then 
weighed (Ws) at a certain time interval (1-360 min) 
until equilibrium swelling was achieved. The swelling 
ratio (SR) was conducted in triplicate and determined 
by the following equation [23], [26]: 

       
  -  

  
        (2) 

 

Determination of drug entrapment 
 efficiency (DEE) 

The drug entrapment efficiency (DEE) of 
MTZ-MCS-OSA hydrogels was determined by the 
extraction method. 50 mg of the MTZ-MCS-OSA 
hydrogels was dispersed in 0.1 M PBS solution (pH 
7.4) and stirred at 37 ± 0.5°C for 24 h. Then, the 
solution was filtered and diluted for UV-Vis 
spectrophotometer analysis at a wavelength of 320.6 
nm. The determination of DEE was conducted in 
triplicate to ensure their reproducibility of results and 
data are presented as mean ± standard deviation 
(SD). The drug entrapment efficiency (DEE) was 

calculated by the following equation [24], [25]. 

         
   

   
      (3) 

 

Where EDL and TDL denote the experimental 
drug loading and theoretical drug loading of MTZ in 
the hydrogels, respectively. Then, the entrapment of 
MTZ in MCS-OSA hydrogels was abbreviated as 
MTZ-Hnhydrogels, which Hn denotes as H1 to H5 
hydrogels.  

 

In vitro release profiles of drug-loaded 
 hydrogels 

In vitro release profiles of MTZ-MCS-OSA 
hydrogels (H1-H5) were determined in two different 
pH environment which are 1.2 (0.1 N HCl solution) 
and 7.4 (0.1 M PBS solution) [24], [25] by using USP 
paddle method dissolution with a speed of 50 rpm and 
t tal v lum   f 9   ml at t mp ratur   f 37 ±  .5°C 
[27]. After certain time intervals between 0 and 12 h, 
aliquots (5 ml) of the sample solution were taken from 
the release medium, and an equivalent amount of 
fresh 0.1 N HCl solution was added to maintain a 
constant volume. The taken solution was then diluted 
and the concentration of MTZ was analysed by UV-
Vis spectrophotometer at the wavelength of 277 nm 
for pH 1.2. The same procedure was also used to 
carry out to determine the in vitro release profiles of 
MTZ-MCS-OSA hydrogels (H1-H5) in pH 7.4 solution 
and the wavelength of UV-Vis spectrophotometer 
analysis was at 320.6 nm. The drug release 
experiments were conducted in triplicate to ensure 
their reproducibility of results and data are presented 

as mean  standard deviation (SD). 

 

Statistical analysis 

All measured data are expressed as mean ± 
standard deviation (S.D.) and performed using Origin 
software, version 8.6 and Kruskal-Wallis test with a 
value of p < 0.05 which was considered to indicate the 
statistical significance. 

 

 

Results  

 

FTIR Analysis 

As shown in Figure 2, the absorption peak at 
the wavelength of 3448.72 cm

-1 
presented in the 

spectra of MCS attribute to stretching vibration of –OH 
and –NH2 which is overlapping, meanwhile weak 
absorption at 2931.80 cm

-1 
wavelength correspond to 

stretching vibration of C-H [23],[28]. The vibration of C 
= O from maleic anhydride acid in the chitosan 
backbone indicated by the absorption peak at 1712.79 
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cm
-1

and also confirmed by C = O vibration of amide 
groups at 1558.48 cm

-1
. Moreover, at 825.53 cm

-1 
is 

attributed to C = C groups in maleoyl [13], [29]. 
Hence, the characterisation by FTIR revealed that the 
synthesised compound is N-maleoyl chitosan (MCS). 

On the other hand, FTIR spectra of OSA, the 
free –OH, intramolecular and non-oxidized 
intermolecular bonding are evidenced by broaden 
peak at 3471.87 cm

-1
. Afterwards, the absorption 

peaks at 2939.52 and 1405.18 cm
-1 

are stretching 
vibration of aldehyde (-CHO) groups [23]. At the 
wavelength of 1627.92 cm

-1 
is referred to C = O 

stretching vibration of aldehyde functional groups 
which resulted from the oxidation of –OH. Moreover, 
the formation of hemiacetal (aldehyde) was proved by 
the absorption band of C-O-C (cyclic ether) at 1033.85 
cm

-1 
[24]. The absorption peaks at 794.67 and 732.95 

cm
-1 

are referred to C-H groups which contributed to 
bond-breaking of C-C in OSA. 

All FTIR spectrums of hydrogels (H1-H5) 
showed the insignificant difference as represented in 
Figure 2. The stretching vibration of –OH at 3464.15 
cm

-1 
revealed the intermolecular hydrogen bonds [25]. 

The presence of characteristic peak of hemiacetal 
formation at 864.11 cm

-1 
is due to stretching vibration 

of –C-N- a bond which also considered as the 
coupling reaction between –CHO from OSA and –NH2 
from MCS [25]. In addition, the absorption peak at 
1627.92 cm

-1
 confirmed the formation of –C = N- 

groups (Schiff base or imine) [25], [30], [31]. 

 

Figure 2: FTIR spectrum of MCS, OSA and MCS-OSA hydrogels at 
different ratio (H1-H5) 

 

SEM analysis 

The images of SEM (magnification: 1000 x) 
were depicted in Figure 3 and indicated that Schiff 
base cross-linking exhibited the presence of rough 
and dense surface of all MCS-OSA hydrogels (H1-
H5). However, the surface morphology of all 
hydrogels (H1-H5) showed an insignificant difference. 

 

Figure 3: SEM images of MCS-OSA hydrogels: A) H1; B) H2; C) 
H3; D) H4; and E) H5 at magnification of 1000 x 

 

XRD analysis 

The diffraction patterns indicated the 
amorphous structure of the hydrogels. All of the 

h  which is 
attributed to the networks of hydrogels as shown in 
Figure 4 and the results showed insignificant 
alteration at the different ratio between MCS and 
OSA. 

 

Figure 4: XRD patterns for MCS-OSA hydrogels at different ratio 
(H1-H5) 

 

Gel forming time 

Gel forming time (gelation time) of H1-H5 
were observed and determined at room temperature 
when both mixtures of MCS and OSA underwent 
cross-linking (gelation) to form hydrogels. The gel-
forming time for H1-H5 varied between 4.51 and 
23.52 min as represented in Table 1. 

With increasing ratio of MCS from H1 to H3, 
the ability to cross-link to create hydrogel network was 
faster because at high concentration of MCS, more -
NH2 groups reacted with –CHO groups from OCS. 
Moreover, H4 and H5 showed drastically slow gelation 
time due to the saturation of aldehyde groups at a 
high ratio of OCS and led to the hindrance of cross-
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linking [17]. Similar results were also obtained in the 
study reported by Kamoun (2016) [23] and described 
that the faster gelation time of succinyl chitosan-
dialdehyde starch (SCS-DAS) hydrogel was obtained 
at a higher amount of SCS. 

Table 1: The result of gelation time of MCS-OSA hydrogels at 
different ratio (H1-H5) 

Samples Gel forming time (min) 

H1 4.51 ± 0.02 
H2 5.18 ± 0.02 
H3 7.49 ± 0.02 
H4 19.44 ± 0.02 
H5 23.52 ± 0.03 

* n   3, ±   ). 

 

Gel fraction 

The gel fraction increased from 81.72-97.52% 
for H1-H3 and decreased to 55.13% and 12.58% for 
H4 and H5, as shown in Table 2. As mentioned 
earlier, for H4 and H5, the saturation of aldehyde 
groups was occurred and hindered the cross-linking 
therefore decrease the gel fraction. Besides, the 
results of the gel fraction are linearly related to the 
cross-linking density of hydrogel and indicated that the 
highest cross-linking density was possessed by H3. 

Table 2: The result of gel fraction of MCS-OSA hydrogels at 
different ratio (H1-H5) 

Samples Gel fraction (%) 

H1 81.72 ± 0.06 
H2 85.03 ± 0.02 
H3 97.52 ± 0.04 
H4 55.13 ± 0.05 
H5 12.58 ± 0.04 

* n   3, ±   ). 

 

The swelling ratio of hydrogels 

The swelling ratio (SR) of the hydrogels at pH 
1.2 (0.1 N HCl solution) and pH 7.4 (0.1 M PBS 
solution) was shown in Figure 5(a) and (b), 
respectively which plotted as a function of time. At pH 
1.2 (0.1 N HCl solution), the swelling ratio of H1, H2 
and H3 hydrogels increased from 86.5% to 120.68% 
and 141.42%. In correlation with gel fraction, high gel 
fraction resulted in high cross-linking density and 
limited the mobility of polymer chains, therefore, 
decrease the swelling properties. At the same time, 
the hydrophilic groups, -COOH of MCS also can 
contribute to hydrating more water molecules. 

Meanwhile, after adding OSA, the C = N 
bonds (Schiff base reaction) was formed for the 
gelation between –CHO from MCS and –NH2 from 
OSA which enhance the hydrophobicity. Therefore, at 
high concentration of OSA, the hydrophobicity of 
hydrogels increased and fewer hydrogen bonds of 
hydrogel with H2O was formed. 

On the other hand, H4 possessed low gel 
fraction to compare to H1, H2 and H3. Thus the 
swelling properties of H4 increased [17]. Moreover, 
the swelling ratio of H4 at the interval time of 120-360 
minutes of immersion showed a drastically decline 
from 168.98% to 119.71% which is due to the 

unstable and easily degraded networks [24]. 
Furthermore, such a phenomenon was also occurred 
for H5 and has been degraded at a swelling time of 90 
minutes. 

On the other hand, a similar trend was 
observed between the results of swelling ratio in pH 
1.2 and pH 7.4. Nevertheless, the swelling ratio at pH 
7.4 increased drastically compared to pH 1.2, and this 
could be owing to the higher electrostatic repulsion of 
interpolymer and interpolymer chain which resulted in 
more expanding networks of hydrogel [25]. Besides, 
at higher pH, the swelling ability was higher for the 
polymer containing anionic (-COOH) groups [28]. 
Afterwards, the phenomenon of degradation and 
unstable network was also obtained for H4 and H5 at 
pH 7.4. 

 

Figure 5: Swelling ratio profiles of MCS-OSA hydrogels at: A) pH 
1.2; B) pH 7.4 (n = 3, ± SD). 

 

Determination of drug entrapment 
 efficiency (DEE) 

The results of drug entrapment efficiency 
(DEE) of MTZ-MCS-OSA hydrogels (H1-H5), 
including the experimental drug loading (EDL) are 
summarised in Table 3 and represented in Figure 6. 
The results of drug entrapment efficiency (DEE) of 
hydrogels varied between 84.76% and 99.22%, where 
the highest DEE was possessed by MTZ-H3 
hydrogels. Since the MTZ-MCS-OSA hydrogels were 
prepared via in situ cross-linking (Schiff base), during 
the cross-linking processes, the MTZ is entrapped in 
the networks of the hydrogel. Therefore, higher gel 
fraction exhibited the highest DEE. 

 

Figure 6: Drug entrapment efficiency (DEE) of MTZ-MCS-OSA 
hydrogel (n = 3, ± SD) 
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In vitro drug release and kinetic modelling 

The in vitro release profiles of MTZ-MCS-OSA 
hydrogels (H1-H5) in both pH 1.2 (0.1 N HCl solution) 
and pH 7.4 (0.1 M PBS solution) at 37 ± 0.5°C are 
presented in Figure 7 (a) and (b), respectively. The 
cumulative release of MTZ-MCS-OSA hydrogels (H1-
H5) at pH 1.2 for 60 min was determined to be 68.68, 
63.37, 22.57, 81.66 and 87.50%, respectively. The 
burst release (burst effect) was exhibited by all 
hydrogels except MTZ-H3 hydrogel and indicated the 
release profiles of MTZ-MCS-OSA hydrogels were 
depended significantly on the composition of MCS 
and OSA [23], [33], [34], [35].  

 

Figure 7: The release profiles of MTZ-MCS-OSA hydrogels at: (a) 
pH 1.2; (b) pH 7.4 (n = 3, ± SD) 

 

On the other hand, a more delayed pattern of 
drug release profiles was obtained for MTZ-H3 
hydrogel, and the cumulative release for 1 h in pH 1.2 
medium was 22.57%. Similarly, the drug release was 
found to be sufficiently sustained for 12 h of release, 
with cumulative release of 74.92%, while the 
cumulative release of MTZ-MCS-OSA (H1, H2, H4 
and H5) varied between 91-99% which also indicated 
that MTZ-H3 hydrogel possessed retentive properties 
for drug delivery system.  

Table 3: The release parameter values obtained by fitting in 
vitro release data to Higuchi and Korsmeyer-Peppas release 
models at pH 1.2 

Release 
systems 

Cumulative release (%) Higuchi Korsmeyer-Peppas 

2h 6h 12h kH(h
-0.5

) R
2 

Kp(h
-0.5

) n R
2 

MTZ-H1 75.06 86.03 92.44 4.54 - 38.07 0.14 0.99 
MTZ-H2 69.38 82.64 91.86 4.35 0.29 27.02 0.19 0.97 
MTZ-H3 39.59 67.98 74.92 3.27 0.95 4.29 0.45 0.95 
MTZ-H4 83.83 93.85 99.49 5.01 - 64.12 0.06 0.99 
MTZ-H5 89.90 95.87 99.81 5.18 - 75.69 0.04 0.99 

*The negative R
2 

values were obtained from the Higuchi model fitting to release data of 
MTZ in MCS-OSA hydrogels. 

 

 The synthesized in situ drug-loaded MCS-
OSA hydrogels released MTZ at a higher rate in pH 
1.2 (0.1 N HCl solution) compared to the release in pH 
7.4 (0.1 M PBS solution). It is because the solubility of 
MTZ is higher at pH 1.2 (64.8 mg/mL at room 
temperature) than in pH values between 2.5 and 8.0 
(10 mg/ml) [36], [37], [38]. 

To further determine the mechanisms 
involved in drug release from the hydrogels, the in 
vitro release data in pH 1.2 and 7.4 were fitted using 
Higuchi [39] and Korsmeyer-Peppas [40] release 
model by nonlinear least-squares regression analysis 
using the Origin software as shown in Figure 8.  

Table 4: The release parameter values obtained by fitting in 
vitro release data to Higuchi and Korsmeyer-Peppas release 
models at pH 7.4 

Release 
systems 

Cumulative release (%) Higuchi Korsmeyer-Peppas 

2h 6h 12h kH(h
-0.5

) R
2 

Kp(h
-0.5

) n R
2 

MTZ-H1 51.00 72.85 81.27 3.70 0.61 17.88 0.23 0.98 
MTZ-H2 43.60 67.35 78.19 3.43 0.82 11.78 0.29 0.99 
MTZ-H3 31.77 64.37 75.65 3.06 0.98 2.72 0.52 0.98 
MTZ-H4 73.25 93.15 98.32 4.78 0.01 35.52 0.16 0.99 
MTZ-H5 74.53 93.72 99.14 4.85 - 36.77 0.15 0.99 

*The negative R
2 

values were obtained from the Higuchi model fitting to release data of 
MTZ in MCS-OSA hydrogels. 

 

The models including the coefficient of 
determination (R

2
) are presented in Table 3 and Table 

4, respectively.  

 

Figure 8: The fitted release profiles of Higuchi model at A) pH 1.2; 
B) pH 7.4 and Korsmeyer-Peppas model at C) pH 1.2; D) pH 7.4 to 
release MTZ in MCS-OSA hydrogels (n = 3, ± SD) 

 

 

Discussion 

 

The results of in vitro release data at pH 1.2 
indicated that the Higuchi release model only can be 
used to describe the release profiles of MTZ-H3 
hydrogels with R

2 
value = 0.95 while poor R

2 
value 

(0.29) was obtained for MTZ-H2 hydrogels and the 
release profiles of MTZ-H1, MTZ-H4 and MTZ-H5 
were failed to be described by Higuchi model, as 
indicated by negative R

2
 values.  

Furthermore, Korsmeyer-Peppas release 
model (pH 7.4) showed good agreement between the 
experimental data and model predictions with high R

2 

values ranging from 0.95-0.99. Likewise, good fitting 
was also showed by Korsmeyer-Peppas release 
model with R

2 
ranged from 0.98-0.99 of in vitro 

release data at pH 7.4. Besides, the in vitro release 
data at pH 7.4 fitted by Higuchi model showed that the 
R

2
 values of H1, H2 and H3 are 0.61, 0.82 and 0.98, 

respectively and the model failed to fit H4 and H5 in 
vitro release data, as indicated by negative R

2 
values. 

Moreover, only MTZ-H3 hydrogels in pH 7.4 release 
medium showed exponent n factor n values of 0.52 
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which the mechanism was governed by anomalous 
(non-Fickian) transport (0.45 < n < 1.00). Other than 
that, the n values of all MTZ-MCS-OSA hydrogels at 
both pH 1.2 and 7.4 were less than or equal to 0.45 (n 
≤ 0.45) and confirmed the drug release mechanism is 
Fickian diffusion [41]. 

In conclusion, in situ MTZ-loaded MCS-OSA 
hydrogel has been successfully synthesized by 
utilizing MCS and OSA at different ratio (H1-H5) via 
Schiff base cross-linking reaction and the time of 
gelation varied between 4.51 and 23.52 min. On the 
other hand, increasing ratio of OSA from H1 to H3 
showed increasing in gel fraction and decreases for 
further increasing (H4 and H5). On the contrary with 
gel fraction, the swelling ratio increased linearly with 
increasing ratio of MCS. In brief, MTZ-H3 hydrogels 
possessed the highest gel fraction and DEE as well. 
Moreover, the drug release mechanism of all release 
systems is governed by Fickian diffusion except for 
MTZ-H3 which is anomalous transport (non-Fickian 
diffusion). Therefore, this MTZ-MCS-OSA hydrogel 
potentially can be applied in drug delivery system. 
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