Mesenteric Neural Stem Cell for Chronic Spinal Cord Injury: A Literature Review

Authors

  • Tjokorda Gde Bagus Mahadewa Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universitas Udayana, Bali, Indonesia https://orcid.org/0000-0002-4445-4085
  • Putu Eka Mardhika Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universitas Udayana, Bali, Indonesia
  • Steven Awyono Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universitas Udayana, Bali, Indonesia
  • Made Bhuwana Putra Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universitas Udayana, Bali, Indonesia https://orcid.org/0000-0001-8472-2163
  • Glen Sandi Saapang Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universitas Udayana, Bali, Indonesia
  • Kadek Dede Frisky Wiyanjana Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universitas Udayana, Bali, Indonesia https://orcid.org/0000-0002-4523-5482
  • Kevin Kristian Putra Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universitas Udayana, Bali, Indonesia
  • Tjokorda Istri Sri Dalem Natakusuma Postgraduate Program, Faculty of Medicine, Universitas Udayana, Bali, Indonesia
  • Christopher Ryalino Department of Anesthesiology and Intensive Care, Faculty of Medicine, Universitas Udayana, Bali, Indonesia https://orcid.org/0000-0001-9618-6230

DOI:

https://doi.org/10.3889/oamjms.2021.6653

Keywords:

Mesenteric, Neural stem cell, Chronic spinal cord injury, Intramedullary transplantation

Abstract

Spinal cord injury (SCI) is a common and potentially life-threatening condition with no established treatment to treat the primary injury. Mesenteric neural stem cell (NSC) therapy is a promising stem cell therapy to treat primary SCI in the chronic phase. We aimed to review the literature narratively to describe current evidence regarding mesenteric NSC in SCI. Primary SCI refers to tissue damage that occurs at the time of trauma that leads to the death of neuronal cells. In chronic SCI, the ability of neuronal regeneration is compromised by the development of gliotic scar. NSC is a stem cell therapy that targeted SCI in the chronic phase. Enteric NSC is one of the sources of NSC, and autologous gut harvesting in the appendix using endoscopic surgery provides a more straightforward and low-risk procedure. Intramedullary transplantation of stem cell with ultrasound guiding is administration technique which offers long-term regeneration. Mesenteric NSC is a promising stem cell therapy to treat chronic SCI with low risk and easier procedure to isolate cells compared to other NSC sources.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Cripps RA, Lee BB, Wing P, Weerts E, Mackay J, Brown D. A global map for traumatic spinal cord injury epidemiology: Towards a living data repository for injury prevention. Spinal Cord. 2011;49(4):493-501. https://doi.org/10.1038/sc.2010.146 PMid:21102572 DOI: https://doi.org/10.1038/sc.2010.146

Hawryluk GW, Nakashima H, Fehlings MG. Pathophysiology and treatment of spinal cord injury. In: Winn RH, editor. Youmans and Winn Neurological Surgery. Philadelphia, PA: Elsevier; 2017. p. 2292-306.

Metzger M, Bareiss PM, Danker T, Wagner S, Hennenlotter J, Guenther E, et al. Expansion and differentiation of neural progenitors derived from the human adult enteric nervous system. Gastroenterology. 2009;137(6):2063-73.e4. https://doi.org/10.1053/j.gastro.2009.06.038 PMid:19549531 DOI: https://doi.org/10.1053/j.gastro.2009.06.038

Yntema C, Hammond WS. The origin of intrinsic ganglia of trunk viscera from vagal neural crest in the chick embryo. J Comp Neurol. 1954;101(2):515-41. https://doi.org/10.1002/cne.901010212 PMid:13221667 DOI: https://doi.org/10.1002/cne.901010212

Burns AJ, Thapar N. Neural stem cell therapies for enteric nervous system disorders. Nat Rev Gastroenterol Hepatol. 2014;11(5):317-28. https://doi.org/10.1038/nrgastro.2013.226 PMid:24322895 DOI: https://doi.org/10.1038/nrgastro.2013.226

Cheng LS, Hotta R, Graham HK, Belkind-Gerson J, Nagy N, Goldstein AM. Postnatal human enteric neuronal progenitors can migrate, differentiate, and proliferate in embryonic and postnatal aganglionic gut environments. Pediatr Res. 2017;81(5):838-46. https://doi.org/10.1038/pr.2017.4 PMid:28060794 DOI: https://doi.org/10.1038/pr.2017.4

Amar AP, Levy ML. Pathogenesis and pharmacological strategies for mitigating secondary damage in acute spinal cord injury. Neurosurgery. 1999;44(5):1027-39; discussion 1039-40. https://doi.org/10.1097/00006123-199905000-00052 PMid:10232536 DOI: https://doi.org/10.1097/00006123-199905000-00052

Hagg T, Oudega M. Degenerative and spontaneous regenerative processes after spinal cord injury. J Neurotrauma. 2006;23(3- 4):264-80. https://doi.org/10.1089/neu.2006.23.263 PMid:16629615 DOI: https://doi.org/10.1089/neu.2006.23.263

Rowland JW, Hawryluk GW, Kwon B, Fehlings MG. Current status of acute spinal cord injury pathophysiology and emerging therapies: Promise on the horizon. Neurosurg Focus. 2008;25(5):E2. https://doi.org/10.3171/foc.2008.25.11.e2 PMid:18980476 DOI: https://doi.org/10.3171/FOC.2008.25.11.E2

Wilcox JT, Vawda R, Fehlings MG. Stem cell transplantation strategies after spinal cord injury. In: Lescaudron L, Rossignol J, Dunbar GL, editors. Stem Cells and Neurodegenerative Diseases. New York: CRC Press; 2014. https://doi.org/10.1201/b16623-6 DOI: https://doi.org/10.1201/b16623-6

Giner J, Lopez CP, Hernández B, de la Riva AG, Isla A, Roda JM, et al. Update on the pathophysiology and management of syringomyelia unrelated to Chiari malformation. Neurologia (Engl Ed). 2019;34(5):318-25. https://doi.org/10.1016/j.nrleng.2018.10.004 PMid:27939111 DOI: https://doi.org/10.1016/j.nrleng.2018.10.004

Greitz D. Unraveling the riddle of syringomyelia. Neurosurg Rev. 2006;29(4):251-63; discussion 264. https://doi.org/10.1007/s10143-006-0029-5 PMid:16752160 DOI: https://doi.org/10.1007/s10143-006-0029-5

Agrawal A, Shetty MS, Pandit L, Shetty L, Srikrishna U. Posttraumatic syringomyelia. Indian J Orthop. 2007;41(4):398-400. https://doi.org/10.4103/0019-5413.37006 PMid:21139799 DOI: https://doi.org/10.4103/0019-5413.37006

Oliveri RS, Bello S, Biering-Sorensen F. Mesenchymal stem cells improve locomotor recovery in traumatic spinal cord injury: Systematic review with meta-analyses of rat models. Neurobiol Dis. 2014;62:338-53. https://doi.org/10.1016/j.nbd.2013.10.014 PMid:24148857 DOI: https://doi.org/10.1016/j.nbd.2013.10.014

Tabakow P, Raisman G, Fortuna W, Czyz M, Huber J, Li D, et al. Functional regeneration of supraspinal connections in a patient with transected spinal cord following transplantation of bulbar olfactory ensheathing cells with peripheral nerve bridging. Cell Transplant. 2014;23(12):1631-55. https://doi.org/10.3727/096368914x685131 PMid:25338642 DOI: https://doi.org/10.3727/096368914X685131

Zhao X, Moore DL. Neural stem cells: Developmental mechanisms and disease modeling. Cell Tissue Res. 2018;371(1):1-6. PMid:29196810 DOI: https://doi.org/10.1007/s00441-017-2738-1

Kempermann G, Song H, Gage FH. Neurogenesis in the adult hippocampus. Cold Spring Harb Perspect Biol. 2015;7(9):a018812. https://doi.org/10.1101/cshperspect.a018812 PMid:26330519 DOI: https://doi.org/10.1101/cshperspect.a018812

Heanue TA, Pachnis V. Prospective identification and isolation of enteric nervous system progenitors using Sox2. Stem Cells. 2011;29(1):128-40. https://doi.org/10.1002/stem.557 PMid:21280162 DOI: https://doi.org/10.1002/stem.557

Burns AJ, Douarin NM. The sacral neural crest contributes neurons and glia to the post-umbilical gut: Spatiotemporal analysis of the development of the enteric nervous system. Development. 1998;125(21):4335-47. https://doi.org/10.1242/dev.125.21.4335 PMid:9753687 DOI: https://doi.org/10.1242/dev.125.21.4335

Burzynski G, Sheperd IT, Enomoto H. Genetic model system studies of the development of the enteric nervous system, gut motility and Hirschprung’s disease. Neurogastroenterol Motil. 2009;21(2):113-27. https://doi.org/10.1111/j.1365-2982.2008.01256.x PMid:19215589 DOI: https://doi.org/10.1111/j.1365-2982.2008.01256.x

Schafer KH, Ginneken CV, Copray S. Plasticity and neural stem cells in the enteric nervous system. Anat Rec (Hoboken). 2009;292(12):1940-52. https://doi.org/10.1002/ar.21033 PMid:19943347 DOI: https://doi.org/10.1002/ar.21033

Giaroni C, De Ponti F, Cosentino M, Lecchini S, Frigo G. Plasticity in the enteric nervous system. Gastroenterology. 1999;117(6):1438-58. https://doi.org/10.1016/s0016-5085(99)70295-7 PMid:10579986 DOI: https://doi.org/10.1016/S0016-5085(99)70295-7

Furness JB. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol. 2012;9(5):286-94. https://doi.org/10.1038/nrgastro.2012.32 PMid:22392290 DOI: https://doi.org/10.1038/nrgastro.2012.32

Young KM, Merson TD, Sotthibundhu A, Coulson EJ, Bartlett PF. P75 neurotrophin receptor expression defines a population of BDNF-responsive neurogenic precursor cells. J Neurosci. 2007;27(19):5146-55. https://doi.org/10.1523/jneurosci.0654-07.2007 PMid:17494700 DOI: https://doi.org/10.1523/JNEUROSCI.0654-07.2007

Amador-Arjona A, Cimadamore F, Huang CT, Wright R, Lewis S, Gage FH, et al. SOX2 primes the epigenetic landscape in neural precursors enabling proper gene activation during hippocampal neurogenesis. Proc Natl Acad Sci USA. 2015;112(15):E1936-45. https://doi.org/10.1073/pnas.1421480112 PMid:25825708 DOI: https://doi.org/10.1073/pnas.1421480112

Graham V, Khudyakov J, Ellis P, Pevny L. SOX2 functions to maintain neural progenitor identity. Neuron. 2003;39(5):749-65. https://doi.org/10.1016/s0896-6273(03)00497-5 PMid:12948443 DOI: https://doi.org/10.1016/S0896-6273(03)00497-5

Belkind-Gerson J, Carreon-Rodriguez A, Benedict LA, Steiger C, Pieretti A, Nagy N, et al. Nestin-expressing cells in the gut give rise to enteric neurons and glial cells. Neurogastroenterol Motil. 2013;25(1):61-9.e7. https://doi.org/10.1111/nmo.12015 PMid:22998406 DOI: https://doi.org/10.1111/nmo.12015

Park D, Xiang AP, Mao FF, Zhang L, Di CG, Liu XM, et al. Nestin is required for the proper self-renewal of neural stem cells. Stem Cells. 2010;28(12):2162-71. https://doi.org/10.1002/stem.541 PMid:20963821 DOI: https://doi.org/10.1002/stem.541

Bernal A, Arranz L. Nestin-expressing progenitor cells: Function, identity, and therapeutic implications. Cell Mol Life Sci. 2018;75(12):2177-95. https://doi.org/10.1007/s00018-018-2794-z PMid:29541793 DOI: https://doi.org/10.1007/s00018-018-2794-z

Svendsen CN, Bhattacharyya A, Tai YT. Neuron from stem cells: Preventing an identity crisis. Nat Rev Neurosci. 2001;2(11):831-4. https://doi.org/10.1038/35097581 PMid:11715059 DOI: https://doi.org/10.1038/35097581

Binder E, Natarajan D, Cooper J, Kronfli R, Cananzi M, Delalande JM, et al. Enteric neurospheres are not specific to neural crest cultures: Implications for neural stem cell therapies. PLoS One. 2015;10(3):e0119467. https://doi.org/10.1371/journal.pone.0119467 PMid:25799576 DOI: https://doi.org/10.1371/journal.pone.0119467

Cooper JE, McCann CJ, Natarajan D, Choudhury S, Boesmans W, Delalande JM, et al. In vivo transplantation of enteric neural crest cells into mouse gut; engraftment, functional integration and long-term safety. PLoS One. 2016;11(1):e0147989. https://doi.org/10.1371/journal.pone.0147989 PMid:26824433 DOI: https://doi.org/10.1371/journal.pone.0147989

McConalogue K, Furness JB. Gastrointestinal neurotransmitters. Baillieres Clin Endocrinol Metab. 1994;8(1):51-76. PMid:7907863 DOI: https://doi.org/10.1016/S0950-351X(05)80226-5

Jevans BS. Biology and therapeutic potential of enteric nervous system stem cells for spinal cord injury. In: Stem Cells and Regenerative Medicine. United Kingdom: UCL Great Ormond Street Institute of Child Health; 2017.

Gershon MD, Tack J. The serotonin signaling system: From basic understanding to drug development for functional GI disorders. Gastroenterology. 2007;132(1):397-414. https://doi.org/10.1053/j.gastro.2006.11.002 PMid:17241888 DOI: https://doi.org/10.1053/j.gastro.2006.11.002

Swank HA, Eshuis EJ, van Berge Henegouwen MI, Bemelman WA. Short-and long-term results of open versus laparoscopic appendectomy. World J Surg. 2011;35(6):1221-6; discussion 1227-8. https://doi.org/10.1007/s00268-011-1088-5 PMid:21472367 DOI: https://doi.org/10.1007/s00268-011-1088-5

Schafer K--H, Micci MA, Pasricha PJ. Neural stem cell transplantation in the enteric nervous system: Roadmaps and roadblocks. Neurogastroenterol Motil. 2009;21(2):103-12. https://doi.org/10.1111/j.1365-2982.2008.01257.x PMid:19215588 DOI: https://doi.org/10.1111/j.1365-2982.2008.01257.x

Almond S, Lindley RM, Kenny SE, Connell MG, Edgar DH. Characterisation and transplantation of enteric nervous system progenitor cells. Gut. 2007;56(4):489-96. https://doi.org/10.1136/gut.2006.094565 PMid:16973717 DOI: https://doi.org/10.1136/gut.2006.094565

Heanue TA, Pachnis V. Enteric nervous system development and Hirschprung’s disease: Advance in genetic and stem cell studies. Nat Rev Neurosci. 2007;8(6):466-79. https://doi.org/10.1038/nrn2137 PMid:17514199 DOI: https://doi.org/10.1038/nrn2137

Schrenk S, Schuster A, Klotz M, Schleser F, Lake J, Heuckeroth RO, et al. Vascular and neural stem cells in the gut: Do they need each other? Histochem Cell Biol. 2015;143(4):397-410. https://doi.org/10.1007/s00418-014-1288-9 PMid:25371326 DOI: https://doi.org/10.1007/s00418-014-1288-9

Hagl CI, Heumuller-Klug S, Wink E, Wessel L, Schafer KH. The human gastrointestinal tract, a potential autologous neural stem cell source. PLoS One. 2013;8(9):e72948. https://doi.org/10.1371/journal.pone.0072948 PMid:24023797 DOI: https://doi.org/10.1371/journal.pone.0072948

Takeuchi H, Natsume A, Wakabayashi T, Aoshima C, Shimato S, Ito M, et al. Intravenously transplanted human neural stem cells migrate to the injured spinal cord in adult mice in an SDF-1- and HGF-dependent manner. Neurosci Lett. 2007;426(2):69-74. https://doi.org/10.1016/j.neulet.2007.08.048 PMid:17884290 DOI: https://doi.org/10.1016/j.neulet.2007.08.048

Bronner-Fraser M. Neural crest cell formation and migration in the developing embryo. FASEB J. 1994;8(10):699-706. https://doi.org/10.1096/fasebj.8.10.8050668 PMid:8050668 DOI: https://doi.org/10.1096/fasebj.8.10.8050668

McLennan R, Schumacher LJ, Morrison JA, Teddy JM, Ridenour DA, Box AC, et al. Neural crest migration is driven by a few trailblazer cells with a unique molecular signature narrowly confined to the invasive front. Development. 2015;142(11):2014-25. https://doi.org/10.1242/dev.117507 PMid:25977364 DOI: https://doi.org/10.1242/dev.117507

Oh SK, Jeon SR. Current concept of stem cell therapy for spinal cord injury: A review. Korean J Neurotrauma. 2016;12(2):40-6. https://doi.org/10.13004/kjnt.2016.12.2.40 PMid:27857906 DOI: https://doi.org/10.13004/kjnt.2016.12.2.40

Gao L, Peng Y, Xu W, He P, Li T, Lu X, Chen G. Progress in stem cell therapy for spinal cord injury. Stem Cells Int. 2020;2020:2853650. https://doi.org/10.1155/2020/2853650 PMid:33204276 DOI: https://doi.org/10.1155/2020/2853650

Ninomiya K, Iwatsuki K, Ohnishi Y-I, Ohkawa T, Yoshimine T. Intranasal delivery of bone marrow stromal cells to spinal cord lesions. J Neurosurg Spine. 2015;23(1):111-9. https://doi.org/10.3171/2014.10.spine14690 PMid:25840039 DOI: https://doi.org/10.3171/2014.10.SPINE14690

Ramalho BD, de Almeida FM, Sales CM, de Lima S, Martinez AM. Injection of bone marrow mesenchymal stem cells by intravenous or intraperitoneal routes is a viable alternative to spinal cord injury treatment in mice. Neural Regen Res. 2018;13(6):1046-53. https://doi.org/10.4103/1673-5374.233448 PMid:29926832 DOI: https://doi.org/10.4103/1673-5374.233448

Bakshi A, Hunter C, Swanger S, Lepore A, Fischer I. Minimally invasive delivery of stem cells for spinal cord injury: Advantages of the lumbar puncture technique. J Neurosurg Spine. 2004;1(3):330-7. https://doi.org/10.3171/spi.2004.1.3.0330 PMid:15478372 DOI: https://doi.org/10.3171/spi.2004.1.3.0330

Paul C, Samdani AF, Betz RR, Fischer I, Neuhuber B. Grafting of human bone marrow stromal cells into spinal cord injury: A comparison of delivery methods. Spine (Phila Pa 1976). 2009;34(4):328-34. https://doi.org/10.1097/brs.0b013e31819403ce PMid:19182705 DOI: https://doi.org/10.1097/BRS.0b013e31819403ce

Levi AD, Okonkwo DO, Park P, Jenkins AL 3rd, Kurpad SN, Parr AM, et al. Emerging safety of intramedullary transplantation of human neural stem cells in chronic cervical and thoracic spinal cord injury. Neurosurgery. 2018;82(4):562-75. https://doi.org/10.1093/neuros/nyx250 PMid:28541431 DOI: https://doi.org/10.1093/neuros/nyx250

Amemori T, Ruzicka J, Romanyuk N, Jhanwar-Uniyal M, Sykova E, Jendelova P. Comparison of intraspinal and intrathecal implantation of induced pluripotent stem cell-derived neural precursors for the treatment of spinal cord injury in rats. Stem Cell Res Ther. 2015;6(1):257. https://doi.org/10.1186/s13287-015-0255-2 PMid:26696415 DOI: https://doi.org/10.1186/s13287-015-0255-2

Bronner-Fraser M, Fraser SE. Differentiation of the vertebrate neural tube. Curr Opin Cell Biol. 1997;9(6):885-91. PMid:9425355 DOI: https://doi.org/10.1016/S0955-0674(97)80092-0

McConnell JA, Sechrist JW. Identification of early neurons in the brainstem and spinal cord: I. An autoradiographic study in the chick. J Comp Neurol. 1980;192(4):769-83. https://doi.org/10.1002/cne.901920410 PMid:7419754 DOI: https://doi.org/10.1002/cne.901920410

Kerschensteiner M, Schwab ME, Lichtman JW, Misgeld T. In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat Med. 2005;11(5):572-7. https://doi.org/10.1038/nm1229 PMid:15821747 DOI: https://doi.org/10.1038/nm1229

Bradbury EJ, Moon LDF, Popat RJ, King VR, Bennett GS, Patel PN, et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. 2002;416(6881):636-40. https://doi.org/10.1038/416636a PMid:11948352 DOI: https://doi.org/10.1038/416636a

Ikegami T, Nakamura M, Yamane J, Katoh H, Okada S, Iwanami A, et al. Chondroitinase ABC combined with neural stem/progenitor cell transplantation enchances graft cell migration and outgrowth of growth-associated protein-43-positive fibers after rat spinal cord injury. Eur J Neurosci. 2005;22(12):3036-46. https://doi.org/10.1111/j.1460-9568.2005.04492.x PMid:16367770 DOI: https://doi.org/10.1111/j.1460-9568.2005.04492.x

Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Schut D, Fehlings MG. Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord. J Neurosci. 2010;30(5):1657-76. https://doi.org/10.1523/jneurosci.3111-09.2010 PMid:20130176 DOI: https://doi.org/10.1523/JNEUROSCI.3111-09.2010

Karimi-Abdolrezaee S, Schut D, Wang J, Fehlings MG. Chondroitinase and growth factors enhance activation and oligodendrocyte differentiation of endogenous neural precursor cells after spinal cord injury. PLos One. 2012;7(5):e37589. https://doi.org/10.1371/journal.pone.0037589 PMid:22629425 DOI: https://doi.org/10.1371/journal.pone.0037589

Garcia-Alias G, Barkhuysen S, Buckle M, Fawcett JW. Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation. Nat Neurosci. 2009;12(9):1145-51. https://doi.org/10.1038/nn.2377 PMid:19668200 DOI: https://doi.org/10.1038/nn.2377

Downloads

Published

2021-09-05

How to Cite

1.
Mahadewa TGB, Mardhika PE, Awyono S, Putra MB, Saapang GS, Wiyanjana KDF, Putra KK, Natakusuma TISD, Ryalino C. Mesenteric Neural Stem Cell for Chronic Spinal Cord Injury: A Literature Review. Open Access Maced J Med Sci [Internet]. 2021 Sep. 5 [cited 2024 Apr. 20];9(F):310-7. Available from: https://oamjms.eu/index.php/mjms/article/view/6653

Issue

Section

Narrative Review Article

Categories

Most read articles by the same author(s)

<< < 1 2 3