Olive Polyphenol as Neuroprotective in Chronic Cervical Myelopathy Rabbit Model

Authors

  • Sabri Ibrahim Philosophy Doctor in Medicine Programme, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
  • Iqbal Fahlevi Adeputra Nasution Department of General Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
  • Mahyu Danil Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
  • Wismaji Sadewo Department of Neurosurgery, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
  • Tri Widyawati Department of Pharmacology and Therapeutic, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
  • Putri Chairani Eyanoer Department of Community Health Program, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
  • Ridha Dharmajaya Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
  • Kiking Ritarwan Department of Neurology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
  • Wibi Riawan Department of Biochemistry and Biology Molecular, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
  • Michael Lumintang Loe Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
  • Tommy Rizky Hutagalung Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia

DOI:

https://doi.org/10.3889/oamjms.2022.8009

Keywords:

Olive leaf extract, Oleuropein, Olive polyphenol, Neurofilaments, S-100, Brain derived neurotrophic facto, Chronic cervical myelopathy, Neuroprotective

Abstract

BACKGROUND: Olive polyphenols are known to be an anti-oxidants and anti-inflammatory agents.

AIM: The purpose of this study was to determine the potential neuroprotective effect on chronic cervical myelopathy rabbit model.

METHODS: This study was divided into six groups; control negative (Sham-Operated) group, control positive 1 and 2, treatment groups 1, 2, and 3. Olive leaf extract (OLE) gives 350 mg/kg BW and spinal cord sample was taken at the compression level C5. Histopathological assessment and immunohistochemistry of neurofilaments (NF), S-100, brain derived neurotrophic factor (BDNF), and evaluation of functional motoric outcome were done before animals were terminated.

RESULTS: Chronic cervical myelopathy in rabbit model causes decreased expression of NF, S-100, BDNF, and decreased motor function. Oral administration of OLE increased the expression of these biomarkers and improved motor function outcomes.

DISCUSSION: These findings indicate that OLE may be effective in protecting chronic cervical myelopathy in rabbit model.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Ayub AA, Anwar HA. Cervical myelopathy. Orthop Trauma. 2015;29:2. DOI: https://doi.org/10.1016/j.mporth.2015.10.006

Tu J, Castillo JV, Das A, Diwan AD. Degenerative cervical myelopathy: Insights into its pathobiology and molecular mechanisms. J Clin Med. 2021;10(6):1214. https://doi.org/10.3390/jcm10061214 PMid:33804008 DOI: https://doi.org/10.3390/jcm10061214

Virdi G. Cervical Myelopathy: Pathophysiology, Diagnosis, and Management. Spine Res. 2017;3(2):1-6. https://doi.org/10.21767/2471-8173.100032 DOI: https://doi.org/10.21767/2471-8173.100032

White AA 3rd, Panjabi MM. Biomechanical considerations in the surgical management of cervical spondylotic myelopathy. Spine (Phila Pa 1976). 1988;13(7):856-60. https://doi.org/10.1097/00007632-198807000-00029 PMid:3194796 DOI: https://doi.org/10.1097/00007632-198807000-00029

Henderson FC, Geddes JF, Vaccaro AR, Woodard E, Berry KJ, Benzel EC. Stretch-associated injury in cervical spondylotic myelopathy: New concept and review. Neurosurgery. 2005;56(5):1101-13. https://doi.org/10.1227/01.neu.0000157929.85251.7c PMid:15854260 DOI: https://doi.org/10.1227/01.NEU.0000157929.85251.7C

Hashizume Y, Iijima S, Kishimoto H, Yanagi T. Pathology of spinal cord lesions caused by ossification of the posterior longitudinal ligament. Acta Neuropathol. 1984;63(2):123-30. https://doi.org/10.1007/bf00697194 PMid:6428155 DOI: https://doi.org/10.1007/BF00697194

Crown MJ, Bresnahan JC, Shuman SL, Masters JN, Beattie MS. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med. 1997;3(1):73-6. https://doi.org/10.1038/nm0197-73 PMid:8986744 DOI: https://doi.org/10.1038/nm0197-73

Keirstead HS, Blakemore WF. The role of oligodendrocytes and oligodendrocyte progenitors in CNS remyelination. Adv Exp Med Biol. 1999;468:183-97. https://doi.org/10.1007/978-1-4615-4685-6_15 PMid:10635029 DOI: https://doi.org/10.1007/978-1-4615-4685-6_15

Blume C, Geiger MF, Müller M, Clusmann H, Mainz V, Kalder J, et al. Decreased angiogenesis as a possible pathomechanism in cervical degenerative myelopathy. Sci Rep. 2021;11(1):2497. https://doi.org/10.1038/s41598-021-81766-8 PMid:33510227 DOI: https://doi.org/10.1038/s41598-021-81766-8

Agelonz C, Malaguti M, Barbalace MC, dan Herelia S. Bioactivity of olive oil phenols in neuroprotection. Int J Mol Sci. 2017;18:2230. https://doi.org/10.3390/ijms18112230 PMid:29068387 DOI: https://doi.org/10.3390/ijms18112230

Pang KL, Chin KY. The biological activities of oleocanthal from a molecular perspective. Nutrients 2018;10(5):570. https://doi.org/10.3390/nu10050570 PMid:29734791 DOI: https://doi.org/10.3390/nu10050570

Mohagheghi F, Bigdeli MR, Rasoulian B, Hashemi P, dan Pour MR. The neuroprotective effect of olive leaf extract is related to improved blood-brain barrier permeability and brain edema in rat with experimental focal cerebral ischemia. Phytomedicine. 2011;18(2-3):170-5. https://doi.org/10.1016/j.phymed.2010.06.007 PMid:21183324 DOI: https://doi.org/10.1016/j.phymed.2010.06.007

Barbaro B, Toietta G, Maggio R, Arciello M, Tarocchi M, Galli A, et al. Effects of the olive-derived polyphenol oleuropein on human health. Int J Mol Sci. 2014;15:18508-24. https://doi.org/10.3390/ijms151018508 PMid:25318054 DOI: https://doi.org/10.3390/ijms151018508

Vogel P, Machado IK, Garavaglia J, Zani VT, de Souza D, Dal Bosco SM. Polyphenols benefits of olive leaf (Olea europaea L) to human health. Nutr Hosp. 2015;31(3):1427-33.

Kamil K, Kumar J, Yazid MD dan Idrus RB. Olive and its phenolic compound as the promising neuroprotective agent. J Sains Malaysiana 2018;47(11):2811-20. https://doi.org/10.17576/jsm-2018-4711-24 DOI: https://doi.org/10.17576/jsm-2018-4711-24

Goren L, Zhang G, Kaushik S, Breslin PA, Du YC, dan Foster DA. (-)-oleocanthal and (-)-oleocanthal-rich olive oils induce lysosomal membrane permeabilization in cancer cells. PLoS One. 2019;14(8):e0216024. https://doi.org/10.1371/journal.pone.0216024 PMid:31412041 DOI: https://doi.org/10.1371/journal.pone.0216024

Omar SH. Oleuropein in olive and its pharmacological effects. Sci Pharm. 2010;78(2):133-54. https://doi.org/10.3797/scipharm.0912-18 Mid:21179340 DOI: https://doi.org/10.3797/scipharm.0912-18

Khalatbary AR, Ahmadvand H. Effect of oleuropein on tissue myeloperoxidase activity in experimental spinal cord trauma. Iran Biomed J. 2011;15:164-7. PMid:22395142

Merali ZG, Witiw CD, Badhiwala JH, Wilson JR, Fehlings MG. Using a machine learning approach to predict outcome after surgery for degenerative cervical myelopathy. PLoS One. 2019;14(4):e0215133. https://doi.org/10.1371/journal.pone.0215133 PMid:30947300 DOI: https://doi.org/10.1371/journal.pone.0215133

Ibrahim S, Riawan W. Progressive spinal cord compression technique in experimental rabbit animal model for cervical spondylotic myelopathy. Ann Med Surg. 2021;69:102603. https://doi.org/10.1016/j.amsu.2021.102603 PMid:34429942 DOI: https://doi.org/10.1016/j.amsu.2021.102603

Ibrahim S, Mousa A, Riawan W. Expression of AIF and caspase-3 in New Zealand rabbit with cervical spondylosis myelopathy model. Ann Med Surg. 2021;69:102604. https://doi.org/10.1016/j.amsu.2021.102604 PMid:34429943 DOI: https://doi.org/10.1016/j.amsu.2021.102604

Sarbishegi M, Gorgich EA, Khajavi O. Olive leaves extract improved sperm quality and antioxidant status in the testis of rat exposed to rotenone. Nephrourol Mon. 2017;9(3):e47127. https://doi.org/10.5812/numonthly.47127 DOI: https://doi.org/10.5812/numonthly.47127

Goa D, Wang Y, Liu Y, Ding F, Gu X, Li Z. The molecular cloning of glial fibrillary acidic protein in Gekko japonicus and its expression changes after spinal cord transection. Cell Mol Biol Lett. 2010;15:582-99. https://doi.org/10.2478/s11658-010-0029-x PMid:20711818 DOI: https://doi.org/10.2478/s11658-010-0029-x

Lawrence DR, Bacharach AL. Evaluation of Drug Activities and Pharmacometrics. Vol. 1. Netherlands: Elsevier; 1964.

Kanchiku T, Taguchi T, Kaneko K, Yonemura H, Kawai S, dan Toshikazu Gondo. A new rabbit model for the study on cervical compressive myelopathy. J Orthop Res. 2001;19(4):605-13. https://doi.org/10.1016/s0736-0266(00)00058-9 PMid:11518269 DOI: https://doi.org/10.1016/S0736-0266(00)00058-9

Pizem J, Cor A. Detection of apoptosis cells in tumour paraffin section. Radiol Oncol. 2003;37(4):225-32.

Soini Y, Paakko P, Lehto VP. Histopathological evaluation of apoptosis in cancer. Am J Pathol. 1997;153(4):1041-8. PMid:9777936 DOI: https://doi.org/10.1016/S0002-9440(10)65649-0

Marquardt G, Setzer M, Theisen A, Tews DS, Seifert V. Experimental subacute spinal cord compression: Correlation of serial S100B and NSE serum measurements, histopathological changes, and outcome. Neurol Res. 2011;33(4):421-6. https://doi.org/10.1179/1743132810y.0000000005 PMid:21535942 DOI: https://doi.org/10.1179/1743132810Y.0000000005

Klironomos G, Karadimas S, Mavrakis M, Mirilas P, Savvas I, Papadaki E, et al. New experimental rabbit animal model for cervical spondylotic myelopathy. Spinal Cord. 2011;49(11):1097-102. https://doi.org/10.1038/sc.2011.71 PMid:21788956 DOI: https://doi.org/10.1038/sc.2011.71

Hayakawa K, Okazaki R, Ishii K, Ueno T, Izawa N, Tanaka Y, et al. Phosphorylated neurofilament subunit NF-H as a biomarker for evaluating the severity of spinal cord injury patients, a pilot study. Spinal Cord. 2012;50(7):493-6. https://doi.org/10.1038/sc.2011.184 PMid:22270191 DOI: https://doi.org/10.1038/sc.2011.184

Riedl SJ. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol. 2004;5(11):897-907. https://doi.org/10.1038/nrm1496 PMid:15520809 DOI: https://doi.org/10.1038/nrm1496

Tsitsopoulos PP, Holmström U, Blennow K, Zetterberg H, Marklund N. Cerebrospinal fluid biomarkers of glial and axonal injury in cervical spondylotic myelopathy. J Neurosurg Spine. 2021;34(4):632-41. https://doi.org/10.3171/2020.8.spine20965 DOI: https://doi.org/10.3171/2020.8.SPINE20965

Garraway SM, Huie JR. Spinal plasticity and behavior: BDNF-induced neuromodulation in uninjured and injured spinal cord. Neural Plast. 2016;2016:9857201. https://doi.org/10.1155/2016/9857201 PMid:27721996 DOI: https://doi.org/10.1155/2016/9857201

Impellizzeri D, Esposito E, Mazzon E, Paterniti I, Paola RD, Bramanti P, et al. The effects of a polyphenol present in olive oil, oleuropein aglycone, in an experimental model of spinal cord injury in mice. Biochem Pharmacol. 2012;83(10):1413-26. https://doi.org/10.1016/j.bcp.2012.02.001 PMid:22342994 DOI: https://doi.org/10.1016/j.bcp.2012.02.001

Villegas AS, Galbete C, González JM, Martinez A, Razquin C, Salvado JS, et al. The effect of the Mediterranean diet on plasma brain-derived neurotrophic factor (BDNF) levels: The Predimed- Navarra randomized trial. Nutr Neurosci. 2011;14(5):195-201. https://doi.org/10.1179/1476830511y.0000000011 PMid:22005283 DOI: https://doi.org/10.1179/1476830511Y.0000000011

Pase CS, Teixeira AM, Roversi K, Dias VT, Calabrese F, Molteni R, et al. Olive oil-enriched diet reduces brain oxidative damages and ameliorates neurotrophic factor gene expression in different life stages of rats. J Nutr Biochem. 2015;26(11):1200-7. https://doi.org/10.1016/j.jnutbio.2015.05.013 PMid:26168701 DOI: https://doi.org/10.1016/j.jnutbio.2015.05.013

Downloads

Published

2022-06-17

How to Cite

1.
Ibrahim S, Nasution IFA, Danil M, Sadewo W, Widyawati T, Eyanoer PC, Dharmajaya R, Ritarwan K, Riawan W, Loe ML, Hutagalung TR. Olive Polyphenol as Neuroprotective in Chronic Cervical Myelopathy Rabbit Model. Open Access Maced J Med Sci [Internet]. 2022 Jun. 17 [cited 2024 Mar. 28];10(A):988-96. Available from: https://oamjms.eu/index.php/mjms/article/view/8009