Distribution of CYP2C9 and VKORC1 Gene Polymorphisms in Healthy Macedonian Male Population

Authors

  • Krume Jakjovski Institute of Preclinical and Clinical Pharmacology with Toxicology, Faculty of Medicine, Ss Cyril and Methodius University of Skopje
  • Nikola Labachevski Institute of Preclinical and Clinical Pharmacology with Toxicology, Faculty of Medicine, Ss Cyril and Methodius University of Skopje
  • Aleksandar Petlichkovski Institute of Immunobiology and Human Genetics, Faculty of Medicine, Ss Cyril and Methodius University of Skopje
  • Aleksandar Senev Institute of Immunobiology and Human Genetics, Faculty of Medicine, Ss Cyril and Methodius University of Skopje
  • Jasmina Trojacanec Institute of Preclinical and Clinical Pharmacology with Toxicology, Faculty of Medicine, Ss Cyril and Methodius University of Skopje
  • Emilija Atanasovska Institute of Preclinical and Clinical Pharmacology with Toxicology, Faculty of Medicine, Ss Cyril and Methodius University of Skopje
  • Elena Kostova Institute of Preclinical and Clinical Pharmacology with Toxicology, Faculty of Medicine, Ss Cyril and Methodius University of Skopje
  • Mirko Spiroski Institute of Immunobiology and Human Genetics, Faculty of Medicine, Ss Cyril and Methodius University of Skopje, Skopje http://orcid.org/0000-0001-5559-7981

DOI:

https://doi.org/10.3889/oamjms.2013.001

Keywords:

gene polymorphisms, alleles, CYP2C9, VKORC1, genotyping, Macedonian population.

Abstract

Background: Distribution of CYP2C9 and VKORC1 gene polymorphisms may vary significantly among different ethnic groups, and eventually influence the variation in drug metabolism or even failure.

Objective: The aim of this study was to evaluate the prevalence of CYP2C9 and VKORC1 alleles in the healthy population of Republic of Macedonia compared to the global geographic data reported from different ethnic populations. Also, to genotype CYP2C9 and VKORC1 genes and eventually to divide individuals in poor, extensive, or intermediate metabolizer.

Material and Methods: Blood samples were collected after signing written consent, DNA was isolated from peripheral blood, and CYP2C9 and VKORC1 genes were typed (n=124). Genotyping was performed by commercially available kits (GeneID GmbH, Strassberg, Germany, AID Diagnostica), based on the method of polymerase chain reaction with a subsequent hybridization. The population genetics analysis package, PyPop ver. 0.6.0, was used for analysis of the data.

Results: The frequency of alleles varies from 0.931 for CYP2C9*3 to 0.109 for CYP2C9*2 indicating common “wild type†allele in those genes. The frequency ranges spanned ~50% for each allele of VKORC1 gene, indicating no common “wild type†allele in this gene. Test of neutrality showed significant negative value for VKORC1 polymorphism that indicates balancing selection operating on the alleles at that locus. All polymorphisms of CYP2C9*2, CYP2C9*3 and VKORC1 showed a good fit with Hardy-Weinberg expectations.

Conclusion: The results of polymorphic alleles of CYP2C9 and VKORC1 genes in Macedonian population can be used for the variation in drug metabolism studies as well for adapting dosage regimes for oral anticoagulant therapies.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Goldstein JA. Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br J Clin Pharmacol. 2001; 52(4):349-55. DOI: https://doi.org/10.1046/j.0306-5251.2001.01499.x

Sarah C Sim. The Human Cytochrome P450 (CYP) Allele Nomenclature Database. http://www.cypalleles.ki.se/, Accessed on December 2012.

Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev. 2009; 41(2):89-295. DOI: https://doi.org/10.1080/03602530902843483

García-Martín E, Martínez C, Ladero JM, Gamito FJ, Agúndez JA. High frequency of mutations related to impaired CYP2C9 metabolism in a Caucasian population. Eur J Clin Pharmacol. 2001; 57(1):47-9. DOI: https://doi.org/10.1007/s002280100264

Scordo MG, Caputi AP, D'Arrigo C, Fava G, Spina E. Allele and genotype frequencies of CYP2C9, CYP2C19 and CYP2D6 in an Italian population. Pharmacol Res. 2004; 50(2):195-200. DOI: https://doi.org/10.1016/j.phrs.2004.01.004

Herman D, Dolzan V, Breskvar K. Genetic polymor- phism of cytochromes P450 2C9 and 2C19 in Slovenian population. Zdrav Vestn. 2003; 72, 347–351.

Bozina N, Granić P, Lalić Z, Tramisak I, Lovrić M, Stavljenić-Rukavina A. Genetic polymorphisms of cytochromes P450: CYP2C9, CYP2C19, and CYP2D6 in Croatian population. Croat Med J. 2003; 44(4):425-8.

Arvanitidis K, Ragia G, Iordanidou M, Kyriaki S, Xanthi A, Tavridou A, Manolopoulos VG. Genetic polymorphisms of drug-metabolizing enzymes CYP2D6, CYP2C9, CYP2C19 and CYP3A5 in the Greek population. Fundam Clin Pharmacol. 2007; 21(4):419-26. DOI: https://doi.org/10.1111/j.1472-8206.2007.00510.x

Yang JQ, Morin S, Verstuyft C, Fan LA, Zhang Y, Xu CD, Barbu V, Funck-Brentano C, Jaillon P, Becquemont L. Frequency of cytochrome P450 2C9 allelic variants in the Chinese and French populations. Fundam Clin Pharmacol. 2003; 17(3):373-6. DOI: https://doi.org/10.1046/j.1472-8206.2003.00148.x

Aynacioglu AS, Brockmöller J, Bauer S, Sachse C, Güzelbey P, Ongen Z, Nacak M, Roots I. Frequency of cytochrome P450 CYP2C9 variants in a Turkish population and functional relevance for phenytoin. Br J Clin Pharmacol. 1999; 48(3):409-15. DOI: https://doi.org/10.1046/j.1365-2125.1999.00012.x

Allabi AC, Gala JL, Desager JP, Heusterspreute M, Horsmans Y. Genetic polymorphisms of CYP2C9 and CYP2C19 in the Beninese and Belgian populations. Br J Clin Pharmacol. 2003; 56(6):653-7. DOI: https://doi.org/10.1046/j.1365-2125.2003.01937.x

Yasar Ü, Eliasson E, Dahl ML, Johansson, Ingelman-Sundberg M, Sjöqvist F. Validation of methods for CYP2C9 genotyping: Frequencies of mutant alleles in a Swedish population. Biochem Biophys Res Commun. 1999; 254: 628–631. DOI: https://doi.org/10.1006/bbrc.1998.9992

Pedersen RS, Verstuyft C, Becquemont L, Jaillon P, Brøsen K. Cytochrome P4502C9 (CYP2C9) genotypes in a Nordic population in Denmark. Basic Clin Pharmacol Toxicol. 2004; 94(3):151-2. DOI: https://doi.org/10.1111/j.1742-7843.2004.pto940309.x

Stubbins MJ, Harries LW, Smith G, Tarbit MH, Wolf CR. Genetic analysis of the cytochrome P450 CYP2C9 locus. Pharmacogenetics. 1996; 6: 429–439. DOI: https://doi.org/10.1097/00008571-199610000-00007

Gaikovitch EA, Cascorbi I, Mrozikiewicz PM, Brockmöller J, Frötschl R, Köpke K, et al. Polymorphisms of drug-metabolizing enzymes CYP2C9, CYP2C19, CYP2D6, CYP1A1, NAT2 and of P-glycoprotein in a Russian population. Eur J Clin Pharmacol. 2003; 59(4):303-12. DOI: https://doi.org/10.1007/s00228-003-0606-2

Buzoianu AD, Trifa AP, MureÅŸanu DF, CriÅŸan S. Analysis of CYP2C9*2, CYP2C9*3 and VKORC1 -1639 G>A polymorphisms in a population from South-Eastern Europe. J Cell Mol Med. 2012; 16(12):2919-24. DOI: https://doi.org/10.1111/j.1582-4934.2012.01606.x

Sullivan-Klose TH, Ghanayem BI, Bell DA, et al. The role of the CYP2C9-leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics. 1996; 1996; 6: 341–349. DOI: https://doi.org/10.1097/00008571-199608000-00007

Gaedigk A, Casley WL, Tyndale RF, Sellers EM, Jurima-Romet M, Leeder JS. Cytochrome P4502C9 (CYP2C9) allele frequencies in Canadian Native Indian and Inuit populations. Can J Physiol Pharmacol. 2001; 79(10):841-7. DOI: https://doi.org/10.1139/y01-065

Kramer MA, Rettie AE, Rieder MJ, Cabacungan ET, Hines RN. Novel CYP2C9 promoter variants and assessment of their impact on gene expression. Mol Pharmacol. 2008; 73(6):1751-60. DOI: https://doi.org/10.1124/mol.107.044149

Vianna-Jorge R, Perini JA, Rondinelli E, Suarez-Kurtz G. CYP2C9 genotypes and the pharmacokinetics of tenoxicam in Brazilians. Clin Pharmacol Ther. 2004; 76(1):18-26. DOI: https://doi.org/10.1016/j.clpt.2004.03.002

Dandara C, Lombard Z, Du Plooy I, McLellan T, Norris SA, Ramsay M. Genetic variants in CYP (-1A2, -2C9, -2C19, -3A4 and -3A5), VKORC1 and ABCB1 genes in a black South African population: a window into diversity. Pharmacogenomics. 2011; 12 (12):1663-70. DOI: https://doi.org/10.2217/pgs.11.106

Hamdy SI, Hiratsuka M, Narahara K, El-Enany M, Moursi N, Ahmed MS, Mizugaki M. Allele and genotype frequencies of polymorphic cytochromes P450 (CYP2C9, CYP2C19, CYP2E1) and dihydropyrimidine dehydrogenase (DPYD) in the Egyptian population. Br J Clin Pharmacol. 2002; 53(6):596-603. DOI: https://doi.org/10.1046/j.1365-2125.2002.01604.x

Lee SS, Kim KM, Thi-Le H, Yea SS, Cha IJ, Shin JG. Genetic polymorphism of CYP2C9 in a Vietnamese Kinh population. Ther Drug Monit. 2005; 27(2):208-10. DOI: https://doi.org/10.1097/01.ftd.0000153402.91854.42

Bae JW, Kim HK, Kim JH, Yang SI, Kim MJ, Jang CG et al.. Allele and genotype frequencies of CYP2C9 in a Korean population. Br J Clin Pharmacol. 2005; 60(4):418-22. DOI: https://doi.org/10.1111/j.1365-2125.2005.02448.x

Jose R, Chandrasekaran A, Sam SS, Gerard N, Chanolean S, Abraham BK, Satyanarayanamoorthy K, Peter A, Rajagopal K. CYP2C9 and CYP2C19 genetic polymorphisms: frequencies in the south Indian population. Fundam Clin Pharmacol. 2005;19(1):101-5. DOI: https://doi.org/10.1111/j.1472-8206.2004.00307.x

State Statistical Office of the Republic of Macedonia. Census 2002: Total population of the Republic of Macedonia according to declared ethnic affiliation. In: Statistical Yearbook of the Republic of Macedonia 2004. Skopje, 2004:61-2.

Towner P. Purification of DNA. Essential Molecular Biology T. A. Brown. Oxford, Oxford University Press, 1995:47-54.

Spiroski M, Arsov T, Petlichkovski A, Strezova A, Trajkov D, Efinska-Mladenovska O, Zaharieva E. (2005) Case Study: Macedonian Human DNA Bank (hDNAMKD) as a source for public health Genetics. Health Determinants in the Scope of New Public Health. B. G. Georgieva L. Sofia, Hans Jacobs Company, 33-44.

Lancaster AK, Single RM, Solberg OD, Nelson MP, Thomson G. PyPop update - a software pipeline for large-scale multilocus population genomics. Tissue Antigens. 2007; 69 (s1): 192-197. DOI: https://doi.org/10.1111/j.1399-0039.2006.00769.x

Guo SW, Thompson EA. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics. 1992; 48(2): 361–72. DOI: https://doi.org/10.2307/2532296

Slatkin M. A correction to the exact test based on the Ewens sampling distribution. Genet Res. 1996;68(3):259-60. DOI: https://doi.org/10.1017/S0016672300034236

Carlquist J, Horne B, Mower C, Park J, Huntinghouse J, McKinney J, Muhlestein J, Anderson J. An evaluation of nine genetic variants related to metabolism and mechanism of action of warfarin as applied to stable dose prediction. J Thromb Thrombolysis. 2010;30:358–64. DOI: https://doi.org/10.1007/s11239-010-0467-3

Wang TL, Li HL, Tjong WY, Chen QS, Wu GS, Zhu HT, Hou ZS, Xu S, Ma SJ, Wu M, Tai S. Genetic factors contribute to patient-specific warfarin dose for Han Chinese. Clin Chim Acta. 2008;396:76–9. DOI: https://doi.org/10.1016/j.cca.2008.07.005

D'Andrea G, D'Ambrosio RL, Di Perna P, Chetta M, Santacroce R, Brancaccio V, Grandone E, Margaglione M. A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood. 2005;105:645–9. DOI: https://doi.org/10.1182/blood-2004-06-2111

Larramendy-Gozalo C, Yang J, Verstuyft C, Bodin L, Dubert L, Zhang Y, Xu C, Fan L, Jaillon P, Becquemont L. Genetic polymorphism of vitamin K epoxide reductase (VKORC1) 1173C>T in a Chinese and a Caucasian population. Basic Clin Pharmacol Toxicol. 2006;98:611–3. DOI: https://doi.org/10.1111/j.1742-7843.2006.pto_440.x

You J, Wong R, Waye M, Mu Y, Lim C, Choi K-c CG. Warfarin dosing algorithm using clinical, demographic and pharmacogenetic data from Chinese patients. J Thromb Thrombolysis. 2011;31:113–8. DOI: https://doi.org/10.1007/s11239-010-0497-x

El Din MS, Amin DG, Ragab SB, Ashour EE, Mohamed MH, Mohamed AM. Frequency of VKORC1 (C1173T) and CYP2C9 genetic polymorphisms in Egyptians and their influence on warfarin maintenance dose: proposal for a new dosing regimen. Int J Lab Hematol. 2012;34(5):517-24. DOI: https://doi.org/10.1111/j.1751-553X.2012.01426.x

Teichert M, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, De Smet PA, Witteman JC, Stricker BH. Vitamin K epoxide reductase complex subunit 1 (VKORC1) polymorphism and aortic calcification: the Rotterdam Study. Arterioscler Thromb Vasc Biol. 2008;28(4):771-6. DOI: https://doi.org/10.1161/ATVBAHA.107.159913

Jiang NX, Song J, Xu B. [Vitamin K epoxide reductase complex 1 gene polymorphism and warfarin dose requirement in Chinese patients]. Zhonghua Xin Xue Guan Bing Za Zhi. 2007;35(7):652-4.

Martis S, Peter I, Hulot JS, Kornreich R, Desnick RJ, Scott SA. Multi-ethnic distribution of clinically relevant CYP2C genotypes and haplotypes. Pharmacogenomics J. 2013;13(4):369-77. DOI: https://doi.org/10.1038/tpj.2012.10

Sistonen J, Fuselli S, Palo JU, Chauhan N, Padh H, Sajantila A. Pharmacogenetic variation at CYP2C9, CYP2C19, and CYP2D6 at global and microgeographic scale. Pharmacogenet Genomics. 2009; 19(2):170-9. DOI: https://doi.org/10.1097/FPC.0b013e32831ebb30

Scordo MG, Aklillu E, Yasar U, Dahl ML, Spina E, Ingelman-Sundberg M. Genetic polymorphism of cytochrome P450 2C9 in a Caucasian and a black African population. Br J Clin Pharmacol. 2001; 52(4):447-50. DOI: https://doi.org/10.1046/j.0306-5251.2001.01460.x

Mc Graw J, Waller D. Cytochrome P450 variations in different ethnic populations. Expert Opin Drug Metab Toxicol. 2012; 8(3):371-82. DOI: https://doi.org/10.1517/17425255.2012.657626

Sim SC, Kacevska M, Ingelman-Sundberg M. Pharmacogenomics of drug-metabolizing enzymes: a recent update on clinical implications and endogenous effects. Pharmacogenomics J. 2013;13(1):1-11. DOI: https://doi.org/10.1038/tpj.2012.45

Yang L, Ge W, Yu F, Zhu H. Impact of VKORC1 gene polymorphism on interindividual and interethnic warfarin dosage requirement--a systematic review and meta analysis. Thromb Res. 2010;125(4):e159-66. DOI: https://doi.org/10.1016/j.thromres.2009.10.017

Jorgensen AL, FitzGerald RJ, Oyee J, Pirmohamed M, Williamson PR. Influence of CYP2C9 and VKORC1 on patient response to warfarin: a systematic review and meta-analysis. PLoS One. 2012;7(8):e44064. DOI: https://doi.org/10.1371/journal.pone.0044064

Downloads

Published

2013-12-15

How to Cite

1.
Jakjovski K, Labachevski N, Petlichkovski A, Senev A, Trojacanec J, Atanasovska E, Kostova E, Spiroski M. Distribution of CYP2C9 and VKORC1 Gene Polymorphisms in Healthy Macedonian Male Population. Open Access Maced J Med Sci [Internet]. 2013 Dec. 15 [cited 2024 Apr. 18];1(1):1-5. Available from: https://oamjms.eu/index.php/mjms/article/view/oamjms.2013.001

Issue

Section

A - Basic Science