Expression of OCT-4 and SOX-2 in Bone Marrow-Derived Human Mesenchymal Stem Cells during Osteogenic Differentiation
DOI:
https://doi.org/10.3889/oamjms.2016.008Keywords:
pluripotency markers, human mesenchymal stem cells, osteodifferentiationAbstract
AIM: Determine the levels of expression of pluripotency genes OCT-4 and SOX-2 before and after osteogenic differentiation of human mesenchymal stem cells (hMSCs).
METHODS: Human MSCs were derived from the bone marrow and differentiated into osteoblasts. The analyses were performed on days 0 and 14 of the cell culture. In vitro differentiation was evaluated due to bone markers – alkaline phosphatase (AP) activity and the messenger RNA (mRNA) expression of AP and bone sialoprotein (BSP). The OCT-4 and SOX-2 expression was evaluated at mRNA level by real-time qPCR and at protein level by immunocytochemistry.
RESULTS: In vitro cultures on day 14 showed an increase in AP activity and upregulation of AP and BSP gene expression. OCT-4 and SOX-2 in undifferentiated hMSCs on day 0 is detectable and very low compared to tumor cell lines as a positive control. Immunocytochemistry detected OCT-4 in the cell nuclei prior (day 0) and post differentiation (day 14). On the same time points, cultures were negative for SOX-2 protein.
CONCLUSION: Messenger RNA for pluripotency markers OCT-4 and SOX-2 isolated from hMSCs was less present, while OCT-4 protein was detected in cell nuclei prior and post differentiation into osteoblast lineage.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Boyer LA, Lee TI, Cole MF, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122:947–56.
http://dx.doi.org/10.1016/j.cell.2005.08.020 DOI: https://doi.org/10.1016/j.cell.2005.08.020
PMid:16153702 PMCid:PMC3006442
Boiani M, Schöler HR. Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol. 2005;6:872–84.
http://dx.doi.org/10.1038/nrm1744 DOI: https://doi.org/10.1038/nrm1744
PMid:16227977
Reim G, Brand M. Spiel-ohne-grenzen/pou2 mediates regional competence to respond to Fgf8 during zebrafish early neural development. Development. 2002;129:917–33. DOI: https://doi.org/10.1242/dev.129.4.917
PMid:11861475
Palmieri SL, Peter W, Hess H, Schöler HR. Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation. Dev Biol. 1994;166:259–67.
http://dx.doi.org/10.1006/dbio.1994.1312 DOI: https://doi.org/10.1006/dbio.1994.1312
PMid:7958450
Pesce M, Schöler HR. Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells. 2001;19:271–8.
http://dx.doi.org/10.1634/stemcells.19-4-271 DOI: https://doi.org/10.1634/stemcells.19-4-271
PMid:11463946
Kim JH, Jee MK, Lee SY, et al. Regulation of adipose tissue stromal cells behaviors by endogenic Oct4 expression control. PLoS One. 2009;4.
http://dx.doi.org/10.1371/journal.pone.0007166 DOI: https://doi.org/10.1371/journal.pone.0007166
Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet. 2000;24:372– 6.
http://dx.doi.org/10.1038/74199 DOI: https://doi.org/10.1038/74199
PMid:10742100
Tai M-H, Chang C-C, Kiupel M, et al. Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis. 2005;26:495–502.
http://dx.doi.org/10.1093/carcin/bgh321 DOI: https://doi.org/10.1093/carcin/bgh321
PMid:15513931
Gidekel S, Pizov G, Bergman Y, Pikarsky E. Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell. 2003;4:361–70.
http://dx.doi.org/10.1016/S1535-6108(03)00270-8 DOI: https://doi.org/10.1016/S1535-6108(03)00270-8
Monk M, Holding C. Human embryonic genes re-expressed in cancer cells. Oncogene. 2001;20:8085–91.
http://dx.doi.org/10.1038/sj.onc.1205088 DOI: https://doi.org/10.1038/sj.onc.1205088
PMid:11781821
Greco SJ, Liu K, Rameshwar P. Functional similarities among genes regulated by OCT4 in human mesenchymal and embryonic stem cells. Stem Cells. 2007;25:3143–54.
http://dx.doi.org/10.1634/stemcells.2007-0351 DOI: https://doi.org/10.1634/stemcells.2007-0351
PMid:17761754
Kerkis I, Kerkis A, Dozortsev D, et al. Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs. 2006;184:105–16.
http://dx.doi.org/10.1159/000099617 DOI: https://doi.org/10.1159/000099617
PMid:17409736
Beltrami AP, Cesselli D, Bergamin N, et al. Multipotent cells can be generated in vitro from several adult human organs (heart, liver, and bone marrow). Blood. 2007;110:3438–46.
http://dx.doi.org/10.1182/blood-2006-11-055566 DOI: https://doi.org/10.1182/blood-2006-11-055566
PMid:17525288
Lin G, Garcia M, Ning H, et al. Defining stem and progenitor cells within adipose tissue. Stem Cells Dev. 2008;17:1053–63.
http://dx.doi.org/10.1089/scd.2008.0117 DOI: https://doi.org/10.1089/scd.2008.0117
PMid:18597617 PMCid:PMC2865901
Fang X, Yoon J-G, Li L, et al. The SOX2 response program in glioblastoma multiforme: an integrated ChIP-seq, expression microarray, and microRNA analysis. BMC Genomics. 2011;12:11.
http://dx.doi.org/10.1186/1471-2164-12-11 DOI: https://doi.org/10.1186/1471-2164-12-11
PMid:21211035 PMCid:PMC3022822
Girouard SD, Laga AC, Mihm MC, et al. SOX2 contributes to melanoma cell invasion. Laboratory Investigation. 2012:362–70.
http://dx.doi.org/10.1038/labinvest.2011.188 DOI: https://doi.org/10.1038/labinvest.2011.188
PMid:22184093 PMCid:PMC3887365
Liu K, Lin B, Zhao M, et al. The multiple roles for Sox2 in stem cell maintenance and tumorigenesis. Cellular Signalling. 2013. p. 1264–71.
http://dx.doi.org/10.1016/j.cellsig.2013.02.013 DOI: https://doi.org/10.1016/j.cellsig.2013.02.013
PMid:23416461 PMCid:PMC3871517
Masui S, Nakatake Y, Toyooka Y, et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol. 2007;9:625–35.
http://dx.doi.org/10.1038/ncb1589 DOI: https://doi.org/10.1038/ncb1589
PMid:17515932
Takahashi K, Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell. 2006;126:663–76.
http://dx.doi.org/10.1016/j.cell.2006.07.024 DOI: https://doi.org/10.1016/j.cell.2006.07.024
PMid:16904174
Sperger JM, Chen X, Draper JS, Antosiewicz JE, Chon CH, Jones SB, et al. Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc Natl Acad Sci USA. 2003;100:13350–5.
http://dx.doi.org/10.1073/pnas.2235735100 DOI: https://doi.org/10.1073/pnas.2235735100
PMid:14595015 PMCid:PMC263817
Lengler J, Bittner T, Münster D, Gawad AEDA, Graw J. Agonistic and antagonistic action of AP2, Msx2, Pax6, Prox1 and Six3 in the regulation of Sox2 expression. Ophthalmic Res. 2005;37:301–9.
http://dx.doi.org/10.1159/000087774 DOI: https://doi.org/10.1159/000087774
PMid:16118513
Pittenger MF. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science. 1999: 143–7.
http://dx.doi.org/10.1126/science.284.5411.143 DOI: https://doi.org/10.1126/science.284.5411.143
PMid:10102814
Dezawa M, Ishikawa H, Itokazu Y, et al. Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science. 2005;309:314–7.
http://dx.doi.org/10.1126/science.1110364 DOI: https://doi.org/10.1126/science.1110364
PMid:16002622
Pierantozzi E, Gava B, Manini I, et al. Pluripotency regulators in human mesenchymal stem cells: expression of NANOG but not of OCT-4 and SOX-2. Stem Cells Dev. 2011;20:915–23.
http://dx.doi.org/10.1089/scd.2010.0353 DOI: https://doi.org/10.1089/scd.2010.0353
PMid:20879854
Greber B, Lehrach H, Adjaye J. Silencing of core transcription factors in human EC cells highlights the importance of autocrine FGF signaling for self-renewal. BMC Dev Biol. 2007;7:46.
http://dx.doi.org/10.1186/1471-213X-7-46 DOI: https://doi.org/10.1186/1471-213X-7-46
PMid:17506876 PMCid:PMC1885259
Xu R-H, Sampsell-Barron TL, Gu F, et al. NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell. 2008;3:196–206.
http://dx.doi.org/10.1016/j.stem.2008.07.001 DOI: https://doi.org/10.1016/j.stem.2008.07.001
PMid:18682241 PMCid:PMC2758041
Chambers I, Tomlinson SR. The transcriptional foundation of pluripotency. Development. 2009;136:2311–22.
http://dx.doi.org/10.1242/dev.024398 DOI: https://doi.org/10.1242/dev.024398
PMid:19542351 PMCid:PMC2729344
Lengner CJ, Welstead GG, Jaenisch R. The pluripotency regulator Oct4: a role in somatic stem cells? 2008;7(6):725-8. DOI: https://doi.org/10.4161/cc.7.6.5573
Lee MW, Kim DS, Yoo KH, et al. Human bone marrow-derived mesenchymal stem cell gene expression patterns vary with culture conditions. Blood Res [Internet]. 2013;48(2):107–14.
http://dx.doi.org/10.5045/br.2013.48.2.107 DOI: https://doi.org/10.5045/br.2013.48.2.107
PMid:23826579 PMCid:PMC3698395
Burns CE, Zon LI. Portrait of a stem cell. Dev Cell. 2002;3:612–4.
http://dx.doi.org/10.1016/S1534-5807(02)00329-5 DOI: https://doi.org/10.1016/S1534-5807(02)00329-5
Romanov YA, Darevskaya AN, Merzlikina NV, Buravkova LB. Mesenchymal stem cells from human bone marrow and adipose tissue: Isolation, characterization, and differentiation potentialities. Bull Exp Biol Med. 2005;140:138–43.
http://dx.doi.org/10.1007/s10517-005-0430-z DOI: https://doi.org/10.1007/s10517-005-0430-z
PMid:16254640
Kang Q, Sun MH, Cheng H, et al. Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther. 2004;11:1312–20.
http://dx.doi.org/10.1038/sj.gt.3302298 DOI: https://doi.org/10.1038/sj.gt.3302298
PMid:15269709
Jayakumar P, Di Silvio L. Osteoblasts in bone tissue engineering. Proc Inst Mech Eng H. 2010;224:1415–40.
http://dx.doi.org/10.1243/09544119JEIM821 DOI: https://doi.org/10.1243/09544119JEIM821
PMid:21287829
Riekstina U, Cakstina I, Parfejevs V, et al. Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Rev. 2009;5:378–86.
http://dx.doi.org/10.1007/s12015-009-9094-9 DOI: https://doi.org/10.1007/s12015-009-9094-9
PMid:20058201
Ono M, Kajitani T, Uchida H, et al. OCT4 expression in human uterine myometrial stem/progenitor cells. Hum Reprod. 2010;25:2059–67.
http://dx.doi.org/10.1093/humrep/deq163 DOI: https://doi.org/10.1093/humrep/deq163
PMid:20576635
Arnold K, Sarkar A, Yram MA, et al. Sox2 + adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell. 2011;9:317–29.
http://dx.doi.org/10.1016/j.stem.2011.09.001 DOI: https://doi.org/10.1016/j.stem.2011.09.001
PMid:21982232 PMCid:PMC3538360
Ji KH, Xiong J, Hu KM, Fan LX, Liu HQ. Simultaneous expression of Oct4 and genes of three germ layers in single cell-derived multipotent adult progenitor cells. Annals of Hematology. 2008:431–8.
http://dx.doi.org/10.1007/s00277-008-0470-3 DOI: https://doi.org/10.1007/s00277-008-0470-3
PMid:18338169 PMCid:PMC2324127
Ezeh UI, Turek PJ, Reijo Pera RA, Clark AT. Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma. Cancer. 2005;104:2255–65.
http://dx.doi.org/10.1002/cncr.21432 DOI: https://doi.org/10.1002/cncr.21432
PMid:16228988
Santagata S, Ligon KL, Hornick JL. Embryonic stem cell transcription factor signatures in the diagnosis of primary and metastatic germ cell tumors. Am J Surg Pathol. 2007;31:836–45.
http://dx.doi.org/10.1097/PAS.0b013e31802e708a DOI: https://doi.org/10.1097/PAS.0b013e31802e708a
PMid:17527070
Bu Y, Cao D. The origin of cancer stem cells. Front Biosci (Schol Ed) [Internet]. 2012;4:819–30.
http://dx.doi.org/10.2741/S302 DOI: https://doi.org/10.2741/s302
Malik B. Cancer stem cells and resistance to chemo and radio therapy. Frontiers in Bioscience. 2012:2142. DOI: https://doi.org/10.2741/531
http://dx.doi.org/10.2741/E531 DOI: https://doi.org/10.2741/e531
Zaehres H, Lensch MW, Daheron L, et al. High-efficiency RNA interference in human embryonic stem cells. Stem Cells [Internet]. 2005;23:299–305.
http://dx.doi.org/10.1634/stemcells.2004-0252 DOI: https://doi.org/10.1634/stemcells.2004-0252
PMid:15749924
Roche S, Richard MJ, Favrot MC. Oct-4, Rex-1, and Gata-4 expression in human MSC increase the differentiation efficiency but not hTERT expression. J Cell Biochem. 2007;101:271–80.
http://dx.doi.org/10.1002/jcb.21185 DOI: https://doi.org/10.1002/jcb.21185
PMid:17211834
Saxe JP, Tomilin A, Schöler HR, Plath K, Huang J. Post-translational regulation of Oct4 transcriptional activity. PLoS One. 2009;4.
http://dx.doi.org/10.1371/journal.pone.0004467 DOI: https://doi.org/10.1371/journal.pone.0004467
Wei F, Schöler HR, Atchison ML. Sumoylation of Oct4 enhances its stability, DNA binding, and transactivation. J Biol Chem. 2007;282:21551–60.
http://dx.doi.org/10.1074/jbc.M611041200 DOI: https://doi.org/10.1074/jbc.M611041200
PMid:17525163
Liao B, Jin Y. Wwp2 mediates Oct4 ubiquitination and its own auto-ubiquitination in a dosage-dependent manner. Cell Res. 2010;20:332–44.
http://dx.doi.org/10.1038/cr.2009.136 DOI: https://doi.org/10.1038/cr.2009.136
PMid:19997087
Seo E, Basu-Roy U, Zavadil J, Basilico C, Mansukhani A. Distinct Functions of Sox2 Control Self-Renewal and Differentiation in the Osteoblast Lineage. Molecular and Cellular Biology. 2011:4593–608.
http://dx.doi.org/10.1128/MCB.05798-11 DOI: https://doi.org/10.1128/MCB.05798-11
PMid:21930787 PMCid:PMC3209254
Basu-Roy U, Ambrosetti D, Favaro R, et al. The transcription factor Sox2 is required for osteoblast self-renewal. Cell Death Differ. 2010;17:1345–53.
http://dx.doi.org/10.1038/cdd.2010.57 DOI: https://doi.org/10.1038/cdd.2010.57
PMid:20489730 PMCid:PMC2902624
Wang XQ, Ongkeko WM, Chen L, et al. Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4-AKT-ATP-binding cassette G2 pathway. Hepatology. 2010;52:528–39.
http://dx.doi.org/10.1002/hep.23692 DOI: https://doi.org/10.1002/hep.23692
PMid:20683952
Downloads
Published
How to Cite
Issue
Section
License
http://creativecommons.org/licenses/by-nc/4.0

