Curative Effect of Aqueous Leaf Extract of Crinum Giganteum on NMDA-Receptor Antagonist-Induced Schizophrenic Wistar Rat Model

Authors

  • Elizabeth Finbarrs-Bello Department of Anatomy, College of Medicine, University of Nigeria, UNEC, Enugu
  • Emmanuel Nebeuwa Obikili Department of Anatomy, College of Medicine, University of Nigeria, UNEC, Enugu
  • Esom Emmanuel Anayochukwu Department of Anatomy, College of Medicine, University of Nigeria, UNEC, Enugu
  • Anyanwu Emeka Godson Department of Anatomy, College of Medicine, University of Nigeria, UNEC, Enugu

DOI:

https://doi.org/10.3889/oamjms.2016.061

Keywords:

Amygdala, Crinum giganteum, Amy Chlorpromazine, Schizophrenia, NMDA, NSE

Abstract

AIM: This study evaluated the curative potential of Crinum giganteum in the treatment of schizophrenia using an NMDA-receptor antagonist-induced schizophrenic Wistar rat model.

METHODS: Twenty-five adult Wistar rats of both sexes of average weights 180 g were divided into two groups: control and schizophrenic rat models. The controls received 0.1 ml of 0. 9% saline, while schizophrenia was induced in models using 25 mg/kg of ketamine hydrochloride (i.p.) for 7 days. On the 8 day models were divided into group’s k1, k2, k3 and k4 of 5 rats each. K1 and the controls were sacrificed then, groups k2 and k3 were treated with 5 mg/kg and 10 mg/kg aqueous leaf extract of Crinum giganteum while, k4 (standard) received 25 mg/kg of chlorpromazine orally for 28 days. Amygdala were harvested, processed and stained with Haematoxylin and Eosin (H &E) stain, Neuron-specific enolase (NSE) marker was also used to monitor the curative effect on the amygdala.

RESULTS: Degenerative changes and increased NSE immunoreactivity were observed in the untreated models. Extract-treated models showed normal amygdala and negative NSE immunoreactivity while chlorpromazine treated models revealed decreased NSE immunoreactivity.

CONCLUSION: Crinum giganteum extracts exhibits better curative effect than the standard antipsychotic agent.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Joseph TC, Glen TK. The neurochemistry of schizophrenia. Basic Neurochemistry. 8th ed. Elsevier Inc. Toronto, 2012: 1000-1011.

Osaretin A, Taiwo E, Olumuyiwa A. Extracts of Cnestisferruginea and Rauwolfia vomitoria affect blood chemistry and GABAergic neurotransmission in ketamine – induced psychotic rats. FASEB Journal. 2011;25:764-774.

Ezequiel U, Jose L, Richard W, Antonio E. Memantine reverses social withdrawal induced by ketamine in rats. Experimental Neurobiology. 2013; 22(1):18-22. http://dx.doi.org/10.5607/en.2013.22.1.18 PMid:23585718 PMCid:PMC3620454

Corsen GY. Domino E. Dissociative anaesthesia further pharmacologic studies and first clinical experience with the PCP derivatives (C1-581). Anesth Analag . 1966;45:129 -140.

Krystal H, Karper LP, Seibyl JP. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry.1994;51(3):199-214. http://dx.doi.org/10.1001/archpsyc.1994.03950030035004 PMid:8122957

Silbersweig DA, Stein E, Froth C, Cahill C, Holmes A, Grootwuk S, Seaward J, Mckenna P, Chue SE, Schuor L. A functional new anatomy of hallucination in schizophrenia. Nature. 1995; 378(6553): 176-179. http://dx.doi.org/10.1038/378176a0

Bertram GK, Serzan BM, Anthony TT. Sedative-Hypnotic drugs: Basic and Clinical pharmacology.11th International edition, McGraw Hill Companies inc., 2009: 371-509.

Sharry KT, Wai C. Pharmacological models of psychosis: Amphetamine and Ketamine. Medical Bulletin. 2011;5:17 -19.

Harrison P, Law A, Eastwood S. Glutamate receptors and transporters in the hippocampus in schizophrenia. Annals of the New York Academy of Sciences. 2003;1003: 94-101. http://dx.doi.org/10.1196/annals.1300.006 PMid:14684437

Clinton S, Haroutunian V, Davis K, Meador-Woodruff J. Altered transcript expression of NMDA receptor-associated postsynaptic proteins in the thalamus of subjects with schizophrenia. American Journal of Psychiatry. 2003;160:1100-1109. http://dx.doi.org/10.1176/appi.ajp.160.6.1100 PMid:12777268

Alder CM, Malhotra AK, Elman I, Goldberg. T, Egan M. Pickar D, Brevier A. Comparison of ketamine –induced thought disorder in health volunteer and thought disorder in schizophrenia. Am J Psychiatry. 1999;156:1646-1649. http://dx.doi.org/10.1176/ajp.156.10.1646 PMid:10518181

Glen MA, Maamo M. Haloperidol for the treatment of ketamine-induced emergence delirium. J Anesth Clin. 2007;23(1):65-67.

Luby ED, Cohen BD, Rosen B, Gothleb J, Kelly R. Study on a new schizophrenomemitic drug serryl. Arch Neural Psychiatry. 1959;81:363-369. http://dx.doi.org/10.1001/archneurpsyc.1959.02340150095011

Javitt D. Negative schizophrenic symptomatology and the PCP (phencyclidine)model of schizophrenia. Hillside Journal of Clinical Psychiatry. 1987;9:12-35. PMid:2820854

Lahti AC, Koffel B, Laporte B, Tamminga CA. Subanesthetic doses of ketamine stimulate psychosis in schizophrenia, Neuropsychopharmacology. 1995; 17(3):141-150. http://dx.doi.org/10.1016/0893-133x(94)00131-i

Frank RS, Robert LH. Psychosis: atypical limbic epilepsy versus limbic hyperexicitability with onset at puberty. Epilepsy Behav. 2007;10(4):515-520. http://dx.doi.org/10.1016/j.yebeh.2007.02.014 PMid:17416210 PMCid:PMC2680611

Gerburg K, Hans-Gert B, Axel B, Gisela G, Gerald W. Increased neurogenesis in a rat ketamine model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2012;38(2):310-316.

Raji Y, Ifabunmi S, Akinsomisoye OS, Morakinyo AO, Oloyo AK. Gonadal Responses to Antipsychotic Drugs: Chlorpromazine and Thioridazine Reversibly Suppress Testicular Functions in Albino Rats. International Journal of Pharmacology. 2005;1(3): 287-292. http://dx.doi.org/10.3923/ijp.2005.287.292

Loga P. Chlorpromazine in Migraine. Emergency Medicine Journal. 2007;24(4): 297-300. http://dx.doi.org/10.1136/emj.2007.047860 PMid:17384391 PMCid:PMC2658244

Turner T. Chlorpromazine: unlocking psychosis. British medical journal. 2007;334(Suppl 1): 7-9. http://dx.doi.org/10.1136/bmj.39034.609074.94 PMid:17204765

Keay RW. Trees of Nigeria. Oxford University Press. USA, 1989:1-6.

Tyler VE. Herbs affecting the central nervous system: Perspectives on newcrops and new uses. ASHS Press, Alexandria, V A. In: J. Janick (ed.), 1999:442-449.

Malhotra AK, Pinals DA, Adler CM, Elman I, Clifton A, Pickar D, Breier A. Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology. 1997;17(3):141-50. http://dx.doi.org/10.1016/S0893-133X(97)00036-5

Chatterjee M, Verma R, Ganguly S, Palit G. Neurochemical and molecular characterization of ketamine-induced experimental psychosis model in mice. Biological Psychiatry. 2004;56(5): 317–322.

Sharp FR, Butman M, Aardalen K, Nickolenko J, Nakki R, Massa SM, Swanson RA, Sagar SM. Neuronal injury produced by NMDA antagonists can be detected using heat shock proteins and can be blocked with antipsychotics. Psychopharmacol Bull. 1999;30:555-560.

Liu ZL, Xu RX, Yang ZJ, Dai YW, Luo CY, Du MX, Zou YX, Jiang XD. [Responses of neurons and astrocytes in rat hippocampus to kainic acid-induced seizures]. Di Yi Jun Yi Da Xue Xue Bao. 2003;23(11):1151-5.

Olney JW, Faber NB. Efficacy of clozapine compared with other antipsychotics in preventing NMDA-antagonist Neurotoxicity. J Clin Psychiatry. 1994;55(Suppl B): 43-46. PMid:7961572

Sharp FR, Butman M, Wang S, Koistinaho J, Graham SH, Sagar SM, Noble L, Berger P, Longo FM. Haloperidol prevents induction of the hsp70 heat shock gene in neurons injured by phencyclidine (PCP), MK801, and ketamine. J Neurosci Res. 1992; 33:605-616. http://dx.doi.org/10.1002/jnr.490330413 PMid:1484394

Sharp FR, Butman M, Koistinaho J, Aardalen K, Nakki R, Massa SM, Swanson RA, Sagar SM. Phencyclidine induction of the hsp 70 stress gene in injured pyramidal neurons is mediated via multiple receptors and voltage gated calcium channels. Neuroscience. 1999;62:1079-1092. http://dx.doi.org/10.1016/0306-4522(94)90345-X

Haimoto H, Takahashi Y, Koshikawa T et al. Immunohistochemical localization of gamma-enolase in normal human tissues other than nervous and neuroendocrine tissues. Lab Invest. 1985;52(3): 257-263. PMid:3974199

Craig SP, Day IN, Thompson RJ, Craig IW. Localization of neuron-specific enolase (ENO2). Cytogenet. 1991;12:13.

Radad K, Rudolf M, Wolf-Dieter R. Ginsenosides and their CNS targets. CNS neuroscience and therapeutics. 2011;17(6): 761-768. http://dx.doi.org/10.1111/j.1755-5949.2010.00208.x PMid:21143430

David OK, Emma LW. Herbal extract and phytochemicals; plant secondary metabolites and the enhancement of human brain function. Adv Nutri J. 2011;2:32-50. http://dx.doi.org/10.3945/an.110.000117 PMid:22211188 PMCid:PMC3042794

Kumar GP, Khanum F. Neuroprotective potential of phytochemicals. Phcog. 2012;6(12): 81-89. http://dx.doi.org/10.4103/0973-7847.99898 PMid:23055633 PMCid:PMC3459459

Published

2016-08-06

How to Cite

1.
Finbarrs-Bello E, Obikili EN, Anayochukwu EE, Godson AE. Curative Effect of Aqueous Leaf Extract of Crinum Giganteum on NMDA-Receptor Antagonist-Induced Schizophrenic Wistar Rat Model. Open Access Maced J Med Sci [Internet]. 2016 Aug. 6 [cited 2024 Apr. 24];4(3):337-41. Available from: https://oamjms.eu/index.php/mjms/article/view/oamjms.2016.061

Issue

Section

A - Basic Science