Functional Pattern of Increasing Concentrations of Brain-Derived Neurotrophic Factor in Spiral Ganglion: Implications for Research on Cochlear Implants

Authors

  • Emina Ramku University Clinical Center, Prishtina, Kosovo
  • Refik Ramku Private Polyclinic OTOKIRURGJIA, Prishtina, Kosovo
  • Dugagjin Spanca University Clinical Center – Audiology, Prishtina, Kosovo
  • Valbona Zhjeqi University Clinical Center, Prishtina, Kosovo

DOI:

https://doi.org/10.3889/oamjms.2017.017

Keywords:

Key words, Animal experiments, BDNF, in vitro techniques, outgrowth, spiral ganglion.

Abstract

BACKGROUND: As previously various studies have suggested application of brain-derived neurotrophic factor (BDNF) may be considered as a promising future therapy for hearing deficits, in particular for the improvement of cochlear neurone loss during cochlear implantation.

AIM: The present study's aim was to establish the upper threshold of the concentration of BDNF in Naval Medical Research Institute (NMRI) mice spiral ganglion outgrowth.

METHODS: Spiral ganglion explants were prepared from post-natal day 4 (p4) (NMRI) mice of both sexes under the approval and guidelines of the regional council of Hearing Research Institute Tubingen.

RESULTS: Spiral ganglion explants were cultured at postnatal days 4 in the presence of different concentrations of BDNF as described under methods. We chose an age of postnatal day (P4) and concentrations of BDNF 0; 6; 12.5; 25 and 50 Æžg/ml. Averaged neurite outgrowth is measured in 4 different cultures that were treated with different concentrations. Results show that with increasing concentrations of BDNF, the neurite density increases.

CONCLUSION: The present finding show evidence that BDNF has a clear incremental effect on the number of neurites of spiral ganglia in the prehearing organ, but less on the neurite length. The upper threshold of exogenous BNDF concentration on spiral ganglion explant is 25 Æžg/ml. This means that concentration beyond this level has no further incremental impact. Therefore our suggestion for hydrogel concentration in NMRA mice in future research should be 25 Æžg/ml.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Pinyon JL, Tadros SF, Froud KE, Wong AC, Tompson IT, Crawford EN, et al. Close-field electroporation gene delivery using the cochlear implant electrode array enhances the bionic ear. Science translational medicine. 2014;233:233-54. https://doi.org/10.1126/scitranslmed.3008177 DOI: https://doi.org/10.1126/scitranslmed.3008177

Miller JM, Le Prell CG, Prieskorn DM, Wys NL, Altschuler RA. Delayed neurotrophin treatment following deafness rescues spiral ganglion cells from death and promotes regrowth of auditory nerve peripheral processes: Effects of brainâ€derived neurotrophic factor and fibroblast growth factor. Journal of neuroscience research. 2007;85:1959-69. https://doi.org/10.1002/jnr.21320 PMid:17492794 DOI: https://doi.org/10.1002/jnr.21320

Wise AK, Richardson R, Hardman J, Clark G, O'Leary S. Resprouting and survival of guinea pig cochlear neurons in response to the administration of the neurotrophins brainâ€derived neurotrophic factor and neurotrophinâ€3. Journal of Comparative Neurology. 2005;487:147-65. https://doi.org/10.1002/cne.20563 PMid:15880560 DOI: https://doi.org/10.1002/cne.20563

Schimmang T, Tan J, Müller M, Zimmermann U, Rohbock K, Köpschall I, et al. Lack of Bdnf and TrkB signalling in the postnatal cochlea leads to a spatial reshaping of innervation along the tonotopic axis and hearing loss. Development. 2003;130:4741-50. https://doi.org/10.1242/dev.00676 PMid:12925599 DOI: https://doi.org/10.1242/dev.00676

Ahmed Z, Mackenzie IR, Hutton ML, Dickson DW. Progranulin in frontotemporal lobar degeneration and neuroinflammation. Journal of neuroinflammation. 2007;4:1. https://doi.org/10.1186/1742-2094-4-7 PMid:17291356 PMCid:PMC1805428 DOI: https://doi.org/10.1186/1742-2094-4-7

Bramham CR, Alme MN, Bittins M, Kuipers SD, Nair RR, Pai B, Panja D, Schubert M, Soule J, Tiron A, Wibrand K. The Arc of synaptic memory. Experimental brain research. 2010;200:125-40. https://doi.org/10.1007/s00221-009-1959-2 PMid:19690847 PMCid:PMC2803749 DOI: https://doi.org/10.1007/s00221-009-1959-2

Baj G, Leone E, Chao MV, Tongiorgi E. Spatial segregation of BDNF transcripts enables BDNF to differentially shape distinct dendritic compartments. Proceedings of the National Academy of Sciences. 2011;108:16813-8. https://doi.org/10.1073/pnas.1014168108 PMid:21933955 PMCid:PMC3189043 DOI: https://doi.org/10.1073/pnas.1014168108

Dechant G, Biffo S, Okazawa H, Kolbeck R, Pottgiesser J, Barde YA. Expression and binding characteristics of the BDNF receptor chick trkB. Development. 1993;119:545-58. PMid:8287802 DOI: https://doi.org/10.1242/dev.119.2.545

Eckrich T, Varakina K, Johnson SL, Franz C, Singer W, Kuhn S, et al. Development and function of the voltage-gated sodium current in immature mammalian cochlear inner hair cells. PloS one. 2012;7:e45732. https://doi.org/10.1371/journal.pone.0045732 PMid:23029208 PMCid:PMC3446918 DOI: https://doi.org/10.1371/journal.pone.0045732

Hartman BH, Basak O, Nelson BR, Taylor V, Bermingham-McDonogh O, Reh TA. Hes5 expression in the postnatal and adult mouse inner ear and the drug-damaged cochlea. Journal of the Association for Research in Otolaryngology. 2009;10:321-40. https://doi.org/10.1007/s10162-009-0162-2 PMid:19373512 PMCid:PMC2757554 DOI: https://doi.org/10.1007/s10162-009-0162-2

Leßmann V. Neurotrophin-dependent modulation of glutamatergic synaptic transmission in the mammalian CNS. General Pharmacology: The Vascular System. 1998;31:667-74. https://doi.org/10.1016/S0306-3623(98)00190-6 DOI: https://doi.org/10.1016/S0306-3623(98)00190-6

Tan J, Rüttiger L, Panford-Walsh R, Singer W, Schulze H, Kilian SB, et al. Tinnitus behavior and hearing function correlate with the reciprocal expression patterns of BDNF and Arg3. 1/arc in auditory neurons following acoustic trauma. Neuroscience. 2007;145:715-26. https://doi.org/10.1016/j.neuroscience.2006.11.067 PMid:17275194 DOI: https://doi.org/10.1016/j.neuroscience.2006.11.067

Perera TD, Lu D, Thirumangalakudi L, Smith EL, Yaretskiy A, Rosenblum LA, Kral JG, Coplan JD. Correlations between hippocampal neurogenesis and metabolic indices in adult nonhuman primates. Neural Plast. 2011;2011:1-6. https://doi.org/10.1155/2011/875307 PMid:21837282 PMCid:PMC3151518 DOI: https://doi.org/10.1155/2011/875307

Kyriafinis G, Vital V, Psifidis A, Constantinidis J, Nikolaou A, Hitoglou-Antoniadou M, et al. Preoperative evaluation, surgical procedure, follow up and results of 150 cochlear implantations. Hippokratia. 2007;11:77. PMid:19582182 PMCid:PMC2464273

Mullen LM, Pak KK, Chavez E, Kondo K, Brand Y, Ryan AF. Ras/p38 and PI3K/Akt but not Mek/Erk signaling mediate BDNF-induced neurite formation on neonatal cochlear spiral ganglion explants. Brain research. 2012;1430:25-34. https://doi.org/10.1016/j.brainres.2011.10.054 PMid:22119396 PMCid:PMC3242932 DOI: https://doi.org/10.1016/j.brainres.2011.10.054

Irani SR, Michell AW, Lang B, Pettingill P, Waters P, Johnson MR, et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Annals of neurology. 2011;69:892-900. https://doi.org/10.1002/ana.22307 PMid:21416487 DOI: https://doi.org/10.1002/ana.22307

Jin Y, Kondo K, Ushio M, Kaga K, Ryan AF, Yamasoba T. Developmental changes in the responsiveness of rat spiral ganglion neurons to neurotrophic factors in dissociated culture: differential responses for survival, neuritogenesis and neuronal morphology. Cell and tissue research. 2013;351:15-27. https://doi.org/10.1007/s00441-012-1526-1 PMid:23149719 PMCid:PMC3577061 DOI: https://doi.org/10.1007/s00441-012-1526-1

Singer W, Panford-Walsh R, Watermann D, Hendrich O, Zimmermann U, Köpschall I, et al. Salicylate alters the expression of calcium response transcription factor 1 in the cochlea: implications for brain-derived neurotrophic factor transcriptional regulation. Molecular pharmacology. 2008;73:1085-91. https://doi.org/10.1124/mol.107.041814 PMid:18198284 DOI: https://doi.org/10.1124/mol.107.041814

Shepherd RK, Coco A, Epp SB, Crook JM. Chronic depolarization enhances the trophic effects of brainâ€derived neurotrophic factor in rescuing auditory neurons following a sensorineural hearing loss. Journal of Comparative Neurology. 2005;486:145-58. https://doi.org/10.1002/cne.20564 PMid:15844207 PMCid:PMC1831822 DOI: https://doi.org/10.1002/cne.20564

Leake PA, Stakhovskaya O, Hetherington A, Rebscher SJ, Bonham B. Effects of brain-derived neurotrophic factor (BDNF) and electrical stimulation on survival and function of cochlear spiral ganglion neurons in deafened, developing cats. Journal of the Association for Research in Otolaryngology. 2013;14:187-211. https://doi.org/10.1007/s10162-013-0372-5 PMid:23392612 PMCid:PMC3660916 DOI: https://doi.org/10.1007/s10162-013-0372-5

Agterberg MJ, Versnel H, De Groot JC, Smoorenburg GF, Albers FW, Klis SF. Morphological changes in spiral ganglion cells after intracochlear application of brain-derived neurotrophic factor in deafened guinea pigs. Hearing research. 2008;244:25-34. https://doi.org/10.1016/j.heares.2008.07.004 PMid:18692557 DOI: https://doi.org/10.1016/j.heares.2008.07.004

Araki S, Kawano A, Seldon HL, Shepherd RK, Funasaka S, Clark GM. Effects of chronic electrical stimulation on spiral ganglion neuron survival and size in deafened kittens. The laryngoscope. 1998;108:687-95. https://doi.org/10.1097/00005537-199805000-00012 PMid:9591547 DOI: https://doi.org/10.1097/00005537-199805000-00012

Chikar JA, Colesa DJ, Swiderski DL, Di Polo A, Raphael Y, Pfingst BE. Over-expression of BDNF by adenovirus with concurrent electrical stimulation improves cochlear implant thresholds and survival of auditory neurons. Hearing research. 2008;245:24-34. https://doi.org/10.1016/j.heares.2008.08.005 PMid:18768155 PMCid:PMC2654221 DOI: https://doi.org/10.1016/j.heares.2008.08.005

Coco A, Epp SB, Fallon JB, Xu J, Millard RE, Shepherd RK. Does cochlear implantation and electrical stimulation affect residual hair cells and spiral ganglion neurons? Hearing research. 2007;225:60-70. https://doi.org/10.1016/j.heares.2006.12.004 PMid:17258411 PMCid:PMC1853285 DOI: https://doi.org/10.1016/j.heares.2006.12.004

Djalali S, Höltje M, Grosse G, Rothe T, Stroh T, Grosse J, et al. Effects of brainâ€derived neurotrophic factor (BDNF) on glial cells and serotonergic neurones during development. Journal of neurochemistry. 2005;92:616-27. https://doi.org/10.1111/j.1471-4159.2004.02911.x PMid:15659231 DOI: https://doi.org/10.1111/j.1471-4159.2004.02911.x

Brand Y, Sung M, Chavez E, Wei E, Pak KK, Housley GD, et al. Neural cell adhesion molecule L1 modulates type I but not type II inner ear spiral ganglion neurite outgrowth in an in vitro alternate choice assay. Journal of Molecular Neuroscience. 2013;51:663-70. https://doi.org/10.1007/s12031-013-0040-6 PMid:23760987 PMCid:PMC3825176 DOI: https://doi.org/10.1007/s12031-013-0040-6

Don M, Elberling C. Evaluating residual background noise in human auditory brainâ€stem responses. The Journal of the Acoustical Society of America. 1994;96:2746-57. https://doi.org/10.1121/1.411281 PMid:7983280 DOI: https://doi.org/10.1121/1.411281

Published

2017-02-27

How to Cite

1.
Ramku E, Ramku R, Spanca D, Zhjeqi V. Functional Pattern of Increasing Concentrations of Brain-Derived Neurotrophic Factor in Spiral Ganglion: Implications for Research on Cochlear Implants. Open Access Maced J Med Sci [Internet]. 2017 Feb. 27 [cited 2024 Apr. 19];5(2):121-5. Available from: https://oamjms.eu/index.php/mjms/article/view/oamjms.2017.017

Issue

Section

A - Basic Science