Sensitivity to Antimicrobial Drugs of Pseudomonas Aeruginosa Extreme-Resistant Strains Isolated in the Major Hospitals of Central Kazakhstan

Authors

  • Ilya S. Azizov Karaganda State Medical University, National Scientific Medical Center, Karaganda
  • Alyona V. Lavrinenko Karaganda State Medical University, National Scientific Medical Center, Karaganda
  • Ilya A. Belyaev Karaganda State Medical University, National Scientific Medical Center, Karaganda
  • Dmitry B. Babenko Karaganda State Medical University, National Scientific Medical Center, Karaganda
  • Natalya A. Shambilova Karaganda State Medical University, National Scientific Medical Center, Karaganda
  • Nelya M. Bissenova Karaganda State Medical University, National Scientific Medical Center, Karaganda

DOI:

https://doi.org/10.3889/oamjms.2017.023

Keywords:

Pseudomonas aeruginosa, carbapenemases gene, Antibiotic resistance, MALDI-TOF, VIM

Abstract

AIM: The article presents the current data on the sensitivity of the main 37 strains of eXtremaly Drugs Resistance (XDR) category to anti-pseudomonas drugs.

MATERIAL AND METHODS: The strains were collected during the prospective multicenter study in large multidisciplinary hospitals of Central Kazakhstan. Susceptibility to antimicrobial drugs was carried out by disk method and the serial dilution method with the interpretation of the results according to EUCAST criteria. Detection of carbapenemases gene of VIM, IMP, NDM and GES classes was carried out by PCR method using the commercial kits.

RESULTS: All identified carbapenemases were sorted to VIM class and accounted for 63.64%. Resistance to aminoglycoside drugs exceeded 80%. All the strains were susceptible to polymyxin.

CONCLUSION: Thus, at the present stage the circulation of P. aeruginosa strains of XDR category continues in major hospitals in Kazakhstan. The strains remain sensitiveness only to polymyxin.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Michael CA, Dominey-Howes D, Labbate M. The antimicrobial resistance crisis: causes, consequences, and management. Front Public Health. 2014; 2: 145. https://doi.org/10.3389/fpubh.2014.00145 PMid:25279369 PMCid:PMC4165128 DOI: https://doi.org/10.3389/fpubh.2014.00145

The Center for Diseases Dynamic, E.a.P. The State of the World's Antibiotics, 2015. CDDEP: Washington, D.C., 2015.

Centers for Disease Control and Prevention, O.o.I.D. Antibiotic resistance threats in the United States, 2013. 2013; Available from: http://www.cdc.gov/drugresistance/threat -report-2013.

Zavascki AP, et al. Multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii: resistance mechanisms and implications for therapy. Expert Rev Anti Infect Ther. 2010; 8(1):71-93. https://doi.org/10.1586/eri.09.108 PMid:20014903 DOI: https://doi.org/10.1586/eri.09.108

El Zowalaty ME, et al. Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiol. 2015;10(10): 1683-706. https://doi.org/10.2217/fmb.15.48 PMid:26439366 DOI: https://doi.org/10.2217/fmb.15.48

Woodford N, Turton JF, Livermore DM. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev. 2011;35(5): 736-55. https://doi.org/10.1111/j.1574-6976.2011.00268.x PMid:21303394 DOI: https://doi.org/10.1111/j.1574-6976.2011.00268.x

Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olssonâ€Liljequist B, Paterson DL. Multidrugâ€resistant, extensively drugâ€resistant and pandrugâ€resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical microbiology and infection. 2012;18(3):268-81. https://doi.org/10.1111/j.1469-0691.2011.03570.x PMid:21793988 DOI: https://doi.org/10.1111/j.1469-0691.2011.03570.x

EUCAST, European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 6.0, valid from 2016-01-01, 2016.

Arakawa Y, et al., Convenient test for screening metallo-beta-lactamase-producing gram-negative bacteria by using thiol compounds. J Clin Microbiol. 2000;38(1): 40-3. PMid:10618060 PMCid:PMC86013 DOI: https://doi.org/10.1128/JCM.38.1.40-43.2000

van der Zwaluw K, et al. The carbapenem inactivation method (CIM), a simple and low-cost alternative for the Carba NP test to assess phenotypic carbapenemase activity in gram-negative rods. PLoS One. 2015;10(3): e0123690. https://doi.org/10.1371/journal.pone.0123690 PMid:25798828 PMCid:PMC4370852 DOI: https://doi.org/10.1371/journal.pone.0123690

Stelling JM, O'Brien TF. Surveillance of antimicrobial resistance: the WHONET program. Clin Infect Dis. 1997;24 (Suppl 1): S157-68. https://doi.org/10.1093/clinids/24.Supplement_1.S157 PMid:8994799 DOI: https://doi.org/10.1093/clinids/24.Supplement_1.S157

Fernandez-Barat L, et al. Phenotypic shift in Pseudomonas aeruginosa populations from cystic fibrosis lungs after 2-week antipseudomonal treatment. J Cyst Fibros. 2016. https://doi.org/10.1016/j.jcf.2016.08.005 PMid:27651273 DOI: https://doi.org/10.1016/j.jcf.2016.08.005

Lin B, Zhang C. Xiao X. Toxicity, bioavailability and pharmacokinetics of a newly formulated colistin sulfate solution. J Vet Pharmacol Ther. 2005; 28(4): 349-54. https://doi.org/10.1111/j.1365-2885.2005.00666.x PMid:16050814 DOI: https://doi.org/10.1111/j.1365-2885.2005.00666.x

Poirel L, Pitout JD, Nordmann P. Carbapenemases: molecular diversity and clinical consequences. Future Microbiol. 2007;2(5):501-12. https://doi.org/10.2217/17460913.2.5.501 PMid:17927473 DOI: https://doi.org/10.2217/17460913.2.5.501

Tangden T, Giske CG. Global dissemination of extensively drug-resistant carbapenemase- producing Enterobacteriaceae: clinical perspectives on detection, treatment and infection control. J Intern Med. 2015;277(5): 501-12. https://doi.org/10.1111/joim.12342 PMid:25556628 DOI: https://doi.org/10.1111/joim.12342

Edelstein MV, et al. Spread of extensively resistant VIM-2-positive ST235 Pseudomonas aeruginosa in Belarus, Kazakhstan, and Russia: a longitudinal epidemiological and clinical study. Lancet Infect Dis. 2013;13(10): 867-76. https://doi.org/10.1016/S1473-3099(13)70168-3 DOI: https://doi.org/10.1016/S1473-3099(13)70168-3

Published

2017-02-08

How to Cite

1.
Azizov IS, Lavrinenko AV, Belyaev IA, Babenko DB, Shambilova NA, Bissenova NM. Sensitivity to Antimicrobial Drugs of Pseudomonas Aeruginosa Extreme-Resistant Strains Isolated in the Major Hospitals of Central Kazakhstan. Open Access Maced J Med Sci [Internet]. 2017 Feb. 8 [cited 2024 Apr. 19];5(1):6-8. Available from: https://oamjms.eu/index.php/mjms/article/view/oamjms.2017.023

Issue

Section

A - Basic Science