Expression of hnRNPK & Claudin-4 in HCV-Induced Early HCC and Adjacent Liver Tissue

Authors

  • Olfat Hammam Department of Pathology Theodor Bilharz Research Institute (TBRI), Imbaba, Giza
  • Mona Magdy Department of Pathology Theodor Bilharz Research Institute (TBRI), Imbaba, Giza
  • Amgad Anas Department of Hepato-gasteroenterology,Theodor Bilharz Research Institute (TBRI), Imbaba, Giza
  • Ali Abdel Rahim Department of Hepato-gasteroenterology,Theodor Bilharz Research Institute (TBRI), Imbaba, Giza
  • Mohamed Heedaya Department of General Surgery, Theodor Bilharz Research Institute (TBRI), Imbaba, Giza
  • Ahmed Helmy Department of General Surgery, Theodor Bilharz Research Institute (TBRI), Imbaba, Giza

DOI:

https://doi.org/10.3889/oamjms.2017.092

Keywords:

hnRNPK, Claudin-4, eHCC, Metavir, EMT, cirrhosis

Abstract

BACKGROUND: HCC in Egypt usually occurs in HCV cirrhotic livers with poor prognosis due to late diagnosis. High hnRNPK & low Claudin-4 profiles indicate Epithelial Mesenchymal Transition (EMT), malignant transformation and high-grade tumours.

AIM: We studied the immunohistochemical expression of hnRNPK and Claudin-4 in HCV induced early HCC (eHCC) and adjacent liver tissue in Egyptian patients to improve eHCC detection in cirrhotic livers with better curative therapy options.

METHOD: We studied the immunohistochemical expression of hnRNPK and Claudin-4 in 100 Egyptian patients resection specimens of HCV induced early HCC (eHCC) and adjacent liver tissue, in order to improve eHCC detection in cirrhotic livers, thus improving their therapeutic options.

RESULTS: Early HCC grade significantly directly correlated with nuclear hnRNPK/5HPFs count and inversely correlated with Claudin-4 expression %, with a converse correlation between hnRNPK and Claudin-4. Moreover in eHCC, combined hnRNPK ³ 30/5HPFs & Claudin-4 ³ 40% significantly distinguished low grade eHCC (G1) from high grade eHCC (G2&G3), with sensitivity 97% & specificity 69.7% for hnRNPK ³ 30/5HPFs, and with sensitivity 70% & specificity 94.3% for Claudin-4 ³ 40%. Moreover in the adjacent liver, both markers expressions significantly directly correlated with each other and with METAVIR fibrosis score but not with activity. Furthermore, 58% of eHCCs showed hnRNPK ³ 30 Claudin-4 < 40% profile, indicating EMT type3, compared to 26% with hnRNPK ³ 30 Claudin-4 £ 10% profile in adjacent cirrhotic/ precirrhotic liver, with significant use of combined hnRNPK ³30/5HPFs & Claudin 4 £ 10% as eHCC prediction cut offs in cirrhosis (p < 0.05).

CONCLUSION: Combination of hnRNPK and Claudin-4 can indicate early HCC development in HCV cirrhotic livers using hnRNPK ³ 30/5HPFs & Claudin-4 £ 10% cut offs. Also, combination of hnRNPK ³ 30/5HPFs & Claudin-4 ³ 40% can distinguish low grade eHCC (G1) from high grade eHCC (G2&G3).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

GLOBOCAN: 2008 database (version 1.2). Available online: <http://globocan.iarc.fr>; 2008.

Ziada DH, El Sadany S, Soliman H, Abd-Elsalam S, Salama M, Hawash N, Selim A, Hamisa M, Elsabagh HM. Prevalence of hepatocellular carcinoma in chronic hepatitis C patients in Mid Delta, Egypt: A single centre study. Journal of the Egyptian National Cancer Institute. 2016; 28(4): 257–262. https://doi.org/10.1016/j.jnci.2016.06.001 PMid:27378258

Guo Y, Zhao J, Bi J, Wu Q, Wang X, Lai Q. Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a tissue biomarker for detection of early Hepatocellular carcinoma in patients with cirrhosis. Journal of Hematology & Oncology. 2012; 5:37. https://doi.org/10.1186/1756-8722-5-37 PMid:22760167 PMCid:PMC3425156

Giannelli G, Bergamini E, Fransvea E, Sgarra C, Antonaci S. Laminin-5 with transforming growth factor-beta 1 induces epithelial to mesenchymal transition in hepatocellular carcinoma. Gastroenterology. 2005;129:1375–83. https://doi.org/10.1053/j.gastro.2005.09.055 PMid:16285938

Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005; 115:209–18. https://doi.org/10.1172/JCI24282 PMid:15690074 PMCid:PMC546435

Heerboth S, Housman G, Leary M, Longacre M, Byler S, Lapinska K, Willbanks A, Sarkar S. EMT and tumor metastasis. Clinical and Translational Medicine. 2015; 4:7. https://doi.org/10.1186/s40169-015-0048-3 PMid:25852822 PMCid:PMC4385028

Hogan DJ, Riordan DP, Gerber AP, Herschlag D, Brown PO. Diverse RNA-Binding Proteins Interact with Functionally Related Sets of RNAs, Suggesting an Extensive Regulatory System. PLoS Biol. 2008; 6:e255. https://doi.org/10.1371/journal.pbio.0060255 PMid:18959479 PMCid:PMC2573929

Han N, Li W, Zhang M. The function of the RNA-binding protein hnRNP in cancer metastasis. J Can Res Ther. 2013;9:129-34. https://doi.org/10.4103/0973-1482.122506 PMid:24516048

Guo YT, Zhao JM, Bi JT, Wu Q, Wang X, Lai QY. Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a tissue biomarker for detection of early Hepatocellular carcinoma in patients with cirrhosis. J Hematol Oncol. 2012; 5:37. https://doi.org/10.1186/1756-8722-5-37 PMid:22760167 PMCid:PMC3425156

Gallardo M, Lee HJ, Zhang X, Bueso-Ramos C, Pageon LR, McArthur M, Multani A, Nazha A, Manshouri T, Parker-Thornburg J, Rapado I. hnRNP K is a haploinsufficient tumor suppressor that regulates proliferation and differentiation programs in hematologic malignancies. Cancer cell. 2015;28(4):486-99. https://doi.org/10.1016/j.ccell.2015.09.001 PMid:26412324 PMCid:PMC4652598

Xiao Z, Ko HL, Goh EH, Wang B, Ren EC. hnRNP K suppresses apoptosis independent of p53 status by maintaining high levels of endogenous caspase inhibitors. Carcinogenesis. 2013; 34 (7): 1458-1467. https://doi.org/10.1093/carcin/bgt085 PMid:23455382

Geuens T, Bouhy D, Timmerman V. The hnRNP family: insights into their role in health and disease. Hum Genet. 2016; 135: 851. https://doi.org/10.1007/s00439-016-1683-5 PMid:27215579 PMCid:PMC4947485

Bomsztyk K, Denisenko O, Ostrowski J. hnRNP K: one protein multiple processes. BioEssays. 2004; 26:629–638. https://doi.org/10.1002/bies.20048 PMid:15170860

Atti EA. HCC Burden in Egypt. Gastroenterol Hepatol. 2015; 2(3): 00045.

Anwar WA, Khaled HM, Amra HA, El-Nezami H, Loffredo CA. Changing pattern of hepatocellular carcinoma (HCC) and its risk factors in Egypt: Possibilities for prevention. Mutat Res. 2008; 659(1-2): 176-184. https://doi.org/10.1016/j.mrrev.2008.01.005 PMid:18346933

Baghdady I, EI-Kaffrawy N, Abd EI-Atti E, Abd EI-Bary N, Saber M. Study of the risk factors for hepatocellular carcinoma: effect of their synergism. Journal of American Science. 2013; 9(4): 211-217.

Ostrowski J, Bomsztyk K. Nuclear shift of hnRNP K protein in neoplasms and other states of enhanced cell proliferation. British Journal of Cancer. 2003; 89(8):1493-501. https://doi.org/10.1038/sj.bjc.6601250 PMid:14562022 PMCid:PMC2394341

Gurzu S, Turdean S, KovecsiA, Contac AO, Jung I. Epithelial-mesenchymal, mesenchymal-epithelial, and endothelial-mesenchymal transitions in malignant tumors: An update. World J Clin Cases. 2015; 3(5): 393–404. https://doi.org/10.12998/wjcc.v3.i5.393 PMid:25984514 PMCid:PMC4419103

Liu J, Shen JX, Hu JL, Dou XW, Zhang GJ. Role of epithelial-mesenchymal transition in invasion and metastasis of breast cancers. OA Cancer. 2013;1:16. https://doi.org/10.13172/2053-3918-1-2-1100

Brown AS, Mohanty BK, Howe PH. Identification and characterization of an hnRNP E1 translational silencing motif. Nucleic acids research. 2016;44(12):5892-907. https://doi.org/10.1093/nar/gkw241 PMid:27067543 PMCid:PMC4937310

Li LP, Lu CH, Chen ZP, Ge F, Wang T, Wang W, et al. Subcellular proteomics revealed the epithelial-mesenchymal transition phenotype in lung cancer. Proteomics. 201; 11:429-39.

Fabris L, Brivio S, Cadamuro M, Strazzabosco M. Revisiting Epithelial-to-Mesenchymal Transition in Liver Fibrosis: Clues for a Better Understanding of the "Reactive" Biliary Epithelial Phenotype. Stem Cells Int. 2016; 2016: 2953727. https://doi.org/10.1155/2016/2953727 PMid:26880950 PMCid:PMC4736590

Salvador E, Burek M, Förster CY. Curr Pathobiol Rep. 2016; 4: 135. https://doi.org/10.1007/s40139-016-0106-6 PMid:27547510 PMCid:PMC4978755

Kwon MJ. Emerging Roles of Claudins in Human Cancer. Int J Mol Sci. 2013; 14(9):18148–18180. https://doi.org/10.3390/ijms140918148 PMid:24009024 PMCid:PMC3794774

Morin PJ. Claudin proteins in human cancer: Promising new targets for diagnosis and therapy. Cancer Res. 2005; 65:9603–9606. https://doi.org/10.1158/0008-5472.CAN-05-2782 PMid:16266975

Singh AB, Sharma A, Dhawan P. Claudin family of proteins and cancer: An overview. J Oncol. 2010; 2010:541957. https://doi.org/10.1155/2010/541957 PMid:20671913 PMCid:PMC2910494

Holczbauer Ã, Gyöngyösi B, Lotz G, Szijártó A, Kupcsulik P, Schaff Z, Kiss A. Distinct Claudin Expression Profiles of Hepatocellular Carcinoma and Metastatic Colorectal and Pancreatic Carcinomas. J Histochem Cytochem. 2013; 61(4): 294–305. https://doi.org/10.1369/0022155413479123 PMid:23385421 PMCid:PMC3636686

Tsujiwaki M, Murata M, Takasawa A, Hiratsuka Y, Fukuda R, Sugimoto K, Ono Y, Nojima M, Tanaka S, Hirata K, Kojima T, Sawada N. Aberrant expression of claudin-4 and -7 in hepatocytes in the cirrhotic human liver. Med Mol Morphol. 2015; 48(1):33-43. https://doi.org/10.1007/s00795-014-0074-z PMid:24737165

Neesse A, Griesmann H, Gress TM, Michl P. Claudin-4 as therapeutic target in cancer. Arch Biochem Biophys. 2012; 524: 64–70. https://doi.org/10.1016/j.abb.2012.01.009 PMid:22286027

Suzuki M, Kato-Nakano M, Kawamoto S, Furuya A, Abe Y, Misaka H, Kimoto N, Nakamura K, Ohta S, Ando H. 2009. Therapeutic antitumor efficacy of monoclonal antibody against Claudin-4 for pancreatic and ovarian cancers. Cancer Sci. 100:1623–1630. https://doi.org/10.1111/j.1349-7006.2009.01239.x PMid:19555390

Lódi C, Szabo E, Holczbauer A, Batmunkh E, Szijarto A, Kupcsulik P, Kovalszky I, Paku S, Illyes G, Kiss A, et al. Claudin-4 differentiates biliary tract cancers from hepatocellular carcinomas. Mod Pathol. 2006; 19:460–469. https://doi.org/10.1038/modpathol.3800549 PMid:16439986

Bedossa P, Poynard T. An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group. Hepatology. 1996; 24 (2):289-93. https://doi.org/10.1002/hep.510240201 PMid:8690394

http://www.pathologyoutlines.com/topic/livertumorHCC.html

Ojima H, Masugi Y, Tsujikawa H, Emoto K, Fujii-Nishimura Y, Hatano M, Kawaida M, Itano O, Kitagawa Y, Sakamoto M. Early hepatocellular carcinoma with high-grade atypia in small vaguely nodular lesions. Cancer Science. 2016; 107(4). https://doi.org/10.1111/cas.12893 PMid:26797961 PMCid:PMC4832853

Bouchagier KA, Assimakopoulos SF, Karavias DD, Maroulis I, Tzelepi V, Kalofonos H, Karavias DD, Kardamakis D, Scopa CD, Tsamandas AC. Expression of Claudins-1, -4, -5, -7 and Occludin in Hepatocellular Carcinoma and their Relation with Classic Clinicopathological Features and Patients' Survival. In Vivo. 2014; 28 (3) 315-326. PMid:24815833

Zhao Y, Zu RT, Sun YL. Epithelial-mesenchymal transition in liver fibrosis. Biomed Rep. 2016; 4(3): 269–274. https://doi.org/10.3892/br.2016.578

Holah NS, El-Azab DS, Aiad HA, Sweed DM. Hepatocellular carcinoma in Egypt: epidemiological and histopathological properties. Menoufia Medical Journal. 2015; 28 (3) : 718-724.

Mattos AA, Marcon Pdos S, Araújo FS, Coral GP, Tovo CV. Hepatocellular carcinoma in a noncirrhotic patient with sustained virological response after hepatitis C treatment. Rev Inst Med Trop Sao Paulo. 2015; 57(6): 519–22. https://doi.org/10.1590/S0036-46652015000600011 PMid:27049708 PMCid:PMC4727140

Published

2017-07-31

How to Cite

1.
Hammam O, Magdy M, Anas A, Rahim AA, Heedaya M, Helmy A. Expression of hnRNPK &amp; Claudin-4 in HCV-Induced Early HCC and Adjacent Liver Tissue. Open Access Maced J Med Sci [Internet]. 2017 Jul. 31 [cited 2024 Mar. 28];5(5):595-602. Available from: https://oamjms.eu/index.php/mjms/article/view/oamjms.2017.092

Issue

Section

A - Basic Science

Most read articles by the same author(s)