Protective Effects of the Third Generation Vasodilatory Î’eta - Blocker Nebivolol against D-Galactosamine - Induced Hepatorenal Syndrome in Rats

Authors

  • Ahmed Atwa Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City
  • Rehab Hegazy Department of Pharmacology, Medical Division, National Institution Research, Giza
  • Rania Mohsen Departement of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo
  • Neamat Yassin Department of Pharmacology, Medical Division, National Institution Research, Giza
  • Sanaa Kenawy Departement of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo

DOI:

https://doi.org/10.3889/oamjms.2017.173

Keywords:

Hepatorenal syndrome, Nebivolol, Nitric oxide, Sprague-Dawley rats, Galactosamine

Abstract

BACKGROUND: Renal dysfunction is very common in patients with advanced liver cirrhosis and portal hypertension. The development of renal failure in the absence of clinical, anatomical or pathological causes renal of failure is termed hepatorenal syndrome (HRS).

AIM: The present study was constructed to investigate the possible protective effects of nebivolol (Nebi) against D-galactosamine (Gal)-induced HRS in rats.

MATERIAL AND METHODS: Rats were treated with Nebi for ten successive days. On the 8th day of the experiment, they received a single dose of Gal. Serum levels of Cr, BUN, Na+ and K+ as well as AST, ALT, total bilirubin (TB), NH3 and endothelin-1 (ET-1) were determined following Gal administration. Moreover, renal and liver contents of MDA, GSH, F2-isoprostanes (F2-IPs), tumor necrosis factor-alpha (TNF-α), nuclear factor kappa-B (NF-кB), total nitric oxide (NO), in addition to activities of caspase-3 (Cas-3), heme oxygenase-1 (HO-1), inducible and endothelial NO synthase (iNOS and eNOS) enzymes were also assessed. Finally, histopathological examination was performed.

RESULTS: Nebi attenuated Gal-induced renal and hepatic dysfunction. It also decreased the Gal-induced oxidative stress and inflammatory recruitment.

CONCLUSION: Results demonstrated both nephroprotective and hepatoprotective effects of Nebi against HRS and suggested a role of its antioxidant, anti-inflammatory, anti-apoptotic and NO-releasing properties.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Anand R, Harry D, Holt S, Milner P, Dashwood M, Goodier D et al. Endothelin is an important determinant of renal function in a rat model of acute liver and renal failure. Gut. 2002;50(1):111-17. https://doi.org/10.1136/gut.50.1.111 PMid:11772977 PMCid:PMC1773076

Cardenas A. Hepatorenal syndrome: a dreaded complication of end-stage liver disease. The American journal of gastroenterology. 2005;100(2):460-7. https://doi.org/10.1111/j.1572-0241.2005.40952.x PMid:15667508

Martin P-Y, Ginès P, Schrier RW. Nitric oxide as a mediator of hemodynamic abnormalities and sodium and water retention in cirrhosis. New England Journal of Medicine. 1998;339(8):533-41. https://doi.org/10.1056/NEJM199808203390807 PMid:9709047

Wadei HM, Mai ML, Ahsan N, Gonwa TA. Hepatorenal syndrome: pathophysiology and management. Clinical journal of the American Society of Nephrology. CJASN. 2006;1(5):1066-79. https://doi.org/10.2215/CJN.01340406 PMid:17699328

Moreau R, Lebrec D. Acute renal failure in patients with cirrhosis: perspectives in the age of MELD. Hepatology. 2003;37(2):233-43. https://doi.org/10.1053/jhep.2003.50084 PMid:12540770

Keppler D, Lesch R, Reutter W, Decker K. Experimental hepatitis induced by D-galactosamine. Experimental and molecular pathology.1968;9(2):279-90. https://doi.org/10.1016/0014-4800(68)90042-7

Saracyn M, Patera J, Kocik J, Brytan M, Zdanowski R, Lubas A et al. Strain of experimental animals and modulation of nitric oxide pathway: their influence on development of renal failure in an experimental model of hepatorenal syndrome. Arch Med Sci. 2012;8(3):555-62. https://doi.org/10.5114/aoms.2012.29281 PMid:22852015 PMCid:PMC3400905

Javle P, Yates J, Kynaston H, Parsons K, Jenkins S. Hepatosplanchnic haemodynamics and renal blood flow and function in rats with liver failure. Gut. 1998;43(2):272-79. https://doi.org/10.1136/gut.43.2.272 PMid:10189857 PMCid:PMC1727229

Moore K, Wendon J, Frazer M, Karani J, Williams R, Badr K. Plasma endothelin immunoreactivity in liver disease and the hepatorenal syndrome. New England Journal of Medicine. 1992;327(25):1774-78. https://doi.org/10.1056/NEJM199212173272502 PMid:1435931

Kayali Z, Herring J, Baron P, Franco E, Ojogho O, Smith J et al. Increased plasma nitric oxide, L- arginine, and arginase-1 in cirrhotic patients with progressive renal dysfunction. J Gastroenterol Hepatol. 2009;24(6):1030-7. https://doi.org/10.1111/j.1440-1746.2008.05757.x PMid:19226382

Alva N, Cruz D, Sanchez S, Valentin JM, Bermudez J, Carbonell T. Nitric oxide as a mediator of fructose 1,6-bisphosphate protection in galactosamine-induced hepatotoxicity in rats. Nitric Oxide. 2013;28:17-23. https://doi.org/10.1016/j.niox.2012.09.004 PMid:23032643

Silveira KC, Viau CM, Colares JR, Saffi J, Marroni NP, Porawski M. Cirrhosis induces apoptosis in renal tissue through intracellular oxidative stress. Arquivos de gastroenterologia. 2015;52(1):65-71. https://doi.org/10.1590/S0004-28032015000100014 PMid:26017086

Assimakopoulos SF, Gogos C, Labropoulou-Karatza C. Could antioxidants be the "magic pill" for cirrhosis-related complications? A pathophysiological appraisal. Med Hypotheses. 2011;77(3):419-23. https://doi.org/10.1016/j.mehy.2011.05.034 PMid:21703771

Guo SB, Duan ZJ, Li Q, Sun XY. Effect of heme oxygenase-1 on renal function in rats with liver cirrhosis. World J Gastroenterol. 2011;17(3):322-8. https://doi.org/10.3748/wjg.v17.i3.322 PMid:21253390 PMCid:PMC3022291

Kang JW, Kim SJ, Kim HY, Cho SH, Kim KN, Lee SG et al. Protective effects of HV-P411 complex against D-galactosamine-induced hepatotoxicity in rats. The American journal of Chinese medicine. 2012;40(3):467-80. https://doi.org/10.1142/S0192415X1250036X PMid:22745064

Aristatile B, Al-Assaf AH, Pugalendi KV. Carvacrol suppresses the expression of inflammatory marker genes in D-galactosamine-hepatotoxic rats. Asian Pac J Trop Med. 2013;6(3):205-11. https://doi.org/10.1016/S1995-7645(13)60024-3

Keller S, Karaa A, Paxian M, Clemens MG, Zhang JX. Inhibition of endothelin-1-mediated up-regulation of iNOS by bosentan ameliorates endotoxin-induced liver injury in cirrhosis. Shock. 2006;25(3):306-13. https://doi.org/10.1097/01.shk.0000196549.18258.6a PMid:16552365

Bosch J, Berzigotti A, Garcia-Pagan JC, Abraldes JG. The management of portal hypertension: rational basis, available treatments and future options. J Hepatol. 2008;48 (Suppl 1):S68-92. https://doi.org/10.1016/j.jhep.2008.01.021 PMid:18304681

Munzel T, Gori T. Nebivolol: the somewhat-different beta-adrenergic receptor blocker. J Am Coll Cardiol. 2009;54(16):1491-9. https://doi.org/10.1016/j.jacc.2009.05.066 PMid:19815121

Garbin U, Fratta Pasini A, Stranieri C, Manfro S, Mozzini C, Boccioletti V et al. Effects of nebivolol on endothelial gene expression during oxidative stress in human umbilical vein endothelial cells. Mediators of inflammation. 2008;2008:367590. https://doi.org/10.1155/2008/367590 PMid:18437228 PMCid:PMC2323596

Fedulenkova LV. [Correction of portal hypertension and renal dysfunction with help of nebivolol and lizinopril in patients with hepatic cirrhosis]. Eksp Klin Gastroenterol. 2009; (5):130-7. PMid:20201315

Reiberger T, Payer BA, Schwabl P, Hayden H, Horvatits T, Jager B et al. Nebivolol treatment increases splanchnic blood flow and portal pressure in cirrhotic rats via modulation of nitric oxide signalling. Liver Int. 2013;33(4):561-8. https://doi.org/10.1111/liv.12101 PMid:23331709

Atwa A, Hegazy R, Shaffie N, Yassin N, Kenawy S. Protective Effects of Vasodilatory Betaeta-Blockers Carvedilol and Nebivolol against Glycerol Model of Rhabdomyolysis-Induced Acute Renal Failure in Rats. Open Access Maced J Med Sci. 2016;4(3):329-36. https://doi.org/10.3889/oamjms.2016.082 PMid:27703551 PMCid:PMC5042611

Ruiz-Larrea MB, Leal AM, Liza M, Lacort M, de Groot H. Antioxidant effects of estradiol and 2- hydroxyestradiol on iron-induced lipid peroxidation of rat liver microsomes. Steroids.1994;59(6):383-8. https://doi.org/10.1016/0039-128X(94)90006-X

Baud L, Ardaillou R. Involvement of reactive oxygen species in kidney damage. Br Med Bull. 1993;49(3):621-9. https://doi.org/10.1093/oxfordjournals.bmb.a072635 PMid:8221027

Bancroft JD, Gamble M. Theory and practice of histological techniques: Elsevier Health Sciences, 2008.

Dunn OJ. Multiple Comparisons Using Rank Sums. Technometrics. 1964; 6(3):241-52. https://doi.org/10.1080/00401706.1964.10490181

Saracyn M, Zabkowski T, Zdanowski R, Brytan M, Patera J, Nowak Z et al. Effect of nitric oxide pathway regulation on water/sodium balance and renal function in a rodent model of acute liver and renal failure. Med Sci Monit. 2014;20:1735-44. https://doi.org/10.12659/MSM.890757 PMid:25270512 PMCid:PMC4186324

Saracyn M, Zdanowski R, Brytan M, Kade G, Nowak Z, Patera J et al. D-Galactosamine Intoxication in Experimental Animals: Is it Only an Experimental Model of Acute Liver Failure? Med Sci Monit. 2015;21:1469-77. https://doi.org/10.12659/MSM.893291 PMid:26009004 PMCid:PMC4451715

Javle P, Yates J, Kynaston HG, Parsons KF, Jenkins SA. Hepatosplanchnic haemodynamics and renal blood flow and function in rats with liver failure. Gut. 1998;43(2):272-9. https://doi.org/10.1136/gut.43.2.272 PMid:10189857 PMCid:PMC1727229

Anand R, Harry D, Holt S, Milner P, Dashwood M, Goodier D et al. Endothelin is an important determinant of renal function in a rat model of acute liver and renal failure. Gut. 2002;50(1):111-7. https://doi.org/10.1136/gut.50.1.111 PMid:11772977 PMCid:PMC1773076

Soper CP, Latif AB, Bending MR. Amelioration of hepatorenal syndrome with selective endothelin-A antagonist. Lancet. 1996; 347(9018):1842-3. https://doi.org/10.1016/S0140-6736(96)91667-0

Izzedine H, Kheder-Elfekih R, Deray G, Thabut D. Endothelin-receptor antagonist/N-acetylcysteine combination in type 1 hepatorenal syndrome. J Hepatol. 2009;50(5):1055-6. https://doi.org/10.1016/j.jhep.2009.02.002 PMid:19328583

Moore K. Endothelin and vascular function in liver disease. Gut. 2004;53(2):159-61. https://doi.org/10.1136/gut.2003.024703 PMid:14724140 PMCid:PMC1774918

Wang JB, Wang HT, Li LP, Yan YC, Wang W, Liu JY et al. Development of a rat model of D- galactosamine/lipopolysaccharide induced hepatorenal syndrome. World J Gastroenterol. 2015; 21(34):9927-35. https://doi.org/10.3748/wjg.v21.i34.9927 PMid:26379397 PMCid:PMC4566385

Wang Y, Li Y, Xie J, Zhang Y, Wang J, Sun X et al. Protective effects of probiotic Lactobacillus casei Zhang against endotoxin- and d-galactosamine-induced liver injury in rats via anti-oxidative and anti- inflammatory capacities. Int Immunopharmacol. 2013; 15(1):30-7. https://doi.org/10.1016/j.intimp.2012.10.026 PMid:23146349

Mahmoud MF, Zakaria S, Fahmy A. Can Chronic Nitric Oxide Inhibition Improve Liver and Renal Dysfunction in Bile Duct Ligated Rats? Advances in pharmacological sciences. 2015;2015:298792.

Morrow JD, Moore KP, Awad JA, Ravenscraft MD, Marini G, Badr KF et al. Marked overproduction of non-cyclooxygenase derived prostanoids (F2-isoprostanes) in the hepatorenal syndrome. Journal of lipid mediators. 1993;6(1-3):417-20. PMid:8358000

Moore K. Isoprostanes and the liver. Chemistry and physics of lipids. 2004;128(1-2):125-33. https://doi.org/10.1016/j.chemphyslip.2003.10.003 PMid:15037158

Fukunaga M, Yura T, Badr KF. Stimulatory effect of 8-Epi-PGF2 alpha, an F2-isoprostane, on endothelin- 1 release. Journal of cardiovascular pharmacology. 994;26:S51-2.

Takahashi K, Nammour TM, Fukunaga M, Ebert J, Morrow JD, Roberts LJ, 2nd et al. Glomerular actions of a free radical-generated novel prostaglandin, 8-epi-prostaglandin F2 alpha, in the rat. Evidence for interaction with thromboxane A2 receptors. J Clin Invest. 1992;90(1):136-41. https://doi.org/10.1172/JCI115826 PMid:1386085 PMCid:PMC443072

Ghosh M, Das J, Sil PC. D(+) galactosamine induced oxidative and nitrosative stress-mediated renal damage in rats via NF-kappaB and inducible nitric oxide synthase (iNOS) pathways is ameliorated by a polyphenol xanthone, mangiferin. Free Radic Res. 2012;46(2):116-32. https://doi.org/10.3109/10715762.2011.644240 PMid:22118634

Abe K, Ijiri M, Suzuki T, Taguchi K, Koyama Y, Isemura M. Green tea with a high catechin content suppresses inflammatory cytokine expression in the galactosamine-injured rat liver. Biomedical research. 2005;26(5):187-92. https://doi.org/10.2220/biomedres.26.187 PMid:16295694

Mahmoud WA, Abdelkader NA, Mansor A. Could serum nitrate and nitrite levels possibly predict hepatorenal syndrome in hepatitis C virus-related liver cirrhosis? Indian J Gastroenterol. 2014;33(3):274-80. https://doi.org/10.1007/s12664-013-0427-x PMid:24287875

Gomez-Hurtado I, Zapater P, Bellot P, Pascual S, Perez-Mateo M, Such J et al. Interleukin-10-mediated heme oxygenase 1-induced underlying mechanism in inflammatory down-regulation by norfloxacin in cirrhosis. Hepatology. 2011; 53(3):935-44. https://doi.org/10.1002/hep.24102 PMid:21374664

Li TH, Lee PC, Lee KC, Hsieh YC, Tsai CY, Yang YY et al. Down-regulation of common NFkappaB- iNOS pathway by chronic Thalidomide treatment improves Hepatopulmonary Syndrome and Muscle Wasting in rats with Biliary Cirrhosis. Sci Rep. 2016; 6:39405.

Islas-Carbajal MC, Covarrubias A, Grijalva G, Alvarez-Rodriguez A, Armendariz-Borunda J, Rincon- Sanchez AR. Nitric oxide synthases inhibition results in renal failure improvement in cirrhotic rats. Liver international: official journal of the International Association for the Study of the Liver. 2005; 25(1):131-40. https://doi.org/10.1111/j.1478-3231.2005.01018.x PMid:15698410

Saracyn M, Wesolowski P, Nowak Z, Patera J, Kozlowski W, Wankowicz Z. [Role of nitric oxide system in pathogenesis of experimental model of hepatorenal syndrome]. Polski merkuriusz lekarski: organ Polskiego Towarzystwa Lekarskiego. 2008;24(142):293-7.

Wang QM, Du JL, Duan ZJ, Guo SB, Sun XY, Liu Z. Inhibiting heme oxygenase-1 attenuates rat liver fibrosis by removing iron accumulation. World J Gastroenterol. 2013;19(19):2921-34. https://doi.org/10.3748/wjg.v19.i19.2921 PMid:23704825 PMCid:PMC3660817

Guo SB, Li Q, Duan ZJ, Wang QM, Zhou Q, Sun XY. Octreotide attenuates liver fibrosis by inhibiting hepatic heme oxygenase-1 expression. Molecular medicine reports. 2015;11(1):83-90. https://doi.org/10.3892/mmr.2014.2735 PMid:25338529 PMCid:PMC4237075

Shafiei MS, Lui S, Rockey DC. Integrin-linked kinase regulates endothelial cell nitric oxide synthase expression in hepatic sinusoidal endothelial cells. Liver Int. 2015;35(4):1213-21. https://doi.org/10.1111/liv.12606 PMid:24906011 PMCid:PMC4258191

Wang QM, Duan ZJ, Du JL, Guo SB, Sun XY, Liu Z. Heme oxygenase/carbon monoxide pathway inhibition plays a role in ameliorating fibrosis following splenectomy. Int J Mol Med. 2013;31(5):1186-94. https://doi.org/10.3892/ijmm.2013.1309 PMid:23525258

Miyazono M, Garat C, Morris KG, Jr., Carter EP. Decreased renal heme oxygenase-1 expression contributes to decreased renal function during cirrhosis. Am J Physiol Renal Physiol. 2002;283(5):F1123-31. https://doi.org/10.1152/ajprenal.00363.2001 PMid:12372789

Yun N, Eum HA, Lee SM. Protective role of heme oxygenase-1 against liver damage caused by hepatic ischemia and reperfusion in rats. Antioxid Redox Signal. 2010;13(10):1503-12. https://doi.org/10.1089/ars.2009.2873 PMid:20446775

Christodoulides N, Durante W, Kroll MH, Schafer AI. Vascular smooth muscle cell heme oxygenases generate guanylyl cyclase–stimulatory carbon monoxide. Circulation. 1995;91(9):2306-09. https://doi.org/10.1161/01.CIR.91.9.2306 PMid:7729015

Morita T, Perrella MA, Lee M-E, Kourembanas S. Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP. Proceedings of the National Academy of Sciences.1995;92(5):1475-79. https://doi.org/10.1073/pnas.92.5.1475

Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH. Carbon monoxide: a putative neural messenger. Science-New York Then Washington. 1993;259:381-81. https://doi.org/10.1126/science.7678352

Herve P, Lebrec D, Brenot F, Simonneau G, Humbert M, Sitbon O et al. Pulmonary vascular disorders in portal hypertension. European Respiratory Journal. 1998;11(5):1153-66. https://doi.org/10.1183/09031936.98.11051153 PMid:9648972

Chang S, Ohara N. Pulmonary circulatory dysfunction in rats with biliary cirrhosis. Am Rev Respir Dis.1992;148:798-805. https://doi.org/10.1164/ajrccm/145.4_Pt_1.798 PMid:1554205

Naik JS, O'Donaughy TL, Walker BR. Endogenous carbon monoxide is an endothelial-derived vasodilator factor in the mesenteric circulation. American Journal of Physiology-Heart and Circulatory Physiology. 2003;284(3):H838-H45. https://doi.org/10.1152/ajpheart.00747.2002 PMid:12446283

Carter EP, Hartsfield CL, Miyazono M, Jakkula M, Morris KG, McMurtry IF. Regulation of heme oxygenase-1 by nitric oxide during hepatopulmonary syndrome. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2002;283(2):L346-L53. https://doi.org/10.1152/ajplung.00385.2001 PMid:12114196

Bomzon A, Holt S, Moore K, editors. Bile acids, oxidative stress, and renal function in biliary obstruction. Seminars in nephrology, 1997.

Carter EP, Hartsfield CL, Miyazono M, Jakkula M, Morris KG, Jr., McMurtry IF. Regulation of heme oxygenase-1 by nitric oxide during hepatopulmonary syndrome. Am J Physiol Lung Cell Mol Physiol. 2002;283(2):L346-53. https://doi.org/10.1152/ajplung.00385.2001 PMid:12114196

Rodriguez F, Kemp R, Balazy M, Nasjletti A. Effects of Exogenous Heme on Renal Function. Hypertension. 2003;42(4):680-84. https://doi.org/10.1161/01.HYP.0000085785.40581.1A PMid:12900432

Froh M, Conzelmann L, Walbrun P, Netter S, Wiest R, Wheeler MD et al. Heme oxygenase-1 overexpression increases liver injury after bile duct ligation in rats. World J Gastroenterol. 2007; 13(25):3478-86. https://doi.org/10.3748/wjg.v13.i25.3478 PMid:17659695 PMCid:PMC4146784

Khan ZA, Barbin YP, Cukiernik M, Adams PC, Chakrabarti S. Heme-oxygenase-mediated iron accumulation in the liver. Can J Physiol Pharmacol. 2004;82(7):448-56. https://doi.org/10.1139/y04-052 PMid:15389291

Sessa WC. eNOS at a glance. J Cell Sci. 2004;117(Pt 2):2427-9. https://doi.org/10.1242/jcs.01165 PMid:15159447

Shah V, Wiest R, Garcia-Cardena G, Cadelina G, Groszmann RJ, Sessa WC. Hsp90 regulation of endothelial nitric oxide synthase contributes to vascular control in portal hypertension. Am J Physiol.1999;277(2 Pt 1):G463-8. PMid:10444461

Sowa G, Liu J, Papapetropoulos A, Rex-Haffner M, Hughes TE, Sessa WC. Trafficking of endothelial nitric-oxide synthase in living cells. Quantitative evidence supporting the role of palmitoylation as a kinetic trapping mechanism limiting membrane diffusion. J Biol Chem. 1999;274(32):22524-31. https://doi.org/10.1074/jbc.274.32.22524 PMid:10428829

Iwakiri Y, Tsai MH, McCabe TJ, Gratton JP, Fulton D, Groszmann RJ et al. Phosphorylation of eNOS initiates excessive NO production in early phases of portal hypertension. Am J Physiol Heart Circ Physiol. 2002;282(6):H2084-90. https://doi.org/10.1152/ajpheart.00675.2001 PMid:12003815

Wang JB, Wang DL, Wang HT, Wang ZH, Wen Y, Sun CM et al. Tumor necrosis factor-alpha-induced reduction of glomerular filtration rate in rats with fulminant hepatic failure. Lab Invest. 2014;94(7):740-51. https://doi.org/10.1038/labinvest.2014.71 PMid:24887412

Ulger BV, Erbis H, Turkcu G, Ekinci A, Turkoglu MA, Ekinci C et al. Nebivolol Ameliorates Hepatic Ischemia/Reperfusion Injury on Liver But Not on Distant Organs. Journal of investigative surgery : the official journal of the Academy of Surgical Research. 2015; 28(5):245-52. https://doi.org/10.3109/08941939.2015.1031923 PMid:26305470

Teixeira C, Franco E, Oliveira PA, Colaco B, Gama A, Carrola J et al. Effects of nebivolol on liver fibrosis induced by bile duct ligation in Wistar rats. In vivo. 2013;27(5):635-40. PMid:23988899

Morsy MA, Heeba GH. Nebivolol Ameliorates Cisplatin-Induced Nephrotoxicity in Rats. Basic & clinical pharmacology & toxicology. 2016;118(6):449-55. https://doi.org/10.1111/bcpt.12538 PMid:26617394

Bundkirchen A, Brixius K, Bolck B, Nguyen Q, Schwinger RH. Beta 1-adrenoceptor selectivity of nebivolol and bisoprolol. A comparison of [3H]CGP 12.177 and [125I]iodocyanopindolol binding studies. Eur J Pharmacol. 2003;460(1):19-26. https://doi.org/10.1016/S0014-2999(02)02875-3

Silkauskaite V, Kupcinskas J, Pranculis A, Jonaitis L, Petrenkiene V, Kupcinskas L. Acute and 14-day hepatic venous pressure gradient response to carvedilol and nebivolol in patients with liver cirrhosis. Medicina. 2013; 49(11):467-73.

Perros F, Ranchoux B, Izikki M, Bentebbal S, Happe C, Antigny F et al. Nebivolol for improving endothelial dysfunction, pulmonary vascular remodeling, and right heart function in pulmonary hypertension. J Am Coll Cardiol. 2015;65(7):668-80.

https://doi.org/10.1016/j.jacc.2014.11.050

PMid:25677428

Brehm BR, Bertsch D, von Fallois J, Wolf SC. Beta-blockers of the third generation inhibit endothelin-1 liberation, mRNA production and proliferation of human coronary smooth muscle and endothelial cells. J Cardiovasc Pharmacol. 2000;36(5 Suppl 1):S401-3. https://doi.org/10.1097/00005344-200036051-00117 PMid:11078433

Diehl KJ, Stauffer BL, Dow CA, Bammert TD, Brunjes DL, Greiner JJ et al. Chronic Nebivolol Treatment Suppresses Endothelin-1-Mediated Vasoconstrictor Tone in Adults With Elevated Blood Pressure. Hypertension. 2016;67(6):1196-204. https://doi.org/10.1161/HYPERTENSIONAHA.115.06979 PMid:27113048 PMCid:PMC4871319

Akgullu C, Huyut MA, Boyacioglu M, Gules O, Eryilmaz U, Hekim T et al. Nebivolol to attenuate the effects of hyper-homocysteinaemia in rats. Atherosclerosis. 2015 ;240(1):33-9. https://doi.org/10.1016/j.atherosclerosis.2015.02.054 PMid:25746375

Rofaeil RR, Kamel MY, Abdelzaher WY. Different effects of selective beta1-adrenoceptor antagonists, nebivolol or atenolol in acetaminophen-induced hepatotoxicity of rats. Fundam Clin Pharmacol. 2017; 31(2):165-73. https://doi.org/10.1111/fcp.12253 PMid:27862262

Troost R, Schwedhelm E, Rojczyk S, Tsikas D, Frolich JC. Nebivolol decreases systemic oxidative stress in healthy volunteers. British journal of clinical pharmacology. 2000;50(4):377-9. https://doi.org/10.1046/j.1365-2125.2000.00258.x PMid:11012562 PMCid:PMC2014994

Cominacini L, Fratta Pasini A, Garbin U, Nava C, Davoli A, Criscuoli M et al. Nebivolol and its 4-keto derivative increase nitric oxide in endothelial cells by reducing its oxidative inactivation. J Am Coll Cardiol. 2003;42(10):1838-44. https://doi.org/10.1016/j.jacc.2003.06.011 PMid:14642697

Habibi J, Hayden MR, Sowers JR, Pulakat L, Tilmon RD, Manrique C et al. Nebivolol attenuates redox- sensitive glomerular and tubular mediated proteinuria in obese rats. Endocrinology. 2011;152(2):659-68. https://doi.org/10.1210/en.2010-1038 PMid:21177830 PMCid:PMC3037162

Ignarro LJ. Different pharmacological properties of two enantiomers in a unique beta-blocker, nebivolol. Cardiovasc Ther. 2008;26(2):115-34. https://doi.org/10.1111/j.1527-3466.2008.00044.x PMid:18485134

Li MH, Jang JH, Na HK, Cha YN, Surh YJ. Carbon monoxide produced by heme oxygenase-1 in response to nitrosative stress induces expression of glutamate-cysteine ligase in PC12 cells via activation of phosphatidylinositol 3-kinase and Nrf2 signaling. J Biol Chem. 2007;282(39):28577-86. https://doi.org/10.1074/jbc.M701916200 PMid:17681938

Stevenson TH, Gutierrez AF, Alderton WK, Lian L, Scrutton NS. Kinetics of CO binding to the haem domain of murine inducible nitric oxide synthase: differential effects of haem domain ligands. Biochem J. 2001;358(Pt 1):201-8. https://doi.org/10.1042/bj3580201 PMid:11485568 PMCid:PMC1222048

Wolf SC, Sauter G, Jobst J, Kempf VA, Risler T, Brehm BR. Major differences in gene expression in human coronary smooth muscle cells after nebivolol or metoprolol treatment. Int J Cardiol. 2008;125(1):4-10. https://doi.org/10.1016/j.ijcard.2007.02.045 PMid:17467819

Uzar E, Acar A, Evliyaoglu O, Firat U, Kamasak K, Gocmez C et al. The anti-oxidant and anti-apoptotic effects of nebivolol and zofenopril in a model of cerebral ischemia/reperfusion in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2012;36(1):22-8. https://doi.org/10.1016/j.pnpbp.2011.08.011 PMid:21888941

Heeba GH, El-Hanafy AA. Nebivolol regulates eNOS and iNOS expressions and alleviates oxidative stress in cerebral ischemia/reperfusion injury in rats. Life Sci. 2012;90(11-12):388-95. https://doi.org/10.1016/j.lfs.2011.12.001 PMid:22226906

Moningka NC, Tsarova T, Sasser JM, Baylis C. Protective actions of nebivolol on chronic nitric oxide synthase inhibition-induced hypertension and chronic kidney disease in the rat: a comparison with angiotensin II receptor blockade. Nephrol Dial Transplant. 2012;27(3):913-20. https://doi.org/10.1093/ndt/gfr449 PMid:21856762 PMCid:PMC3289897

Published

2017-12-13

How to Cite

1.
Atwa A, Hegazy R, Mohsen R, Yassin N, Kenawy S. Protective Effects of the Third Generation Vasodilatory Î’eta - Blocker Nebivolol against D-Galactosamine - Induced Hepatorenal Syndrome in Rats. Open Access Maced J Med Sci [Internet]. 2017 Dec. 13 [cited 2024 Apr. 18];5(7):880-92. Available from: https://oamjms.eu/index.php/mjms/article/view/oamjms.2017.173

Issue

Section

A - Basic Science