Primaquine-chitosan Nanoparticle Improves Drug Delivery to Liver Tissue in Rats
DOI:
https://doi.org/10.3889/oamjms.2022.10005Keywords:
8-Aminoquinoline, Antimalarial, Hypnozoite, Nanoformulation, Plasmodium vivax, PharmacokineticsAbstract
Introduction:
Primaquine is one of the essential medicines used to treat malaria due to Plasmodium vivax. Primaquine acts by eradicating hypnozoites in the liver, and its effect is dependent on the drug concentrations in the target tissue. The present study aimed to prepare primaquine in nanoparticle formulation using chitosan as carriers and improve on-target primaquine delivery to the liver.
Methods: Primaquine-loaded chitosan nanoparticles were prepared using the ionic gelation method variations. Then, the resulting primaquine-chitosan nanoparticles were administered to the rats and compared with conventional primaquine. Afterward, plasma and liver concentrations of primaquine were quantified.
Results: The primaquine-chitosan nanoparticles obtained were at 47.9 nm. The area under the curve for primaquine-chitosan nanoparticles resulted lower in the area under the curve (AUC) and Cmax, 0.46 and 0.42 times of conventional primaquine, respectively. However, no differences were found in time to reach Cmax (Tmax). Primaquine liver concentrations obtained with primaquine-chitosan nanoprimaquine resulted in 3 times higher than primaquine concentration.
Conclusion: Enhanced drug delivery to rat liver tissue by primaquine-chitosan nanoparticles may improve on-target drug delivery to the liver, enhance primaquine ant hypnozoites effects, and reduce unwanted side effects in the circulation.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Baird JK. Basic research of Plasmodium vivax biology enabling its management as a clinical and public health problem. Front Cell Infect Microbiol. 2021;11:696598. DOI: https://doi.org/10.3389/fcimb.2021.696598
Battle KE, Lucas TC, Nguyen M, Howes RE, Nandi AK, Twohig KA, et al. Mapping the global endemicity and clinical burden of Plasmodium vivax, 2000-17: A spatial and temporal modelling study. Lancet. 2019;394(10195):332-43. https://doi.org/10.1016/S0140-6736(19)31096-7 PMid:31229233 DOI: https://doi.org/10.1016/S0140-6736(19)31096-7
White NJ. Anti-malarial drug effects on parasite dynamics in vivax malaria. Malar J. 2021;20(1):161. https://doi.org/10.1186/s12936-021-03700-7 PMid:33743731 DOI: https://doi.org/10.1186/s12936-021-03700-7
Howes RE, Battle KE, Mendis KN, Smith DL, Cibulskis RE, Baird JK, et al. Global Epidemiology of Plasmodium vivax. Am Soc Trop Med Hyg. 2016;95 6 Suppl:15-34. https://doi.org/10.4269/ajtmh.16-0141 PMid:27402513 DOI: https://doi.org/10.4269/ajtmh.16-0141
Schäfer C, Zanghi G, Vaughan AM, Kappe SH. Plasmodium vivax latent liver stage infection and relapse: Biological insights and new experimental tools. Annu Rev Microbiol. 2021;75:87-106. https://doi.org/10.1146/annurev-micro-032421-061155 PMid:34196569 DOI: https://doi.org/10.1146/annurev-micro-032421-061155
Wu C, Qu G, Wang L, Cao S, Xia D, Wang B, et al. Clinical characteristics and inflammatory immune responses in COVID-19 patients with hypertension: A retrospective study. Front Pharmacol. 2021;12:721769. https://doi.org/10.3389/fphar.2021.721769 PMid:34759820 DOI: https://doi.org/10.3389/fphar.2021.721769
Zorc B, Perković I, Pavić K, Rajić Z, Beus M. Primaquine derivatives: Modifications of the terminal amino group. Eur J Med Chem. 2019;182:111640. https://doi.org/10.1016/j.ejmech.2019.111640 PMid:31472472 DOI: https://doi.org/10.1016/j.ejmech.2019.111640
Kirtane AR, Verma M, Karandikar P, Furin J, Langer R, Traverso G. Nanotechnology approaches for global infectious diseases. Nat Nanotechnol. 2021;16(4):369-84. https://doi.org/10.1038/s41565-021-00866-8 PMid:33753915 DOI: https://doi.org/10.1038/s41565-021-00866-8
Dustgani A, Farahani EV, Imani M. Preparation of chitosan nanoparticles loaded by dexamethasone sodium phosphate. Iran J Pharm Sci. 2008;4:111-4.
Cho Y, Shi R, Ben Borgens R. Chitosan nanoparticle-based neuronal membrane sealing and neuroprotection following acrolein-induced cell injury. J Biol Eng. 2010;4(1):2. https://doi.org/10.1186/1754-1611-4-2 PMid:20205817 DOI: https://doi.org/10.1186/1754-1611-4-2
Popovici J, Tebben K, Witkowski B, Serre D. Primaquine for Plasmodium vivax radical cure: What we do not know and why it matters. Int J Parasitol Drugs Drug Resist. 2021;15:36-42. https://doi.org/10.1016/j.ijpddr.2020.12.004 PMid:33529838 DOI: https://doi.org/10.1016/j.ijpddr.2020.12.004
Blanchard OL, Smoliga JM. Translating dosages from animal models to human clinical trials-revisiting body surface area scaling. FASEB J. 2015;29(5):1629-34. https://doi.org/10.1096/fj.14-269043 PMid:25657112 DOI: https://doi.org/10.1096/fj.14-269043
Nair A, Morsy MA, Jacob S. Dose translation between laboratory animals and human in preclinical and clinical phases of drug development. Drug Dev Res. 2018;79(8):373-82. https://doi.org/10.1002/ddr.21461 PMid:30343496 DOI: https://doi.org/10.1002/ddr.21461
Juliati J. Effect of Piperaquine on Pharmacokinetics of Primaquine in Combincation in Primaquine and Piperaquine in Rats. Indonesia: Universitas Indonesia; 2012.
Briggs RJ, Nicholson R, Vazvaei F, Busch J, Mabuchi M, Mahesh KS, et al. Method transfer, partial validation, and cross validation: Recommendations for best practices and harmonization from the global bioanalysis consortium harmonization team. AAPS J. 2014;16(6):1143-8. https://doi.org/10.1208/s12248-014-9650-3 PMid:25190270 DOI: https://doi.org/10.1208/s12248-014-9650-3
Bauer LA. Clinical pharmacokinetic equations and calculations. In: Bauer LA, editor. Applied Clinical Pharmacokinetics, 2nd ed., Ch. 2. New York, NY: The McGraw-Hill Companies; 2008.
Qi L, Xu Z, Jiang X, Hu C, Zou X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res. 2004;339(16):2693-700. https://doi.org/10.1016/j.carres.2004.09.007 PMid:15519328 DOI: https://doi.org/10.1016/j.carres.2004.09.007
Mohammed MA, Syeda JT, Wasan KM, Wasan EK. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics. 2017;9(4):53. https://doi.org/10.3390/pharmaceutics9040053 PMid:29156634 DOI: https://doi.org/10.3390/pharmaceutics9040053
Katas H, Raja MAG, Lam KL. Development of chitosan nanoparticles as a stable drug delivery system for protein/siRNA. Int J Biomater. 2013;2013:146320. https://doi.org/10.1155/2013/146320 PMid:24194759 DOI: https://doi.org/10.1155/2013/146320
Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. Drug release study of the chitosan-based nanoparticles. Heliyon. 2022;8(1):e08674. https://doi.org/10.1016/j.heliyon.2021.e08674 PMid:35028457 DOI: https://doi.org/10.1016/j.heliyon.2021.e08674
Garg U, Chauhan S, Nagaich U, Jain N. Current advances in chitosan nanoparticles based drug delivery and targeting. Adv Pharm Bull. 2019;9(2):195-204. https://doi.org/10.15171/apb.2019.023 PMid:31380245 DOI: https://doi.org/10.15171/apb.2019.023
Wimardhani YS, Suniarti DF, Freisleben HJ, Wanandi SI, Siregar NC, Ikeda MA. Chitosan exerts anticancer activity through induction of apoptosis and cell cycle arrest in oral cancer cells. J Oral Sci. 2014;56(2):119-26. https://doi.org/10.2334/josnusd.56.119 PMid:24930748 DOI: https://doi.org/10.2334/josnusd.56.119
Gupta N, Rajera R, Nagpal M, Arora S. Primaquine loaded chitosan nanoparticles for liver targeting. Pharm Nanotechnol. 2012;1:35-43. DOI: https://doi.org/10.2174/2211738511301010035
Clogston JD, Patri AK. Zeta potential measurement. Methods Mol Biol. 2011;697:63-70. https://doi.org/10.1007/978-1-60327-198-1_6 PMid:21116954 DOI: https://doi.org/10.1007/978-1-60327-198-1_6
Selmani A, Kovačević D, Bohinc K. Nanoparticles: From synthesis to applications and beyond. Adv Colloid Interface Sci. 2022;303:102640. https://doi.org/10.1016/j.cis.2022.102640 PMid:35358806 DOI: https://doi.org/10.1016/j.cis.2022.102640
Liew KB, Janakiraman AK, Sundarapandian R, Khalid SH, Razzaq FA, Ming LC, et al. A review and revisit of nanoparticles for antimicrobial drug delivery. J Med Life. 2022;15(3):328-35. https://doi.org/10.25122/jml-2021-0097 PMid:35449993
Sailaja AK, Amareshwar P, Chakravart. Chitosan Nanoparticles as a Drug Delivery System. Res J Pharm Biol Chem Sci. 2010;1(3):474-84.
Baird K. Origins and implications of neglect of G6PD deficiency and primaquine toxicity in Plasmodium vivax malaria. Pathog Glob Health. 2015;109(3):93-106. https://doi.org/10.1179/2047773215Y.0000000016 PMid:25943156 DOI: https://doi.org/10.1179/2047773215Y.0000000016
Ashley EA, Recht J, White NJ. Primaquine: The risks and the benefits. Malar J. 2014;13:418. https://doi.org/10.1186/1475-2875-13-418 PMid:25363455 DOI: https://doi.org/10.1186/1475-2875-13-418
Mahmood I. Simple method for the estimation of absorption rate constant(ka) after oral administration. Am J Ther. 1998;5(6):377-82. https://doi.org/10.1097/00045391-199811000-00004 PMid:10099080 DOI: https://doi.org/10.1097/00045391-199811000-00004
da Silva de Barros AO, Portilho FL, Dos Santos Matos AP, Ricci-Junior E, Alencar LM, Dos Santos CC, et al. Preliminary studies on drug delivery of polymeric primaquine microparticles using the liver high uptake effect based on size of particles to improve malaria treatment. Mater Sci Eng C Mater Biol Appl. 2021;128:112275. https://doi.org/10.1016/j.msec.2021.112275 PMid:34474834 DOI: https://doi.org/10.1016/j.msec.2021.112275
Downloads
Published
How to Cite
License
Copyright (c) 2022 Melva Louisa, Putrya Hawa, Purwantyastuti Purwantyastuti, Etik Mardliyati, Hans-Joachim Freisleben (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0