Anti-Mitoticpotential Identification of Nyale (Eunice sp.) in The Tourism Area of Kuta Beach, Lombok Island, West Nusa Tenggara
DOI:
https://doi.org/10.3889/oamjms.2022.10035Keywords:
Anti-mitotic, Eunice sp., Lombok Island, Marine Worm, NyaleAbstract
BACKGROUND: BauNyale festival is a Lombok tradition that originated in the Kuta beach tourism area in Central Lombok. The locals of Lombok Island gathered in this location to harvest marine worms known as Nyale (Eunice sp.). The ability of marine worms to act as anticancer agents has received little attention in Indonesia.
AIM: This study aimed to examine the biomolecules compounds of Nyale as antimitotic candidates.
METHODS: This was a preliminary study using post-test only with a control group design. The sample of this study was Nyale (Eunice sp.), and sea urchin (Tripneustes ventricosus) collected from Kuta beach, Central Lombok. The Nyale was extracted with 96% ethanol as the solvent. Gas Chromatography-Mass Spectrometry (GCMS) was used to determine the content of bioactive compounds. Sea urchin embryos were divided into four treatment groups (control; 10 mg, 100 mg, and 1000 mg; 1000 mg of Nyale extract). After 2 h of fertilization incubation, the number of cell division phases (2–32 cells) was counted. The data were analyzed using ANOVA.
RESULTS: The results of the GCMS test revealed that there were ten different compounds in the Nyale ethanol extract. There was a tendency for cleavage when testing the anti-mitotic potential of Nyale extract in each group. There was a significant difference in the percentage of cell changes in all treatments (control, 10 mg, 100 mg, and 1000 mg) (p < 0.005).
CONCLUSION: Bioactive compounds found in marine worms (nyale) influence the percentage of cell division (anti-mitotic) in sea urchin embryos.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Bachtiar I, Odani S. Revisiting the Spawning Pattern of Nyale Worms (Eunicidae) Using the Metonic Cycle. ILMU KELAUTAN Indones J Marine Sci. 2021;26(2):87-94. https://doi.org/10.14710/ik.ijms.26.2.87-94 DOI: https://doi.org/10.14710/ik.ijms.26.2.87-94
Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep M. Marine Natural Products.Nat. Prod. Rep. 2022;35:8-53. DOI: https://doi.org/10.1039/C7NP00052A
Noble K, Rohaj A, Abegglen LM, Schiffman JD. Cancer therapeutics inspired by defense mechanisms in the animal kingdom. Evolutionary Applications. 2020;13(7):1681-700. https://doi.org/10.1111/eva.12963 DOI: https://doi.org/10.1111/eva.12963
Wang E, Sorolla MA, Krishnan PD, Sorolla AJ. From seabed to bedside: A review on promising marine anticancer compounds. Biomolecules. 2020;10(2):248. https://doi.org/10.3390/biom10020248 DOI: https://doi.org/10.3390/biom10020248
Joshi D, Mankodi P. Malacology and Pharmacology: An Integrated Approach with Special Emphasis on Marine Realm. Marine Niche: Applications in Pharmaceutical Sciences. Singapore: Springer; 2020. p. 255-64. DOI: https://doi.org/10.1007/978-981-15-5017-1_14
Coutinho MC, Teixeira VL, Santos CS. A review of “Polychaeta” chemicals and their possible ecological role. J Chem Ecol. 2018;44:72-94. http://doi.org/10.1007/s10886-017-0915-z PMid:29273953 DOI: https://doi.org/10.1007/s10886-017-0915-z
Huigens RW 3rd, Brummel BR, Tenneti S, Garrison AT, Xiao T. Pyrazine and phenazine heterocycles: Platforms for total synthesis and drug discovery. Molecules. 2022;27(3):1112. http://doi.org/10.3390/molecules27031112 PMid:35164376 DOI: https://doi.org/10.3390/molecules27031112
Matulja D, Wittine K, Malatesti N, Laclef S, Turks M, Markovic MK, et al. Marine natural products with high anticancer activities. Curr Med Chem. 2020;27(8):1243-307. http://doi.org/10.2174/0929867327666200113154115 PMid:31931690 DOI: https://doi.org/10.2174/0929867327666200113154115
Coulup SK, Georg GI. Revisiting microtubule targeting agents: α-Tubulin and the pironetin binding site as unexplored targets for cancer therapeutics. Bioorg Med Chem Lett. 2019;29(15):1865-73. http://doi.org/10.1016/j.bmcl.2019.05.042 PMid:31130264 DOI: https://doi.org/10.1016/j.bmcl.2019.05.042
Roll-Mecak A. How cells exploit tubulin diversity to build functional cellular microtubule mosaics. Curr Opin Cell Biol. 2019;56:102-8. http://doi.org/10.1016/j.ceb.2018.10.009 PMid:30466050 DOI: https://doi.org/10.1016/j.ceb.2018.10.009
Haider K, Rahaman S, Yar MS, Kamal A. Tubulin inhibitors as novel anticancer agents: an overview on patents (2013-2018). Expert Opin Ther Pat. 2019;29(8):623-41. http://doi.org/10.1080/13543776.2019.1648433 PMid:31353978 DOI: https://doi.org/10.1080/13543776.2019.1648433
Babic T, Dinic J, Buric SS, Hadzic S, Pesic M, Radojkovic D, et al. Comparative toxicity evaluation of targeted anticancer therapeutics in embryonic zebrafish and sea urchin models. Acta Biol Hung. 2018;69(4):395-410. http://doi.org/10.1556/018.69.2018.4.3 PMid:30587022 DOI: https://doi.org/10.1556/018.69.2018.4.3
Leary PE, Kammrath BW, Lattman KJ, Beals GL. Deploying portable gas chromatography-mass spectrometry (GC-MS) to military users for the identification of toxic chemical agents in theater. Appl Spectrosc. 2019;73(8):841-58. http://doi.org/10.1177/0003702819849499 PMid:31008649 DOI: https://doi.org/10.1177/0003702819849499
Wibowo ES, Yuwono E, Sukardi P, Siregar AS. Survival rate, growth, and chemical content of Dendronereis pinnaticirris (Polychaeta, Nereidae) in maintenance with different feeds and substrates. Indones J Mar Sci. 2020;25(2):75-84. DOI: https://doi.org/10.14710/ik.ijms.25.2.75-84
Pamungkas J. Species richness and macronutrient content of wawo worms (Polychaeta, Annelida) from Ambonese waters, Maluku, Indonesia. Biodivers Data J. 2015;3:e4251. http://doi.org/10.3897/BDJ.3.e4251 PMid:25829856 DOI: https://doi.org/10.3897/BDJ.3.e4251
Hariyadi P. Freeze drying technology: for better quality and flavor of dried products. Foodreview Indones. 2013;8(2):52-7.
Ngoi NY, Liew AQ, Chong SJ, Davids MS, Clement MV, Pervaiz S. The redox-senescence axis and its therapeutic targeting. Redox Biol. 2021;45:102032. http://doi.org/10.1016/j.redox.2021.102032 PMid:34147844 DOI: https://doi.org/10.1016/j.redox.2021.102032
Henriques AC, Silva PM, Sarmento B, Bousbaa H. Antagonizing the spindle assembly checkpoint silencing enhances paclitaxel and Navitoclax-mediated apoptosis with distinct mechanistic. Sci Rep. 2021;11(1):4139. http://doi.org/10.1038/s41598-021-83743-7 PMid:33603057 DOI: https://doi.org/10.1038/s41598-021-83743-7
Alhussan A, Chithrani DB. Microtubule Targeting in Cancer Treatment. Organelle and Molecular Targeting. Boca Raton, FL: CRC Press; 2021. p. 403-20. DOI: https://doi.org/10.1201/9781003092773-16
Downloads
Published
How to Cite
License
Copyright (c) 2022 Putu Dedy Arjita, Rozikin Rozikin, Gede Angga Adnyana, Ayu Anulus, Sukandriani Utami, Aris Widiyanto, Santy Irene Putri (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0