Histological Effect of Gemcitabine on the Liver and Kidney of Male Rat with and without Melatonin
DOI:
https://doi.org/10.3889/oamjms.2022.10071Keywords:
Gemcitabine, Melatonin, Liver, Kidney, RatAbstract
Background: the aim of this study is to identify the toxic effect of gemcitabine on the kidney and liver tissues of rat and whether melatonin has any protective effect on these tissues.
MATERIALS AND METHODS: 32 adults male Wistar rats were selected and divided into four groups. Group A was the control group that received normal saline. Group B received gemcitabine alone in a dose of 25mg/kg body weight intraperitoneally once per week for four successive weeks. Group C received gemcitabine intraperitoneally in a dose of 25mg/ kg and melatonin orally in a dose of 10mg/kg once per week for four successive weeks. Group D received only melatonin 10mg/kg once per week for four weeks.
RESULTS: The histological changes of liver of group B showed disorganization of hepatic tissue with congestion in the portal area and chronic inflammatory cells infiltration in the periportal area. Nuclei of some hepatocytes were vesicular with steatosis. In group C liver sections showed inflammatory cell infiltration with mild pyknosis of some hepatocytes. Liver sections of group D were limited to degeneration of some hepatocyte. Renal sections of group B showed degeneration and necrosis of epithelial cells with thickening of blood vessel wall, congestion and thrombus formation with cystic appearance in the interstitial tissue were detected. While in group C the histological sections showed swelling of epithelial cells lining renal tubules with congestion of blood vessels. Renal sections of group D were more or less normal.
CONCLUSION: the present study concluded that gemcitabine induced toxic effect on liver and kidney of male rats and melatonin may play protective effect on the tissue of these organs.
Key wards: gemcitabine, melatonin, liver, kidney, rat
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Aapro MS, Martin C, Hatty S. Gemcitabine – A safety review. Anticancer Drugs. 1998;9:191-201. http://doi.org/10.1097/00001813-199803000-00001 PMid:9625429 DOI: https://doi.org/10.1097/00001813-199803000-00001
Brunton LL, Chabner BA, Knollmann BC. Goodman & Gilman’s: The Pharmacological Basis of Therapeutics, 11th ed. New York, NY: The McGraw-Hill Companies; 2006. p. 1346-7.
Ciccolini J, Serdjebi C, Peters GJ, Giovannetti E. Pharmacokinetics and pharmacogenetics of Gemcitabine as a mainstay in adult and pediatric oncology: An EORTC-PAMM perspective. Cancer Chemother Pharmacol. 2016;78(1):1-12. http://doi.org/10.1007/s00280-016-3003-0 PMid:27007129 DOI: https://doi.org/10.1007/s00280-016-3003-0
de Sousa Cavalcante L, Monteiro G. Gemcitabine: Metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur J Pharmacol. 2014;741:8-16. http://doi.org/10.1016/j.ejphar.2014.07.041 PMid:25084222 DOI: https://doi.org/10.1016/j.ejphar.2014.07.041
Samec M, Liskova A, Koklesova L, Zhai K, Varghese E, Samuel SM, et al. Metabolic anti-cancer effects of melatonin: Clinically relevant prospects. Cancers (Basel). 2021;13(12):3018. http://doi.org/10.3390/cancers13123018 PMid:34208645 DOI: https://doi.org/10.3390/cancers13123018
Plunkett W, Huang P, Xu YZ, Heinemann V, Grunewald R, Gandhi V. Gemcitabine: Metabolism, mechanisms of action, and self-potentiation. Semin Oncol 1995;22(4 Suppl 11):3-10.
Veltkamp SA, Pluim D, van Tellingen O, Beijnen JH, Schellens JH. Extensive metabolism and hepatic accumulation of gemcitabine after multiple oral and intravenous administration in mice. Drug Metab Dispos. 2008;36(8):1606-15. http://doi.org/10.1124/dmd.108.021048 PMid:18490432 DOI: https://doi.org/10.1124/dmd.108.021048
Venook AP, Egorin MJ, Rosner GL, Hollis D, Mani S, Hawkins M, et al. Phase I and pharmacokinetic trial of gemcitabine in patients with hepatic or renal dysfunction: Cancer and Leukemia Group B 9565. J Clin Oncol. 2000;18(14):2780-7. http://doi.org/10.1200/JCO.2000.18.14.2780 PMid:10894879 DOI: https://doi.org/10.1200/JCO.2000.18.14.2780
Reiter RJ. Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev. 1991;12(2):151-80. http://doi.org/10.1210/edrv-12-2-151 PMid:1649044 DOI: https://doi.org/10.1210/edrv-12-2-151
Borjigin J, Li X, Snyder SH. The pineal gland and melatonin: molecular and pharmacologic regulation. Annu Rev Pharmacol Toxicol. 1999;39:53-65. http://doi.org/10.1146/annurev.pharmtox.39.1.53 PMid:10331076 DOI: https://doi.org/10.1146/annurev.pharmtox.39.1.53
Pandi-Perumal SR, Trakht I, Srinivasan V, Spence DW, Maestroni GJ, Zisapel N, et al. Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways. Prog Neurobiol. 2008;85(3):335-53. http://doi.org/10.1016/j.pneurobio.2008.04.001 PMid:18571301 DOI: https://doi.org/10.1016/j.pneurobio.2008.04.001
Hardeland R, Reiter RJ, Poeggeler B, Tan DX. The significance of the metabolism of the neurohormone melatonin: antioxidative protection and formation of bioactive substances. Neurosci Biobehav Rev. 1993;17(3):347-57. http://doi.org/10.1016/s0149-7634(05)80016-8 PMid:8272286 DOI: https://doi.org/10.1016/S0149-7634(05)80016-8
Hernández-Velázquez B, Camara-Lemarroy CR, González- González JA, García-Compean D, Monreal-Robles R, Cordero-Pérez P, et al. Effects of melatonin on the acute inflammatory response associated with endoscopic retrograde cholangiopancreatography: A randomized, double-blind, placebo-controlled trial. Rev Gastroenterol Mex. 2016;81(3):141-8. http://doi.org/10.1016/j.rgmx.2016.03.003 PMid:27320538 DOI: https://doi.org/10.1016/j.rgmxen.2016.06.014
Sharma S, Rana SV. Melatonin inhibits benzene-induced lipid peroxidation in rat liver. Arh Hig Rada Toksikol. 2010;61(1):11-8. http://doi.org/10.2478/10004-1254-61-2010-1979 PMid:20338863 DOI: https://doi.org/10.2478/10004-1254-61-2010-1979
Kim JW, Jo J, Kim JY, Choe M, Leem J, Park JH. Melatonin Attenuates Cisplatin-Induced Acute Kidney Injury through Dual Suppression of Apoptosis and Necroptosis. Biology (Basel). 2019;8(3):E64. http://doi.org/10.3390/biology8030064 PMid:31480317 DOI: https://doi.org/10.3390/biology8030064
Mortazavi P, Ahmadnezhad B, Pousty I, Panahi N, Aghazadeh M. Renal Protective effects of Melatonin in rat treated by Gemcitabine. Int J Vet Sci Res. 2017;3(2):074-7. http://doi.org/10.17352/ijvsr.00002 DOI: https://doi.org/10.17352/ijvsr.000025
Kamer E, Coker A, Sevinç AI, Ozkara E, Ozer E, Ozzeybek T. Effects of intraperitoneal administration of gemcitabine and paclitaxel on hepatic regeneration in rats. Turk J Gastroenterol 2003;14(1):1-6. PMid:14593530
Luna LG. Manual of Histologic Staining Methods of the Armed Forces Institute of Pathology. 3rd ed. USA: McGraw Hill Book CO.; 1968. p. 134-58.
Noble S, Goa KL. Gemcitabine. Drugs. 1997;54(3):447-72. http://doi.org/10.2165/00003495-199754030-00009 DOI: https://doi.org/10.2165/00003495-199754030-00009
Hailan WA, Abou-Tarboush FM, Al-Anazi KM, Ahmad A, Qasem A, Farah MA. Gemcitabine induced cytotoxicity, DNA damage and hepatic injury in laboratory mice. Drug Chem Toxicol. 2020;43(2):158-64. http://doi.org/10.1080/01480545.2018.1504957 PMid:30203996 DOI: https://doi.org/10.1080/01480545.2018.1504957
Hryciuk B, Szymanowski B, Romanowska A, Salt E, Wasąg B, Grala B, et al. Severe acute toxicity following gemcitabine administration: A report of four cases with cytidine deaminase polymorphisms evaluation. Oncol Lett. 2018;15(2):1912-6. http://doi.org/10.3892/ol.2017.7473 PMid:29434889 DOI: https://doi.org/10.3892/ol.2017.7473
Mascherona I, Maggioli C, Biggiogero M, Mora O, Marelli L. A Severe Case of Drug-Induced Liver Injury after Gemcitabine Administration: A Highly Probable Causality Grading as Assessed by the Updated RUCAM Diagnostic Scoring System. Case Reports Hepatol. 2020;2020:8812983. http://doi.org/10.1155/2020/8812983 PMid:33083070 DOI: https://doi.org/10.1155/2020/8812983
Saad SY, Najjar TA, Noreddin AM, Al-Rikabi AC. Effects of gemcitabine on cisplatin-induced nephrotoxicity in rats: schedule-dependent study. Pharmacol Res. 2001;43(2):193-8. http://doi.org/10.1006/phrs.2000.0764 PMid:11243722 DOI: https://doi.org/10.1006/phrs.2000.0764
Amaral FG, Cipolla-Neto J. A brief review about melatonin, a pineal hormone. Arch Endocrinol Metab. 2018;62(4):472-9. http://doi.org/10.20945/2359-3997000000066 PMid:30304113 DOI: https://doi.org/10.20945/2359-3997000000066
Hardeland R. Melatonin metabolism in the central nervous system. Curr Neuropharmacol. 2010;8(3):168-81. http://doi.org/10.2174/157015910792246244 PMid:21358968 DOI: https://doi.org/10.2174/157015910792246164
Ohta Y, Kongo M, Sasaki E, Ishiguro I, Harada N. Protective effect of melatonin against alpha-naphthylisothiocyanate-induced liver injury in rats. J Pineal Res. 2000;29(1):15-23. http://doi.org/10.1034/j.1600-079x.2000.290103.x PMid:10949536 DOI: https://doi.org/10.1034/j.1600-079X.2000.290103.x
Galley HF, McCormick B, Wilson KL, Lowes DA, Colvin L, Torsney C. Melatonin limits paclitaxel-induced mitochondrial dysfunction in vitro and protects against paclitaxel-induced neuropathic pain in the rat. J Pineal Res. 2017;63(4):12444. http://doi.org/10.1111/jpi.12444 PMid:28833461 DOI: https://doi.org/10.1111/jpi.12444
Reiter RJ, Sharma R, Rosales-Corral S, Manucha W, Chuffa LG, Zuccari DA. Melatonin and pathological cell interactions: Mitochondrial glucose processing in cancer cells. Int J Mol Sci. 2021;22(22):12494. http://doi.org/10.3390/ijms222212494 PMid:34830375 DOI: https://doi.org/10.3390/ijms222212494
Hacışevki A, Baba B. An overview of melatonin as an antioxidant molecule: A biochemical approach. Melatonin Mol Biol Clin Pharm Approaches. 2018 ;5:59-85. http://doi.org/10.5772/intechopen.79421 DOI: https://doi.org/10.5772/intechopen.79421
Downloads
Published
How to Cite
License
Copyright (c) 2022 Rand Abdulateef Abdullah, H. Kh. Ismail, Abduljabbar Y. AL-Hubaity (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0