Sealing Ability and Adaptability of Nano Mineral Trioxide Aggregate as a Root-End Filling Material

Authors

  • Marwa Wagih Department of Endodontics, Future University in Egypt, New Cairo, Egypt
  • Ehab Hassanien Department of Endodontics, Galala University, Suez, Egypt https://orcid.org/0000-0002-8687-5531
  • Mohamed Nagy Department of Endodontics, Galala University, Suez, Egypt; Department of Endodontics, Ain Shams University, Cairo, Egypt

DOI:

https://doi.org/10.3889/oamjms.2022.10080

Keywords:

Sealing ability, Adaptability, Retrograde filling, Nano-MTA

Abstract

Aim: Comparison between Nano MTA & MTA as a root-end filling materials regarding adaptability and sealing ability.

Materials and Methods: Forty extracted human maxillary incisors with straight roots were used. After root canals preparation and obturation, the apical 3 mm of each root was resected perpendicular to the long axis of the tooth. Root end cavities were prepared to a depth of 3mm parallel to the long axis of the tooth. The teeth were randomly divided into two main equal groups of 20 samples each according to the root-end filling material used either MTA or Nano MTA. Ten samples from each group were sectioned longitudinally into two equal halves to measure the sealing ability and another ten samples from each group were sectioned transversally to obtain 1 mm thick section to measure the adaptability of both materials. All samples were photographed under the SEM at three different magnifications (×1000). The gap thickness between the root end filling material and the retro cavity dentine walls were measured at seven selected points at the material-dentine interface in micrometers (µm).

Results: Nano MTA and MTA showed no statistically significant difference in the gap thickness between dentin-material interface in both longitudinal and transverse sections. Regarding the sealing ability, the mean value in MTA was (3.27±0.77), while the mean in Nano-MTA was (3.15±0.71). Regarding the adaptability, the mean value in MTA was (2.46±0.60), while the mean in Nano-MTA was (2.05±0.712). Both materials showed good sealing ability and good adaptation to the dentinal wall.

Conclusion: Nano MTA revealed good sealing ability and adaptability comparable to MTA when used as a retrograde filling material.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Tsesis I, Faivishevsky V, Kfir A, Rosen E. Outcome of surgical endodontic treatment performed by a modern technique: A meta-analysis of literature. J Endod. 2009;35(11):1505-11. https://doi.org/10.1016/j.joen.2009.07.025 PMid:19840638 DOI: https://doi.org/10.1016/j.joen.2009.07.025

Gutmann JL, Harrison JW. Posterior endodontic surgery: Anatomical considerations and clinical techniques. Int Endod J. 1985;18(1):8-34. https://doi.org/10.1111/j.1365-2591.1985.tb00415.x PMid:3858237 DOI: https://doi.org/10.1111/j.1365-2591.1985.tb00415.x

Neto UX, De Moraes IG. Sealing capacity produced by some materials when utilized under furcation perforations of extract human molars. J Appl Oral Sci. 2003;11(1):27-33. PMid:21409336 DOI: https://doi.org/10.1590/S1678-77572003000100006

Siqueira JF Jr., Rôças IN. Clinical implications and microbiology of bacterial persistence after treatment procedures. J Endod. 2008;34(11):1291-301. https://doi.org/10.1016/j.joen.2008.07.028 PMid:18928835 DOI: https://doi.org/10.1016/j.joen.2008.07.028

Saghiri MA, Orangi J, Tanideh N, Janghorban K, Sheibani N. Effect of endodontic cement on bone mineral density using serial dual-energy x-ray absorptiometry. J Endod. 2014;40(5):648-51. https://doi.org/10.1016/j.joen.2013.11.025 PMid:24767558 DOI: https://doi.org/10.1016/j.joen.2013.11.025

Patri G, Agrawal P, Anushree N, Arora S, Kunjappu JJ, Shamsuddin SV. A scanning electron microscope analysis of sealing potential and marginal adaptation of different root canal sealers to dentin: An in vitro study. J Contemp Dent Pract. 2020;21(1):73-7. PMid:32381805 DOI: https://doi.org/10.5005/jp-journals-10024-2733

Camilleri J. Mineral trioxide aggregate in dentistry: From preparation to application. In: Mineral Trioxide Aggregate in Dentistry: From Preparation to Application. New York: Springer; 2014. p. 1-206. DOI: https://doi.org/10.1007/978-3-642-55157-4

Voicu G, Bǎdǎnoiu AI, Ghiţulicǎ CD, Andronescu E. Sol-gel synthesis of white mineral trioxide aggregate with potential use as biocement. Dig J Nanomater Biostruct. 2012;7(4):1639-46.

Saghiri MA, Orangi J, Asatourian A, Gutmann JL, Garcia-Godoy F, Lotfi M, et al. Calcium silicate-based cements and functional impacts of various constituents. Dent Mater J. 2017;36(1):8-18. https://doi.org/10.4012/dmj.2015-425 PMid:27773894 DOI: https://doi.org/10.4012/dmj.2015-425

Fischer EJ, Arens DE, Miller CH. Bacterial leakage of mineral trioxide aggregate as compared with zinc-free amalgam, intermediate restorative material, and Super-EBA as a rootend filling material. J Endod. 1998;24(3):176-9. https://doi.org/10.1016/S0099-2399(98)80178-7 PMid:9558582 DOI: https://doi.org/10.1016/S0099-2399(98)80178-7

Komabayashi T, Spångberg LS. Particle size and shape analysis of MTA finer fractions using Portland cement. J Endod. 2008;34(6):709-11. https://doi.org/10.1016/j.joen.2008.02.043 PMid:18498895 DOI: https://doi.org/10.1016/j.joen.2008.02.043

Pai S, Pai AR, Thomas MS, Bhat V. Effect of calcium hydroxide and triple antibiotic paste as intracanal medicaments on the incidence of inter-appointment flare-up in diabetic patients: An in vivo study. J Conserv Dent. 2014;17(3):208-11. https://doi.org/10.4103/0972-0707.131776 PMid:24944440 DOI: https://doi.org/10.4103/0972-0707.131776

Rogers MJ, Johnson BR, Remeikis NA, BeGole EA. Comparison of effect of intracanal use of ketorolac tromethamine and dexamethasone with oral ibuprofen on post treatment endodontic pain. J Endod. 1999;25(5):381-4. https://doi.org/10.1016/S0099-2399(06)81176-3 PMid:10530266 DOI: https://doi.org/10.1016/S0099-2399(06)81176-3

Mohammadi Z. Sodium hypochlorite in endodontics: An update review. Int Dent J. 2008;58(6):329-41. https://doi.org/10.1111/j.1875-595x.2008.tb00354.x PMid:19145794 DOI: https://doi.org/10.1111/j.1875-595X.2008.tb00354.x

Economides N, Liolios E, Kolokuris I, Beltes P. Long-term evaluation of the influence of smear layer removal on the sealing ability of different sealers. J Endod. 1999;25(2):123-5. https://doi.org/10.1016/S0099-2399(99)80010-7 PMid:10204470 DOI: https://doi.org/10.1016/S0099-2399(99)80010-7

Crumpton BJ, Goodell GG, McClanahan SB. Effects on smear layer and debris removal with varying volumes of 17% REDTA after rotary instrumentation. J Endod. 2005;31(7):536-8. https://doi.org/10.1097/01.don.0000148871.72896.1d PMid:15980717 DOI: https://doi.org/10.1097/01.don.0000148871.72896.1d

Taylor JK, Jeansonne BG, Lemon RR. Coronal leakage: Effects of smear layer, obturation technique, and sealer. J Endod. 1997;23(8):508-12. https://doi.org/10.1016/S0099-2399(97)80311-1 PMid:9587321 DOI: https://doi.org/10.1016/S0099-2399(97)80311-1

Gettleman BH, Messer HH, ElDeeb ME. Adhesion of sealer cements to dentin with and without the smear layer. J Endod. 1991;17(1):15-20. https://doi.org/10.1016/S0099-2399(07)80155-5 PMid:1895034 DOI: https://doi.org/10.1016/S0099-2399(07)80155-5

Shahravan A, Haghdoost AA, Adl A, Rahimi H, Shadifar F. Effect of smear layer on sealing ability of canal obturation: A systematic review and meta-analysis. J Endod. 2007;33(2):96-105. https://doi.org/10.1016/j.joen.2006.10.007 PMid:17258623 DOI: https://doi.org/10.1016/j.joen.2006.10.007

Zmener O, Banegas G, Pameijer CH. Bone tissue response to a methacrylate-based endodontic sealer: A histological and histometric study. J Endod. 2005;31(6):457-9. https://doi.org/10.1097/01.don.0000145431.59950.64 PMid:15917687 DOI: https://doi.org/10.1097/01.don.0000145431.59950.64

Frankenberger R, Krämer N, Oberschachtsiek H, Petschelt A. Dentin bond strength and marginal adaption after NaOCl pretreatment. Oper Dent. 2000;25(1):40-5. PMid:11203789

Ari H, Yaşar E, Bellí S. Effects of NaOCl on bond strengths of resin cements to root canal dentin. J Endod. 2003;29(4):248-51. https://doi.org/10.1097/00004770-200304000-00004 PMid:12701772 DOI: https://doi.org/10.1097/00004770-200304000-00004

Greene HA, Wong M, Ingram TA 3rd. Comparison of the sealing ability of four obturation techniques. J Endod. 1990;16(9):423-8. https://doi.org/10.1016/S0099-2399(06)81884-4 PMid:2098459 DOI: https://doi.org/10.1016/S0099-2399(06)81884-4

Luccy CT, Weller RN, Kulild JC. An evaluation of the apical seal produced by lateral and warm lateral condensation techniques. J Endod. 1990;16(4):170-2. https://doi.org/10.1016/s0099-2399(06)81965-5 PMid:2074407 DOI: https://doi.org/10.1016/S0099-2399(06)81965-5

Stropko JJ, Doyon GE, Gutmann JL. Root-end management: Resection, cavity preparation, and material placement. Endod Top. 2005;11(1):131-51. https://doi.org/10.1111/j.1601-1546.2005.00158.x DOI: https://doi.org/10.1111/j.1601-1546.2005.00158.x

Kim S, Kratchman S. Modern endodontic surgery concepts and practice: A review. J Endod. 2006;32(7):601-23. https://doi.org/10.1016/j.joen.2005.12.010 PMid:16793466 DOI: https://doi.org/10.1016/j.joen.2005.12.010

Taschieri S, Testori T, Francetti L, Del Fabbro M. Effects of ultrasonic root end preparation on resected root surfaces: SEM evaluation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;98(5):611-8. https://doi.org/10.1016/j.tripleo.2004.04.004 PMid:15529135 DOI: https://doi.org/10.1016/j.tripleo.2004.04.004

Calzonetti KJ, Iwanowski T, Komorowski R, Friedman S. Ultrasonic root end cavity preparation assessed by an in situ impression technique. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85(2):210-5. https://doi.org/10.1016/s1079-2104(98)90428-0 PMid:9503458 DOI: https://doi.org/10.1016/S1079-2104(98)90428-0

Gorman MC, Robert Steiman H, Gartner AH. Scanning electron microscopic evaluation of root-end preparations. J Endod. 1995;21(3):113-7. https://doi.org/10.1016/s0099-2399(06)80434-6 PMid:7561651 DOI: https://doi.org/10.1016/S0099-2399(06)80434-6

Parirokh M, Askarifard S, Mansouri S, Haghdoost AA, Raoof M, Torabinejad M. Effect of phosphate buffer saline on coronal leakage of mineral trioxide aggregate. J Oral Sci. 2009;51(2):187-91. https://doi.org/10.2334/josnusd.51.187 PMid:19550085 DOI: https://doi.org/10.2334/josnusd.51.187

Zhou HM, Shen Y, Zheng W, Li L, Zheng YF, Haapasalo M. Physical properties of 5 root canal sealers. J Endod. 2013;39(10):1281-6. https://doi.org/10.1016/j.joen.2013.06.012 PMid:24041392 DOI: https://doi.org/10.1016/j.joen.2013.06.012

Muni H, Abdel-Aziz M. Marginal adaptation and sealing ability evaluation of new nano materials as root end filling material (An in vitro study). Egypt Dent J. 2020;66(3):1829-36. https://doi.org/10.21608/edj.2020.25800.1082 DOI: https://doi.org/10.21608/edj.2020.25800.1082

Gundam S, Patil J, Venigalla BS, Yadanaparti S, Maddu R, Gurram SR. Comparison of marginal adaptation of mineral trioxide aggregate, glass ionomer cement and intermediate restorative material as root-end filling materials, using scanning electron microscope: An in vitro study. J Conserv Dent. 2014;17(6):566-70. https://doi.org/10.4103/0972-0707.144606 PMid:25506146 DOI: https://doi.org/10.4103/0972-0707.144606

Dewi F, Asrianti D, Margono A. Microleakage evaluation of modified mineral trioxide aggregate effect toward marginal adaptation on cervical dentin perforation. Int J Appl Pharm. 2017;9(2):10-3. https://doi.org/10.22159/ijap.2017.v9s2.03 DOI: https://doi.org/10.22159/ijap.2017.v9s2.03

Cervino G, Laino L, D’Amico C, Russo D, Nucci L, Amoroso G, et al. Mineral trioxide aggregate applications in endodontics: A review. Eur J Dent. 2020;14(4):683-91. https://doi.org/10.1055/s-0040-1713073 PMid:32726858 DOI: https://doi.org/10.1055/s-0040-1713073

Reyes-Carmona JF, Felippe MS, Felippe WT. Biomineralization ability and interaction of mineral trioxide aggregate and white Portland cement with dentin in a phosphate-containing fluid. J Endod. 2009;35(5):731-6. https://doi.org/10.1016/j.joen.2009.02.011 PMid:19410094 DOI: https://doi.org/10.1016/j.joen.2009.02.011

Kubo CH, Gomes AP, Mancini MN. In vitro evaluation of apical sealing in root apex treated with demineralization agents and retrofiled with mineral trioxide aggregate through marginal dye leakage. Braz Dent J. 2005;16(3):187-91. https://doi.org/10.1590/s0103-64402005000300003 PMid:16429182 DOI: https://doi.org/10.1590/S0103-64402005000300003

Tobón-Arroyave SI, Restrepo-Pérez MM, Arismendi-Echavarría JA, Velásquez-Restrepo Z, Marín-Botero ML, García-Dorado EC. Ex vivo microscopic assessment of factors affecting the quality of apical seal created by rootend fillings. Int Endod J. 2007;40(8):590-602. https://doi.org/10.1111/j.1365-2591.2007.01253.x PMid:17511788 DOI: https://doi.org/10.1111/j.1365-2591.2007.01253.x

Hirschberg CS, Patel NS, Patel LM, Kadouri DE, Hartwell GR. Comparison of sealing ability of MTA and endosequence bioceramic root repair material: A bacterial leakage study. Quintessence Int. 2013;44(5):e157-62. https://doi.org/10.3290/j.qi.a29399 PMid:23682382

Xavier CB, Weismann R, De Oliveira MG, Demarco FF, Pozza DH. Root-end filling materials: Apical microleakage and marginal adaptation. J Endod. 2005;31(7):539-42. https://doi.org/10.1097/01.don.0000152297.10249.5a PMid:15980718 DOI: https://doi.org/10.1097/01.don.0000152297.10249.5a

Downloads

Published

2022-07-02

How to Cite

1.
Wagih M, Hassanien E, Nagy M. Sealing Ability and Adaptability of Nano Mineral Trioxide Aggregate as a Root-End Filling Material. Open Access Maced J Med Sci [Internet]. 2022 Jul. 2 [cited 2024 Nov. 23];10(D):323-30. Available from: https://oamjms.eu/index.php/mjms/article/view/10080

Issue

Section

Dental Pathology and Endodontics

Categories