Past Myocardial Infarctions and Gender Predict the LVEF Regardless of the Status of Coronary Collaterals: An AI-Informed Research

Authors

  • Satyajit Singh Department of Cardiology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
  • Ahmed Al-Imam Department of Anatomy, College of Medicine, University of Baghdad, Baghdad, Iraq; Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom https://orcid.org/0000-0003-1846-9424
  • Amit Purushottam Tirpude Department of Anatomy, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
  • Nikita Chaudhary Department of Anatomy, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
  • Ameen Al-Alwany The Iraqi Center for Cardiology, Surgical Speciality Hospital, Baghdad Medical City, Baghdad, Iraq; Department of Physiology, College of Medicine, University of Baghdad, Baghdad, Iraq
  • Vijay Konuri Department of Anatomy, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India

DOI:

https://doi.org/10.3889/oamjms.2023.10094

Keywords:

Cardiovascular diseases, coronary angiograms, coronary collaterals, ejection fraction, frequentist statistics, ischemic heart disease, machine learning, narrow artificial intelligence

Abstract

BACKGROUND: The degree of the development of coronary collaterals is long considered an alternate – that is, a collateral – source of blood supply to an area of the myocardium threatened with vascular ischemia or insufficiency. Hence, the coronary collaterals are beneficial but can also promote harmful (adverse) effects. For instance, the coronary steal effect during the myocardial hyperemia phase and that of restenosis following coronary angioplasty.

OBJECTIVES: Our study explores the contribution of coronary collaterals – if any exist – while considering other potential predictors, including demographics and medical history, toward the left ventricular (LV) dysfunction measured through the LV ejection fraction (LVEF).

METHODS: Our cross-sectional design study used convenience sampling of 100 patients (n = 100; a male-to-female ratio of 4:1). We conducted frequentist inference statistics using IBM-SPSS version 24 and Microsoft Office Excel 2016 with the analysis ToolPak plugin; we ran parallel neural networks (supervised machine learning (ML)) and a two-step clustering (non-supervised ML) for robust conjoint inference with frequentist statistics.

RESULTS: The past incidents of myocardial infarction (p = 0.036) and gender (p = 0.072) influenced the LVEF; both are significant predictors at a 90% confidence interval. We found that gender and past incidents of MI influenced the LVEF regardless of the status of coronary collaterals. Our study did not yield any positive or significant findings concerning the status of coronary collaterals or the coronary circulation dominance patterns.

CONCLUSION: Regardless of the status of coronary collaterals, we verified that the female gender is protective of the LV function, contrary to the past infarction incidents that predispose to a deteriorated LV function. Our study’s innovation relates to its status as the first study from India to explore the coronary collaterals and the ejection fraction while incorporating frequentist statistics and narrow artificial intelligence to infer reliable results.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Seiler C, Meier P. Historical aspects and relevance of the human coronary collateral circulation. Curr Cardiol Rev. 2014;10(1):2-16. https://doi.org/10.2174/1573403x113099990028 PMid:23859295 DOI: https://doi.org/10.2174/1573403X113099990028

Buschmann I, Schaper W. The pathophysiology of the collateral circulation (arteriogenesis). J Pathol. 2000;190(3):338-42. https://doi.org/10.1002/ (SICI)1096-9896(200002)190:3<338:AID-PATH594>3.0.CO;2-7 PMid:10685067 DOI: https://doi.org/10.1002/(SICI)1096-9896(200002)190:3<338::AID-PATH594>3.0.CO;2-7

Goldstein RE, Stinson EB, Scherer JL, Seningen RP, Grehl TM, Epstein SE. Intraoperative coronary collateral function in patients with coronary occlusive disease. Nitroglycerin responsiveness and angiographic correlations. Circulation. 1974;49(2):298-308. https://doi.org/10.1161/01.CIR.49.2.298 PMid:4204133 DOI: https://doi.org/10.1161/01.CIR.49.2.298

Feldman RL, Pepine CJ. Evaluation of coronary collateral circulation in conscious humans. Am J Cardiol. 1984;53(9):1233-8. https://doi.org/10.1016/0002-9149(84)90070-5 PMid:6231848 DOI: https://doi.org/10.1016/0002-9149(84)90070-5

Wustmann K, Zbinden S, Windecker S, Meier B, Seiler C. Is there functional collateral flow during vascular occlusion in angiographically normal coronary arteries? Circulation. 2003;107(17):2213-20. https://doi.org/10.1161/01.CIR.0000066321.03474.DA PMid:12707241 DOI: https://doi.org/10.1161/01.CIR.0000066321.03474.DA

Schaper W, Frenzel H, Hort W. Experimental coronary artery occlusion. I. Measurement of infarct size. Basic Res Cardiol. 1979;74(1):46-53. https://doi.org/10.1007/BF01907684 PMid:435223 DOI: https://doi.org/10.1007/BF01907684

Reimer KA, Ideker RE, Jennings RB. Effect of coronary occlusion site on ischaemic bed size and collateral blood flow in dogs. Cardiovasc Res. 1981;15(11):668-74. https://doi.org/10.1093/cvr/15.11.668 PMid:7326685 DOI: https://doi.org/10.1093/cvr/15.11.668

Kodama K, Kusuoka H, Sakai A, Adachi T, Hasegawa S, Ueda Y, et al. Collateral channels that develop after an acute myocardial infarction prevent subsequent left ventricular dilation. J Am Coll Cardiol. 1996;27(5):1133-9. https://doi.org/10.1016/0735-1097(95)00596-X PMid:8609332 DOI: https://doi.org/10.1016/0735-1097(95)00596-X

Ishihara M, Inoue I, Kawagoe T, Shimatani Y, Kurisu S, Hata T, et al. Comparison of the cardioprotective effect of prodromal angina pectoris and collateral circulation in patients with a first anterior wall acute myocardial infarction. Am J Cardiol. 2005;95(5):622-5. https://doi.org/10.1016/j.amjcard.2004.11.009 PMid:15721104 DOI: https://doi.org/10.1016/j.amjcard.2004.11.009

Koerselman J, de Jaegere PP, Verhaar MC, Grobbee DE, van Der Graaf Y, SMART Study Group. Prognostic significance of coronary collaterals in patients with coronary heart disease having percutaneous transluminal coronary angioplasty. Am J Cardiol. 2005;96(3):390-4. https://doi.org/10.1016/j.amjcard.2005.03.083 PMid:16054465 DOI: https://doi.org/10.1016/j.amjcard.2005.03.083

Antoniucci D, Valenti R, Moschi G, Migliorini A, Trapani M, Santoro GM, et al. Relation between preintervention angiographic evidence of coronary collateral circulation and clinical and angiographic outcomes after primary angioplasty or stenting for acute myocardial infarction. Am J Cardiol. 2002;89(2):121-5. https://doi.org/10.1016/S0002-9149(01)02186-5 PMid:11792328 DOI: https://doi.org/10.1016/S0002-9149(01)02186-5

Hjemdahl P, Eriksson SV, Held C, Forslund L, Näsman P, Rehnqvist N. Favourable long term prognosis in stable angina pectoris: An extended follow up of the angina prognosis study in Stockholm (APSIS). Heart. 2006;92(2):177-82. https://doi.org/10.1136/hrt.2004.057703 PMid:15951393 DOI: https://doi.org/10.1136/hrt.2004.057703

Fefer P, Knudtson ML, Cheema AN, Galbraith PD, Osherov AB, Yalonetsky S, et al. Current perspectives on coronary chronic total occlusions: The Canadian multicenter chronic total occlusions registry. J Am Coll Cardiol. 2012;59(11):991-7. https://doi.org/10.1016/j.jacc.2011.12.007 PMid:22402070 DOI: https://doi.org/10.1016/j.jacc.2011.12.007

Meier P, Gloekler S, Zbinden R, Beckh S, de Marchi SF, Zbinden S, et al. Beneficial effect of recruitable collaterals: A 10-year follow-up study in patients with stable coronary artery disease undergoing quantitative collateral measurements. Circulation. 2007;116(9):975-83. https://doi.org/10.1161/CIRCULATIONAHA.107.703959 PMid:17679611 DOI: https://doi.org/10.1161/CIRCULATIONAHA.107.703959

Konuri VK, Agnihotri G, Reddy BR. Current advances and concepts of the embryological and genetic basis of the developing human heart. Int J Adv Res. 2014;2(10):431-5.

Konuri VK, Hazari MA, Kumar KR, Chandrasekhar M, Ambareesha K, Reddy BR. Evolution of automaticity of heart pacemaker studied from a theoretical perspective. Int J Med Res Health Sci. 2015;4(2):417-21. https://doi.org/10.5958/2319-5886.2015.00077.6 DOI: https://doi.org/10.5958/2319-5886.2015.00077.6

Hoole SP, White PA, Read PA, Heck PM, West NE, O’Sullivan M, et al. Coronary collaterals provide a constant scaffold effect on the left ventricle and limit ischemic left ventricular dysfunction in humans. J Appl Physiol (1985). 2012;112(8):1403-9. https://doi.org/10.1152/japplphysiol.01304.2011 PMid:22323649 DOI: https://doi.org/10.1152/japplphysiol.01304.2011

Choi JH, Song YB, Hahn JY, Choi SH, Gwon HC, Cho JR, et al. Three-dimensional quantitative volumetry of chronic total occlusion plaque using coronary multidetector computed tomography. Circ J. 2011;75(2):366-75. https://doi.org/10.1253/ circj.CJ-09-0940 PMid:21068512 DOI: https://doi.org/10.1253/circj.CJ-09-0940

Canto JG, Rogers WJ, Goldberg RJ, Peterson ED, Wenger NK, Vaccarino V, et al. Association of age and sex with myocardial infarction symptom presentation and in-hospital mortality. JAMA. 2012;307(8):813-22. https://doi.org/10.1001/jama.2012.199 PMid:22357832 DOI: https://doi.org/10.1001/jama.2012.199

Romero J, Xue X, Gonzalez W, Garcia MJ. CMR imaging assessing viability in patients with chronic ventricular dysfunction due to coronary artery disease: A meta-analysis of prospective trials. JACC Cardiovasc Imaging. 2012;5(5):494-508. https://doi.org/10.1016/j.jcmg.2012.02.009 PMid:22595157 DOI: https://doi.org/10.1016/j.jcmg.2012.02.009

Meier P, Hemingway H, Lansky AJ, Knapp G, Pitt B, Seiler C. The impact of the coronary collateral circulation on mortality: A meta-analysis. Eur Heart J. 2012;33(5):614-21. https://doi.org/10.1093/eurheartj/ehr308 PMid:21969521 DOI: https://doi.org/10.1093/eurheartj/ehr308

Brugaletta S, Martin-Yuste V, Padró T, Alvarez-Contreras L, Gomez-Lara J, Garcia-Garcia HM, et al. Endothelial and smooth muscle cells dysfunction distal to recanalized chronic total coronary occlusions and the relationship with the collateral connection grade. JACC Cardiovasc Interv. 2012;5(2):170-8. https://doi.org/10.1016/j.jcin.2011.10.012 PMid:22361601 DOI: https://doi.org/10.1016/j.jcin.2011.10.012

Al-Imam A. Morphometry of pterygomaxillary landmarks in reference to gender and laterality. Iraq: University of Baghdad; 2021. https://doi.org/10.13140/RG.2.2.28077.00480

Al-Imam A, Abdul-Wahaab IT, Konuri VK, Sahai A, Al-Shalchy AK. Unification of frequentist inference and machine learning for pterygomaxillary morphometrics. Folia Morphol (Warsz). 2021;80(3):625-41. https://doi.org/10.5603/FM.a2020.0149 PMid:33438189 DOI: https://doi.org/10.5603/FM.a2020.0149

Al-ImamA,Al-ShalchyAK, Gorial FI.Anovel unusual manifestation of CH-alpha as acute metabolic disturbances: Case report and big data analytics. J Fac Med Baghdad. 2020;62(1,2):41-7. https://doi.org/10.32007/jfacmedbagdad.621.21714 DOI: https://doi.org/10.32007/jfacmedbagdad.621.21714

The Centre for Evidence-Based Medicine. Home-2020. Oxford, United Kingdom. The Centre for Evidence-Based Medicine; 2022. Available at: https://www.cebm.net/[Last accessed on 2022 May 03].

Al-Imam A. Monitoring and Analysis of Novel Psychoactive Substances in Trends Databases, Surface Web and the Deep Web, with Special Interest and Geo-Mapping of the Middle East. Info: eu-repo/semantics/masterThesis. United Kingdom: University of Hertfordshire; 2017. https://doi.org/10.13140/RG.2.2.27636.24961

Al-Imam A. Adverse effects of amphetamines on the cardiovascular system: Review and retrospective analyses of trends. Glob J Health Sci. 2017;9(11):102-13. https://doi.org/10.5539/gjhs.v9n11p102 DOI: https://doi.org/10.5539/gjhs.v9n11p102

Catalani V, Prilutskaya M, Al-Imam A, Marrinan S, Elgharably Y, Zloh M, et al. Octodrine: New questions and challenges in sport supplements. In: Schifano F, editor. Recent Changes in Drug Abuse Scenario the Novel Psychoactive Substances (NPS) Phenomenon. Basel, Switzerland: Multidisciplinary Digital Publishing Institute (MDPI); 2019.

Al-Imam A, AbdulMajeed BA. Captagon, octodrine, and NBOMe: An Integrative analysis of trends databases, the deep web, and the darknet. Glob J Health Sci. 2017;9(11):114-25. https://doi.org/10.5539/gjhs.v9n11p114 DOI: https://doi.org/10.5539/gjhs.v9n11p114

Catalani V, Prilutskaya M, Al-Imam A, Marrinan S, Elgharably Y, Zloh M, et al. Octodrine: New questions and challenges in sport supplements. Brain Sci. 2018;8(2):34. https://doi.org/10.3390/brainsci8020034 PMid:29461475 DOI: https://doi.org/10.3390/brainsci8020034

Motyka MA, Al-Imam A. Representations of psychoactive drugs’ use in mass culture and their impact on audiences. Int J Environ Res Public Health. 2021;18(11):6000. https://doi.org/10.3390/ijerph18116000 PMid:34204970 DOI: https://doi.org/10.3390/ijerph18116000

Al-Imam A, Motyka MA. On the necessity for paradigm shift in psychoactive substances research: The implementation of machine learning and artificial intelligence. Alkohol Narkom. 2019;32(3):1-6. https://doi.org/10.5114/ain.2019.91004 DOI: https://doi.org/10.5114/ain.2019.91004

Al-Imam A, Lami F. One ultimate journey? AKA the Huxley’s method: Perspectives of (Ab)users of hallucinogens and entheogens on having planned pre-mortem psychedelic trip. Mod Appl Sci. 2019;13(3):13-22. https://doi.org/10.5539/mas.v13n3p13 DOI: https://doi.org/10.5539/mas.v13n3p13

Al-Imam A, Motyka MA, Witulska Z, Younus M, Michalak M. Spatiotemporal mapping of online interest in cannabis and popular psychedelics before and during the COVID-19 pandemic in Poland. Int J Environ Res Public Health. 2022;19(11):6619. https://doi.org/10.3390/ijerph19116619 PMid:35682204 DOI: https://doi.org/10.3390/ijerph19116619

Al-Imam A, Al-Mukhtar F, Shafiq A, Irfan M, Saleh MM. Knowledge and (Ab)use in connection with novel psychoactive substances: A cross-sectional analysis of Iraqi medical students. Glob J Health Sci. 2017;9(11):61-70. https://doi.org/10.5539/gjhs.v9n11p61 DOI: https://doi.org/10.5539/gjhs.v9n11p61

Al-ImamA, Motyka MA,Al-Doori HJ. Surface web merits for SARS- CoV-2 pandemic in Iraq. J Fac Med Baghdad. 2020;62(4):117-27. https://doi.org/10.32007/jfacmedbagdad.6241795 DOI: https://doi.org/10.32007/jfacmedbagdad.6241795

Ashley EA. Towards precision medicine. Nat Rev Genet. 2016;17(9):507-22. https://doi.org/10.1038/nrg.2016.86 PMid:27528417 DOI: https://doi.org/10.1038/nrg.2016.86

Al-Imam A. Optimizing linear models via sinusoidal transformation for boosted machine learning in medicine. J Fac Med Baghdad. 2019;61(3,4):128-36. https://doi.org/10.32007/jfacmedbagdad.613,41713

Ginsburg GS, Phillips KA. Precision medicine: From science to value. Health Aff (Millwood). 2018;37(5):694-701. https://doi.org/10.1377/hlthaff.2017.1624 PMid:29733705 DOI: https://doi.org/10.1377/hlthaff.2017.1624

Downloads

Published

2023-02-05

How to Cite

1.
Singh S, Al-Imam A, Tirpude AP, Chaudhary N, Al-Alwany A, Konuri V. Past Myocardial Infarctions and Gender Predict the LVEF Regardless of the Status of Coronary Collaterals: An AI-Informed Research. Open Access Maced J Med Sci [Internet]. 2023 Feb. 5 [cited 2024 Nov. 18];11(B):252-8. Available from: https://oamjms.eu/index.php/mjms/article/view/10094