Effects of Physical Exercise on Mitochondrial Biogenesis of Skeletal Muscle Modulated by Histones Modifications in Type 2 Diabetes
DOI:
https://doi.org/10.3889/oamjms.2022.10095Keywords:
AMP-activated protein kinase, ATP-citrate lyase, Peroxisome proliferator-activated receptor gamma coactivator 1 alpha, Oxidative stress, InflammationAbstract
Epigenetic modification in skeletal muscle induced by environmental factors seems to modulate several metabolic pathways that underlie Type 2 Diabetes Mellitus (T2DM) development. Mitochondrial biogenesis is an important process for maintaining lipid metabolism homeostasis, as well as epigenetic modifications in proteins that regulate this pathway have been observed in the skeletal muscle of T2DM subjects. Moreover, physical exercise affects several metabolic pathways attenuating metabolic deregulation observed in T2DM. The pathways that regulate mitochondrial homeostasis are one of the key components for understanding such physical exercise beneficial effects. Thus, in this study, we investigate the epigenetic mechanisms underlying mitochondrial biogenesis in the skeletal muscle in T2DM, focusing on histone modifications and the possible mechanisms by which physical exercise delay or inhibit T2DM onset. The results indicate that exercise promotes improvements in cellular metabolism through increasing enzymes of the antioxidant system, AMPK and ATP-citrate lyase activity, Acetyl-CoA concentration, and enhancing the acetylation of histones. A key mediator of mitochondrial biogenesis such as peroxisome proliferator-activated receptor γ coactivator-1α (PGC1) seems to be upregulated by exercise in T2DM and such factor positively regulates the skeletal muscle mitochondrial biogenesis, which improves energy metabolism and glucose homeostasis inhibiting or delaying insulin resistance and further T2DM.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Hooper PL, Balogh G, Rivas E, Kavanagh K, Vigh L. The importance of the cellular stress response in the pathogenesis and treatment of Type 2 diabetes. Cell Stress Chaperones. 2014;19(4):447-64. https://doi.org/10.1007/s12192-014-0493-8 PMid:24523032 DOI: https://doi.org/10.1007/s12192-014-0493-8
Cho NH, Shaw JE, Karuranga S, Huang Y, Fernandes JD, Ohlrogge AW, et al. IDF diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271-81. https://doi.org/10.1016/j.diabres.2018.02.023 PMid:29496507 DOI: https://doi.org/10.1016/j.diabres.2018.02.023
Milagro FI, Mansego ML, De Miguel C, Martínez JA. Dietary factors, epigenetic modifications and obesity outcomes: Progresses and perspectives. Mol Aspects Med. 2013;34(4):782-812. https://doi.org/10.1016/j.mam.2012.06.010 PMid:22771541 DOI: https://doi.org/10.1016/j.mam.2012.06.010
Benite-Ribeiro SA, Putt DA, Santos JM. The effect of physical exercise on orexigenic and anorexigenic peptides and its role on long-term feeding control. Med Hypotheses. 2016;93:30-3. https://doi.org/10.1016/j.mehy.2016.05.005 PMid:27372853 DOI: https://doi.org/10.1016/j.mehy.2016.05.005
Benite-Ribeiro SA, Rodrigues VA, Machado MR. Food intake in early life and epigenetic modifications of pro-opiomelanocortin expression in arcuate nucleus. Mol Biol Rep. 2021;48(4):3773-84. Available from: https://www.link.springer.com/10.1007/s11033-021-06340-x [Last accessed on 2021 Oct 20]. DOI: https://doi.org/10.1007/s11033-021-06340-x
Santos JM, Moreli ML, Tewari S, Benite-Ribeiro SA. The effect of exercise on skeletal muscle glucose uptake in Type 2 diabetes: An epigenetic perspective. Metabolism. 2015;64(12):1619-28. https://doi.org/10.1016/j.metabol.2015.09.013 PMid:26481513 DOI: https://doi.org/10.1016/j.metabol.2015.09.013
Stepto NK, Benziane B, Wadley GD, Chibalin AV, Canny BJ, Eynon N, et al. Short-term intensified cycle training alters acute and chronic responses of pgc1α and cytochrome C oxidase IV to exercise in human skeletal muscle. PLoS One. 2012;7(12):e53080. https://doi.org/10.1371/journal.pone.0053080 PMid:23285255 DOI: https://doi.org/10.1371/journal.pone.0053080
Santos JM, Tewari S, Benite-Ribeiro SA. The effect of exercise on epigenetic modifications of PGC1: The impact on Type 2 diabetes. Med Hypotheses. 2014;82(6):748-53. https://doi.org/10.1016/j.mehy.2014.03.018 PMid:24703492 DOI: https://doi.org/10.1016/j.mehy.2014.03.018
Santos JL, Krause BJ, Cataldo LR, Vega J, Salas-Pérez F, Mennickent P, et al. PPARGC1A gene promoter methylation as a biomarker of insulin secretion and sensitivity in response to glucose challenges. Nutrients. 2020;12(9):2790. https://doi.org/10.3390/nu12092790 PMid:32933059 DOI: https://doi.org/10.3390/nu12092790
Cao S, Li B, Yi X, Chang B, Zhu B, Lian Z, et al. Effects of exercise on AMPK signaling and downstream components to PI3K in rat with Type 2 diabetes. PLoS One. 2012;7(12):e51709. https://doi.org/10.1371/journal.pone.0051709 PMid: 23272147 DOI: https://doi.org/10.1371/journal.pone.0051709
Barrón-Cabrera E, Ramos-Lopez O, González-Becerra K, Riezu-Boj JI, Milagro FI, Martínez-López E, et al. Epigenetic modifications as outcomes of exercise interventions related to specific metabolic alterations: A systematic review. Lifestyle Genom. 2019;12(1-6):25-44. https://doi.org/10.1159/000503289 PMid:3154624 DOI: https://doi.org/10.1159/000503289
Di Liegro I. Genetic and epigenetic modulation of cell functions by physical exercise. Genes(Basel). 2019;10(12):1043. https://doi.org/10.3390/genes10121043 PMid:31888150 DOI: https://doi.org/10.3390/genes10121043
Søndergaard E, Poulsen MK, Jensen MD, Nielsen S. Acute changes in lipoprotein subclasses during exercise. Metabolism. 2014;63(1):61-8. https://doi.org/10.1016/j.metabol.2013.08.011 PMid:24075739 DOI: https://doi.org/10.1016/j.metabol.2013.08.011
Pinto PR, da Silva KS, Iborra RT, Okuda LS, Gomes-Kjerulf D, Ferreira GS, et al. Exercise training favorably modulates gene and protein expression that regulate arterial cholesterol content in CETP transgenic mice. Front Physiol. 2018;9:502. https://doi.org/10.3389/fphys.2018.00502 PMid:29867549 DOI: https://doi.org/10.3389/fphys.2018.00502
Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097 PMid:19621072 DOI: https://doi.org/10.1371/journal.pmed.1000097
Karlić R, Chung HR, Lasserre J, Vlahoviček K, Vingron M. Histone modification levels are predictive for gene expression. Proc Natl Acad Sci U S A. 2010;107(7):2926-31. https://doi.org/10.1073/pnas.0909344107 PMid:20133639 DOI: https://doi.org/10.1073/pnas.0909344107
Lochmanová G, Ihnatová I, Kuchaříková H, Brabencová S, Zachová D, Fajkus J, et al. Different modes of action of genetic and chemical downregulation of histone deacetylases with respect to plant development and histone modifications. Int J Mol Sci. 2019;20(20):5093. https://doi.org/10.3390/ijms20205093 PMid:31615119 DOI: https://doi.org/10.3390/ijms20205093
Lochmann TL, Thomas RR, Bennett JP, Taylor SM. Epigenetic modifications of the PGC-1α promoter during exercise induced expression in mice. PLoS One. 2015;10(6):e0129647. https://doi.org/10.1371/journal.pone.0129647 PMid:26053857 DOI: https://doi.org/10.1371/journal.pone.0129647
De Souza CT, Araujo EP, Bordin S, Ashimine R, Zollner RL, Boschero AC, et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology. 2005;146(10):4192-9. https://doi.org/10.1210/en.2004-1520 PMid:16002529 DOI: https://doi.org/10.1210/en.2004-1520
Abraham NG, Brunner EJ, Eriksson JW, Robertson RP. Metabolic syndrome: Psychosocial, neuroendocrine, and classical risk factors in Type 2 diabetes. Ann N Y Acad Sci. 2007;1113:256-75. https://doi.org/10.1196/annals.1391.015 PMid:17513461 DOI: https://doi.org/10.1196/annals.1391.015
Eriksson JW. Metabolic stress in insulin’s target cells leads to ROS accumulation - A hypothetical common pathway causing insulin resistance. FEBS Lett. 2007;581(19):3734-42. https://doi.org/10.1016/j.febslet.2007.06.044 PMid:17628546 DOI: https://doi.org/10.1016/j.febslet.2007.06.044
Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796-808. https://doi.org/10.1172/JCI19246 PMid:14679176 DOI: https://doi.org/10.1172/JCI200319246
Oguntibeju OO. Type 2 diabetes mellitus, oxidative stress and inflammation: Examining the links. Int J Physiol Pathophysiol Pharmacol. 2019;11(3):45-63. PMid:31333808
Prattichizzo F, De Nigris V, Spiga R, Mancuso E, La Sala L, Antonicelli R, et al. Inflammageing and metaflammation: The yin and yang of Type 2 diabetes. Ageing Res Rev. 2018;41:1-17. https://doi.org/10.1016/j.arr.2017.10.003 PMid:29081381 DOI: https://doi.org/10.1016/j.arr.2017.10.003
Liu Y, Hernández-Ochoa EO, Randall WR, Schneider MF. NOX2-dependent ROS is required for HDAC5 nuclear efflux and contributes to HDAC4 nuclear efflux during intense repetitive activity of fast skeletal muscle fibers. Am J Physiol Cell Physiol. 2012;303(3):334-47. https://doi.org/10.1152/ajpcell.00152.2012 PMid:22648949 DOI: https://doi.org/10.1152/ajpcell.00152.2012
Whetstine JR, Nottke A, Lan F, Huarte M, Smolikov S, Chen Z, et al. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell. 2006;125(3):467-81. https://doi.org/10.1016/j.cell.2006.03.028 PMid:16603238 DOI: https://doi.org/10.1016/j.cell.2006.03.028
Jufvas Å, Sjödin S, Lundqvist K, Amin R, Vener A, Strålfors P. Global differences in specific histone H3 methylation are associated with overweight and Type 2 diabetes. Clin Epigenetics. 2013;5(1):15. https://doi.org/10.1186/1868-7083-5-15 PMid:24004477 DOI: https://doi.org/10.1186/1868-7083-5-15
Ding ZM, Jiao XF, Wu D, Zhang JY, Chen F, Wang YS, et al. Bisphenol AF negatively affects oocyte maturation of mouse in vitro through increasing oxidative stress and DNA damage. Chem Biol Interact. 2017;278:222-9. https://doi.org/10.1016/j.cbi.2017.10.030 PMid:29102535 DOI: https://doi.org/10.1016/j.cbi.2017.10.030
Luc K, Schramm-Luc A, Guzik TJ, Mikolajczyk TP. Oxidative stress and inflammatory markers in prediabetes and diabetes. J Physiol Pharmacol. 2019;70(6):809-24. https://doi.org/10.26402/jpp.2019.6.01 PMid:32084643
Karachanak-Yankova S, Dimova R, Nikolova D, Nesheva D, Koprinarova M, Maslyankov S, et al. Epigenetic alterations in patients with Type 2 diabetes mellitus. Balkan J Med Genet. 2015;18(2):15-24. https://doi.org/10.1515/bjmg-2015-0081 PMid:27785392 DOI: https://doi.org/10.1515/bjmg-2015-0081
Rius-Pérez S, Torres-Cuevas I, Millán I, Ortega ÁL, Pérez S, Sandhu MA. PGC-1 α, inflammation, and oxidative stress: An integrative view in metabolism. Oxid Med Cell Longev. 2020;2020:1452696. https://doi.org/10.1155/2020/1452696 PMid:32215168 DOI: https://doi.org/10.1155/2020/1452696
Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci. 2003;100(14):8466-71. https://doi.org/10.1073/pnas.1032913100 PMid:12832613 DOI: https://doi.org/10.1073/pnas.1032913100
Burgos-Morón E, Abad-Jiménez Z, Marañón AM, Iannantuoni F, Escribano-López I, López-Domènech S, et al. Relationship between oxidative stress, Er stress, and inflammation in Type 2 diabetes: The battle continues. J Clin Med. 2019;8(9):1385. https://doi.org/10.3390/jcm8091385 PMid:31487953 DOI: https://doi.org/10.3390/jcm8091385
Sczelecki S, Besse-Patin A, Abboud A, Kleiner S, Laznik-Bogoslavski D, Wrann CD, et al. Loss of Pgc-1α expression in aging mouse muscle potentiates glucose intolerance and systemic inflammation. Am J Physiol Endocrinol Metab. 2014;306(2):157-67. https://doi.org/10.1152/ajpendo.00578.2013 PMid:24280126 DOI: https://doi.org/10.1152/ajpendo.00578.2013
Smith BK, Mukai K, Lally JS, Maher AC, Gurd BJ, Heigenhauser GJ, et al. AMP-activated protein kinase is required for exercise-induced peroxisome proliferator-activated receptor γ coactivator 1α translocation to subsarcolemmal mitochondria in skeletal muscle. J Physiol. 2013;591(6):1551-61. https://doi.org/10.1113/jphysiol.2012.245944 PMid:23297307 DOI: https://doi.org/10.1113/jphysiol.2012.245944
Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577-85. https://doi.org/10.1007/s00125-017-4342-z PMid:28776086 DOI: https://doi.org/10.1007/s00125-017-4342-z
Coughlan KA, Valentine RJ, Ruderman NB, Saha AK. Diabetes, metabolic syndrome and obesity: Targets and therapy dovepress AMPK activation: A therapeutic target for Type 2 diabetes? Diabetes Metab Syndr Obes. 2014;7:241-53. https://doi.org/10.2147/DMSO.S43731 PMid:25018645 DOI: https://doi.org/10.2147/DMSO.S43731
Irrcher I, Ljubicic V, Hood DA. Interactions between ROS and AMP kinase activity in the regulation of PGC-1α transcription in skeletal muscle cells. Am J Physiol Cell Physiol. 2009;296(1):C116-23. https://doi.org/10.1152/ajpcell.00267.2007 PMid:19005163 DOI: https://doi.org/10.1152/ajpcell.00267.2007
Salminen A, Kauppinen A, Kaarniranta K. AMPK/Snf1 signaling regulates histone acetylation: Impact on gene expression and epigenetic functions. Cell Sign. 2016;28(8):887-95. https://doi.org/10.1016/j.cellsig.2016.03.009 PMid:27010499 DOI: https://doi.org/10.1016/j.cellsig.2016.03.009
Teperino R, Schoonjans K, Auwerx J. Histone methyl transferases and demethylases; can they link metabolism and transcription? Cell Metab. 2010;12(4):321-7. https://doi.org/10.1016/j.cmet.2010.09.004 PMid:20889125 DOI: https://doi.org/10.1016/j.cmet.2010.09.004
Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 2004;305(5682):390-2. https://doi.org/10.1126/science.1099196 PMid:15205477 DOI: https://doi.org/10.1126/science.1099196
Takahashi H, McCaffery JM, Irizarry RA, Boeke JD. Nucleocytosolic acetyl-coenzyme A synthetase is required for histone acetylation and global transcription. Mol Cell. 2006;23(2):207-17. https://doi.org/10.1016/j.molcel.2006.05.040 PMid:16857587 DOI: https://doi.org/10.1016/j.molcel.2006.05.040
Das S, Morvan F, Jourde B, Meier V, Kahle P, Brebbia P, et al. ATP citrate lyase improves mitochondrial function in skeletal muscle. Cell Metab. 2015;21(6):868-76. https://doi.org/10.1016/j.cmet.2015.05.006 PMid:26039450 DOI: https://doi.org/10.1016/j.cmet.2015.05.006
Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB. ATP-citrate lyase links cellular metabolism to histone acetylation. Science. 2009;324(5930):1076-80. https://doi.org/10.1126/science.1164097 PMid:19461003 DOI: https://doi.org/10.1126/science.1164097
Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol. 2014;15(8):536-50. https://doi.org/10.1038/nrm3841 PMid:25053359 DOI: https://doi.org/10.1038/nrm3841
Lee SJ, Choi SE, Lee HB, Song MW, Kim YH, Jeong JY, et al. A class I histone deacetylase inhibitor attenuates insulin resistance and inflammation in palmitate-treated C2C12 myotubes and muscle of HF/HFr diet mice. Front Pharmacol. 2020;11:601448. https://doi.org/10.3389/fphar.2020.601448 PMid:33362555 DOI: https://doi.org/10.3389/fphar.2020.601448
Tsalamandris S, Antonopoulos AS, Oikonomou E, Papamikroulis G, Vogiatzi G. Risk factors and cardiovascular disease prevention the role of inflammation in diabetes: Current concepts and future perspectives. Eur Cardiol Rev. 2019;14(1):50-9. DOI: https://doi.org/10.15420/ecr.2018.33.1
Khwairakpam AD, Banik K, Girisa S, Shabnam B, Shakibaei M, Fan L, et al. The vital role of ATP citrate lyase in chronic diseases. J Mol Med. 2020;98(1):71-95. https://doi.org/10.1007/s00109-019-01863-0 PMid:31858156 DOI: https://doi.org/10.1007/s00109-019-01863-0
Lefort N, Glancy B, Bowen B, Willis WT, Bailowitz Z, De Filippis EA, et al. Increased reactive oxygen species production and lower abundance of complex I subunits and carnitine palmitoyltransferase 1B protein despite normal mitochondrial respiration in insulin-resistant human skeletal muscle. Diabetes. 2010;59(10):2444-52. https://doi.org/10.2337/db10-0174 PMid:20682693 DOI: https://doi.org/10.2337/db10-0174
Samjoo IA, Safdar A, Hamadeh MJ, Raha S, Tarnopolsky MA. The effect of endurance exercise on both skeletal muscle and systemic oxidative stress in previously sedentary obese men. Nutr Diabetes. 2013;3(9):e88. https://doi.org/10.1038/nutd.2013.30 PMid:24042701 DOI: https://doi.org/10.1038/nutd.2013.30
Parker L, Shaw CS, Stepto NK, Levinger I. Exercise and glycemic control: Focus on redox homeostasis and redoxsensitive protein signaling. Front Endocrinol. 2017;8:87. https://doi.org/10.3389/fendo.2017.00087 PMid:2852949 DOI: https://doi.org/10.3389/fendo.2017.00087
Ristow M, Zarse K, Oberbach A, Klöting N, Birringer M, Kiehntopf M, et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Nat Acad Sci U S Am. 2009;106(21):8665-70. https://doi.org/10.1073/pnas.0903485106 PMid:19433800 DOI: https://doi.org/10.1073/pnas.0903485106
Pischon T, Hankinson SE, Hotamisligil GS, Rifai N, Rimm EB. Leisure-time physical activity and reduced plasma levels of obesity-related inflammatory markers. Obes Res. 2003;11(9):1055-64. https://doi.org/10.1038/oby.2003.145 PMid:12972675 DOI: https://doi.org/10.1038/oby.2003.145
Beavers KM, Brinkley TE, Nicklas BJ. Effect of exercise training on chronic inflammation. Clin Chim Acta. 2010;411(11-12):785-93. https://doi.org/10.1016/j.cca.2010.02.069 PMid:20188719 DOI: https://doi.org/10.1016/j.cca.2010.02.069
Kondo N, Nomura M, Nakaya Y, Ito S, Ohguro T. Association of inflammatory marker and highly sensitive C-reactive protein with aerobic exercise capacity, maximum oxygen uptake and insulin resistance in healthy middle-aged volunteers. Circ J. 2005;69(4):452-7. https://doi.org/10.1253/circj.69.452 PMid:15791041 DOI: https://doi.org/10.1253/circj.69.452
Jankord R, Jemiolo B. Influence of physical activity on serum IL-6 and IL-10 levels in healthy older men. Med Sci Sports Exe. 2004;36(6):960-4. https://doi.org/10.1249/01.mss.0000128186.09416.18 PMid:15179165 DOI: https://doi.org/10.1249/01.MSS.0000128186.09416.18
Metsios GS, Moe RH, Kitas GD. Exercise and inflammation. Best Pract Res Clin Rheumatol. 2020;34(2):101504. https://doi.org/10.1016/j.berh.2020.101504 PMid:32249021 DOI: https://doi.org/10.1016/j.berh.2020.101504
Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ, et al. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Nat Acad Sci U S Am. 2002;99(25):15983-7. https://doi.org/10.1073/pnas.252625599 PMid:12444247 DOI: https://doi.org/10.1073/pnas.252625599
Fujii N, Hayashi T, Hirshman MF, Smith JT, Habinowski SA, Kaijser L, et al. Exercise induces isoform-specific increase in 5’ AMP-activated protein kinase activity in human skeletal muscle. Biochem Biophys Res Commun. 2000;273(3):1150-5. https://doi.org/10.1006/bbrc.2000.3073 PMid:10891387 DOI: https://doi.org/10.1006/bbrc.2000.3073
Pilegaard H, Saltin B, Neufer DP. Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle. J Physiol. 2003;546(3):851-8. https://doi.org/10.1113/jphysiol.2002.034850 PMid:12563009 DOI: https://doi.org/10.1113/jphysiol.2002.034850
Russell AP, Feilchenfeldt J, Schreiber S, Praz M, Crettenand A, Gobelet C, et al. Endurance training in humans leads to fiber Type-specific increases in levels of peroxisome. Diabetes. 2014;52(12):2874-81. https://doi.org/10.2337/diabetes.52.12.2874 PMid:14633846 DOI: https://doi.org/10.2337/diabetes.52.12.2874
Santos JM, Ribeiro SB, Gaya AR, Appell HJ, Duarte JA. Skeletal muscle pathways of contraction-enhanced glucose uptake. Int J Sports Med. 2008;29(10):785-94. https://doi.org/10.1055/s-2008-1038404 PMid:18401805 DOI: https://doi.org/10.1055/s-2008-1038404
Axsom JE, Libonati JR. Impact of parental exercise on epigenetic modifications inherited by offspring: A systematic review. Physiol Rep. 2019;7(22):e14287. https://doi.org/10.14814/phy2.14287 PMid:31758667 DOI: https://doi.org/10.14814/phy2.14287
Ohsawa I, Konno R, Masuzawa R, Kawano F. Amount of daily exercise is an essential stimulation to alter the epigenome of skeletal muscle in rats. J Appl Physiol. 2018;125(4):1097-104. https://doi.org/10.1152/japplphysiol.00074.2018 PMid:30070609 DOI: https://doi.org/10.1152/japplphysiol.00074.2018
McGee SL, Fairlie E, Garnham AP, Hargreaves M. Exerciseinduced histone modifications in human skeletal muscle. J Physiol. 2009;587(24):5951-8. https://doi.org/10.1113/jphysiol.2009.181065 PMid:19884317 DOI: https://doi.org/10.1113/jphysiol.2009.181065
Joseph JS, Ayeleso AO, Mukwevho E. Exercise increases hyper-acetylation of histones on the Cis-element of NRF-1 binding to the Mef2a promoter: Implications on type 2 diabetes. Biochem Biophys Res Commun. 2017;486(1):83-7. https://doi.org/10.1016/j.bbrc.2017.03.002 PMid:28263745 DOI: https://doi.org/10.1016/j.bbrc.2017.03.002
Masuzawa R, Konno R, Ohsawa I, Watanabe A, Kawano F. Muscle Type-specific RNA polymerase II recruitment during PGC-1α gene transcription after acute exercise in adult rats. J Appl Physiol. 2018;125(4):1238-45. https://doi.org/10.1152/japplphysiol.00202.2018 PMid:30113273 DOI: https://doi.org/10.1152/japplphysiol.00202.2018
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Hellen Chaves Barbosa, Wael Ramadan, Júlia Matzenbacher dos Santos, Sandra Aparecida Benite-Ribeiro (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0