PathophysiologyOxidative and Inflammatory Biomarkers of Lung injury in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) patients living with HIV
DOI:
https://doi.org/10.3889/oamjms.2024.10105Keywords:
COVID-19, HIV/AIDS, biomarkers, lung injuryAbstract
Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although both COVID-19 and HIV infections have been declared as pandemic at different times and both are known to cause lung injury, very few research has been done to determine the possibility of worsened lung injury in HIV patients infected with COVID-19. This systematic review attempts to determine the oxidative and inflammatory biomarkers associated with acute lung injury in HIV-positive population co-infected with COVID-19. Published studies in three databases were searched from January 1, 2019, to October 27, 2020. The search identified eight studies (with a total of 76 patients) that met the inclusion criteria and were included in the qualitative analysis of the systematic review. Among the eight studies, three were case reports describing 1–3 patients, four case series including 4–31 patients, and one was a cohort study. The Joanna Briggs Institute critical appraisal tools were used to assess the included studies. Qualitative analysis was used due to the heterogeneity of the study designs and the biomarkers measured. At present, C-reactive protein, Interleukin-6, D-dimer, and Lactate dehydrogenase have been found associated with the severity of disease, prognosis, and lung injury in HIV-positive patients coinfected with COVID-19. The causal association between elevated levels of these biomarkers and acute lung injury is still unknown; therefore, prospective studies are needed to determine biomarkers of lung injury useful for the prognosis and outcome of COVID-19 infection in the HIV population.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Averting HIV and AIDS. Global HIV and AIDS Statistics. AVERT. Averting HIV and AIDS; 2018. p. 1-7. Available from: https:// www.avert.org/global-hiv-and-aids-statistics [Accessed: Jan 10; 2022].
Del Amo J, Polo R, Moreno S, Díaz A, Martínez E, Arribas JR, et al. Incidence and severity of COVID-19 in HIV-positive persons receiving antiretroviral therapy: A cohort study. Ann Intern Med. 2020;173(7):536-41. https://doi.org/10.7326/M20-3689 PMid:32589451 DOI: https://doi.org/10.7326/M20-3689
Raftery MJ, Samstag Y. Since January 2020 Elsevier has Created a COVID-19 Resource Centre with Free Information in English and Mandarin on the Novel Coronavirus COVID- 19. The COVID-19 Resource Centre is Hosted on Elsevier Connect, the Company’s Public News and Information. Netherlands: Elsevier; 2020.
Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LF. The trinity of COVID-19: Immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363-74. https://doi.org/10.1038/s41577-020-0311-8 PMid:32346093 DOI: https://doi.org/10.1038/s41577-020-0311-8
Therapy A. HHS Public Access. 2019;32(3):277-92. https://doi.org/10.1097/QAD.0000000000001712 [Last accessed on 2022 Jan 10]. DOI: https://doi.org/10.1097/QAD.0000000000001712
Chen LD, Zhang ZY, Wei XJ, Cai YQ, Yao WZ, Wang MH, et al. Association between cytokine profiles and lung injury in COVID-19 pneumonia. Respir Res. 2020;21(1):201. https://doi.org/10.1186/s12931-020-01465-2 PMid:32727465 DOI: https://doi.org/10.1186/s12931-020-01465-2
Vardhana SA, Wolchok JD. The many faces of the anti-COVID immune response. J Exp Med. 2020;217(6):e20200678. https://doi.org/10.1084/jem.20200678 DOI: https://doi.org/10.1084/jem.20200678
Cribbs SK, Crothers K, Morris A. Pathogenesis of HIV-related lung disease: Immunity, infection, and inflammation. Physiol Rev. 2020;100(2):603-32. https://doi.org/10.1152/physrev.00039.2018 PMid:31600121 DOI: https://doi.org/10.1152/physrev.00039.2018
Agostini C, Semenzato G. Immunologic effects of HIV in the lung. Clin Chest Med. 1996;17(4):633-45. https://doi.org/10.1016/s0272-5231(05)70337-3 PMid:9016369 DOI: https://doi.org/10.1016/S0272-5231(05)70337-3
Duncan JW, Granger JP, Ryan MJ, Drummond HA. Interleukin-17 reduces βENaC via MAPK signaling in vascular smooth muscle cells. Int J Mol Sci. 2020;21(8):2953. https://doi.org/10.3390/ijms21082953 PMid:32331392 DOI: https://doi.org/10.3390/ijms21082953
Sanyaolu A, Okorie C, Marinkovic A, Ayodele O, Abbasi AF, Prakash S, et al. Navigating the diagnostics of COVID-19. SN Compr Clin Med. 2020;2(9):1393-400. https://doi.org/10.1007/s42399-020-00408-8 PMid:32838176 DOI: https://doi.org/10.1007/s42399-020-00408-8
Kanwugu ON, Adadi P. HIV/SARS-CoV-2 coinfection: A global perspective. J Med Virol. 2021;93(2):726-32. https://doi.org/10.1002/jmv.26321 PMid:32692406 DOI: https://doi.org/10.1002/jmv.26321
Eisinger RW, Lerner AM, Fauci AS. HIV/AIDS in the era of COVID-19: A juxtaposition of two pandemics. J Infect Dis. 2021;224:1449-51. https://doi.org/10.1093/infdis/jiab114 DOI: https://doi.org/10.1093/infdis/jiab114
Blanco JL, Ambrosioni J, Garcia F, Martínez E, Soriano A, Mallolas J, et al. COVID-19 in patients with HIV: Clinical case series. Lancet HIV. 2020;7(5):e314-6. https://doi.org/10.1016/S2352-3018(20)30111-9 PMid:32304642 DOI: https://doi.org/10.1016/S2352-3018(20)30111-9
Wang M, Luo L, Bu H, Xia H. One case of coronavirus disease 2019 (COVID-19) in a patient co-infected by HIV with a low CD4+ T-cell count. Int J Infect Dis. 2020;96:148-50. https://doi.org/10.1016/j.ijid.2020.04.060 PMid:32335339 DOI: https://doi.org/10.1016/j.ijid.2020.04.060
Zhang JC, Yu XH, Ding XH, Ma HY, Cai XQ, Kang SC, et al. New HIV diagnoses in patients with COVID-19: Two case reports and a brief literature review. BMC Infect Dis. 2020;20(1):771. https://doi.org/10.1186/s12879-020-05480-y PMid:33076830 DOI: https://doi.org/10.1186/s12879-020-05480-y
Pata RK, Ahmady A, Kiani R. Human immunodeficiency virus: A dark cloud with silver lining during the COVID-19 pandemic. Cureus. 2020;12(7):e9302. https://doi.org/10.7759/cureus.9302 PMid:32832299 DOI: https://doi.org/10.7759/cureus.9302
Suwanwongse K, Shabarek N. Clinical features and outcome of HIV/SARS-CoV-2 coinfected patients in The Bronx, New York City. J Med Virol. 2020;92(11):2387-9. https://doi.org/10.1002/jmv.26077 PMid:32462663 DOI: https://doi.org/10.1002/jmv.26077
Altuntas Aydin O, Kumbasar Karaosmanoglu H, Kart Yasar K. HIV/SARS-CoV-2 coinfected patients in Istanbul, Turkey. J Med Virol. 2020;92(11):2288-90. https://doi.org/10.1002/jmv.25955 PMid:32347975 DOI: https://doi.org/10.1002/jmv.25955
Shalev N, Scherer M, LaSota ED, Antoniou P, Yin MT, Zucker J, et al. Clinical characteristics and outcomes in people living with human immunodeficiency virus hospitalized for coronavirus disease 2019. Clin Infect Dis. 2020;71(16):2294-7. https://doi.org/10.1093/cid/ciaa635 PMid:32472138 DOI: https://doi.org/10.1093/cid/ciaa635
Karmen-Tuohy S, Carlucci PM, Zervou FN, Zacharioudakis IM, Rebick G, Klein E, et al. Outcomes among HIV-positive patients hospitalized with COVID-19. J Acquir Immune Defic Syndr. 2020;85(1):6-10. https://doi.org/10.1097/QAI.0000000000002423 PMid:32568770 DOI: https://doi.org/10.1097/QAI.0000000000002423
Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620-9. https://doi.org/10.1172/JCI137244 PMid:32217835 DOI: https://doi.org/10.1172/JCI137244
Mascolo S, Romanelli A, Carleo MA, Esposito V. Could HIV infection alter the clinical course of SARS-CoV-2 infection? When less is better. J Med Virol. 2020;92(10):1777-8. https://doi.org/10.1002/jmv.25881 PMid:32293709 DOI: https://doi.org/10.1002/jmv.25881
Hong LZ, Shou ZX, Zheng DM, Jin X. The most important biomarker associated with coagulation and inflammation among COVID-19 patients. Mol Cell Biochem. 2021;476:2877-85. https://doi.org/10.1007/s11010-021-04122-4 PMid:33742367 DOI: https://doi.org/10.1007/s11010-021-04122-4
Kermali M, Khalsa RK, Pillai K, Ismail Z, Harky A. The role of biomarkers in diagnosis of COVID-19 - a systematic review. Life Sci. 2020;254:117788. https://doi.org/10.1016/j.lfs.2020.117788 PMid:32475810 DOI: https://doi.org/10.1016/j.lfs.2020.117788
Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Milit Med Res. 2020;7:11. https://doi.org/10.1186/s40779-020-00240-0 DOI: https://doi.org/10.1186/s40779-020-00240-0
Ssentongo P, Heilbrunn ES, Ssentongo AE, Advani S, Chinchilli VM, Nunez JJ, et al. Epidemiology and outcomes of COVID-19 in HIV-infected individuals: A systematic review and meta-analysis. Sci Rep. 2021;11(1):6283. https://doi.org/10.1038/s41598-021-85359-3 PMid:33737527 DOI: https://doi.org/10.1038/s41598-021-85359-3
Malik P, Patel U, Mehta D, Patel N, Kelkar R, Akrmah M, et al. Biomarkers and outcomes of COVID-19 hospitalisations: Systematic review and meta-analysis. BMJ Evid Based Med. 2020;26:107-8. https://doi.org/10.1136/bmjebm-2020-111536 PMid:32934000 DOI: https://doi.org/10.1136/bmjebm-2020-111536
Potempa LA, Rajab IM, Hart PC, Bordon J, Fernandez-Botran R. Insights into the use of C-reactive protein as a diagnostic index of disease severity in COVID-19 infections. Am J Trop Med Hyg. 2020;103(2):561-3. https://doi.org/10.4269/ajtmh.20-0473 PMid:32588812 DOI: https://doi.org/10.4269/ajtmh.20-0473
Ahnach M, Zbiri S, Nejjari S, Ousti F, Elkettani C. C-reactive protein as an early predictor of COVID-19 severity. J Med Biochem. 2020;39(4):500-7. https://doi.org/10.5937/ jomb0-27554 PMid:33312067 DOI: https://doi.org/10.5937/jomb0-27554
Wang L. C-reactive protein levels in the early stage of COVID-19. Med Mal Infect. 2020;50(4):332-4. https://doi.org/10.1016/j.medmal.2020.03.007 PMid:32243911 DOI: https://doi.org/10.1016/j.medmal.2020.03.007
Sharifpour M, Rangaraju S, Liu M, Alabyad D, Nahab FB, Creel-Bulos CM, et al. C-reactive protein as a prognostic indicator in hospitalized patients with COVID-19. PLoS One. 2020;15(11):e0242400. https://doi.org/10.1371/journal.pone.0242400 PMid:33216774 DOI: https://doi.org/10.1371/journal.pone.0242400
Kartawidjaja J. Covariance structure analysis of health-related indicators in home-bound elderly people focusing on subjective sense of health title. Orphanet J Rare Dis. 2020;21(1):1-9.
Vargas-Vargas M, Cortés-Rojo C. Letter to the editor Ferritin levels and COVID-19. Ther Adv Vaccines. 2020;9(5):2019-20. DOI: https://doi.org/10.26633/RPSP.2020.72
Arora P. Correlation between serum ferritin and glycated hemoglobin level in patients of type 2 diabetes mellitus. Int J Cur Res Rev. 2017;9(6):30-33.
Lino K, Guimarães GM, Alves LS, Oliveira AC, Faustino R, Fernandes CS, et al. Serum ferritin at admission in hospitalized COVID-19 patients as a predictor of mortality. Braz J Infect Dis. 2021;25(2):101569. https://doi.org/10.1016/j.bjid.2021.101569 PMid:33736948 DOI: https://doi.org/10.1016/j.bjid.2021.101569
Dahan S, Segal G, Itai K, HellouT, Tietel M, Bryk G, et al. Ferritin as a marker of severity in COVID-19 patients: A fatal correlation. Isr Med Assoc J. 2020;22(8):494-500. PMid:33236582
Carubbi F, Salvati L, Alunno A, Maggi F, Borghi E, Mariani R, et al. Ferritin is associated with the severity of lung involvement but not with worse prognosis in patients with COVID-19: Data from two Italian COVID-19 units. Sci Rep. 2021;11(1):4863. https://doi.org/10.1038/s41598-021-83831-8 PMid:33649408 DOI: https://doi.org/10.1038/s41598-021-83831-8
Syed Khalid M, Aljohani MM, Alomrani NA, Oyoun AA, Alzahrani O, Ahmad MA, et al. COVID-19 and immune function - “a significant” zinc. Oriental J Chem. 2020;36(6):1026- 36. https://doi.org/10.13005/ojc/360604 DOI: https://doi.org/10.13005/ojc/360604
Bartziokas K, Kostikas K. Lactate dehydrogenase, COVID-19 and mortality. Med Clin (Barc). 2021;156(1):37-43. https://doi.org/10.1016/j.medcli.2020.07.043 PMid:33168150 DOI: https://doi.org/10.1016/j.medcli.2020.07.043
Henry BM, Aggarwal G, Wong J, Benoit S, Vikse J, Plebani M, et al. Since January 2020 Elsevier has Created a COVID-19 Resource Centre with Free Information in English and Mandarin on the Novel Coronavirus COVID- 19. The COVID-19 Resource Centre is Hosted on Elsevier Connect, the Company’s Public News and Information. Netherlands: Elsevier; 2020.
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. https://doi.org/10.1016/S0140-6736(20)30183-5 PMid:31986264 DOI: https://doi.org/10.1016/S0140-6736(20)30183-5
Kang HE, Park DW. Lactate as a biomarker for sepsis prognosis? Infect Chemother. 2016;48(3):252-53. https://doi.org/10.3947/ic.2016.48.3.252 PMid:27704736 DOI: https://doi.org/10.3947/ic.2016.48.3.252
Martha JW, Wibowo A, Pranata R. Prognostic value of elevated lactate dehydrogenase in patients with COVID-19: A systematic review and meta-analysis. Postgrad Med J. 2022;98(1160):422-7. https://doi.org/10.1136/postgradmedj-2020-139542 DOI: https://doi.org/10.1136/postgradmedj-2020-139542
Demelo-Rodriguez P, Cervilla-Munoz E, Ordieres-Ortega L, Parra-Virto A, Toledano-Macías M, Toledo-Samaniego N, et al. Incidence of asymptomatic deep vein thrombosis in patients with COVID-19 pneumonia and elevated D-dimer levels. Thromb Res. 2020;192:23-26. https://doi.org/10.1016/j.thromres.2020.05.018 PMid:32405101 DOI: https://doi.org/10.1016/j.thromres.2020.05.018
Eljilany I, Elzouki AN. D-dimer, fibrinogen, and IL-6 in COVID-19 patients with suspected venous thromboembolism: A narrative review. Vasc Health Risk Manag. 2020;16:455-62. https://doi.org/10.2147/VHRM.S280962 PMid:33223833 DOI: https://doi.org/10.2147/VHRM.S280962
Porfidia A, Pola R. Venous thromboembolism in COVID-19 patients. J Thromb Haemost. 2020;18(6):1516-7. https://doi.org/10.1111/jth.14842 PMid:32294289 DOI: https://doi.org/10.1111/jth.14842
Yao Y, Cao J, Wang Q, Shi Q, Liu K, Luo Z, et al. D-dimer as a biomarker for disease severity and mortality in COVID-19 patients: A case control study. J Intensive Care. 2020;8:49. https://doi.org/10.1186/s40560-020-00466-z PMid:32665858 DOI: https://doi.org/10.1186/s40560-020-00466-z
Zhang L, Yan X, Fan Q, Liu H, Liu X, Liu Z, et al. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost. 2020;18(6):1324-9. https://doi.org/10.1111/jth.14859 PMid:32306492 DOI: https://doi.org/10.1111/jth.14859
He X, Yao F, Chen J, Wang Y, Fang X, Lin X, et al. The poor prognosis and influencing factors of high D-dimer levels for COVID-19 patients. Sci Rep. 2021;11(1):1830. https://doi.org/10.1038/s41598-021-81300-w PMid:33469072 DOI: https://doi.org/10.1038/s41598-021-81300-w
Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol. 2020;127:104362. https://doi.org/10.1016/j.jcv.2020.104362 PMid:32305883 DOI: https://doi.org/10.1016/j.jcv.2020.104362
Palmer WJ. Elevated D-Dimer Values Can Help Select Better COVID-19 Patients for CT Pulmonary Angiography 2020. Available from: https://www.diagnosticimaging.com/view/ elevated-d-dimer-values-can-help-select-better-covid-19- patients-for-ct-pulmonary-angiography [Last accessed on 2022 Jan 10].
Vatansever HS, Becer E. Relationship between IL-6 and COVID-19: To be considered during treatment. Future Virol. 2020;15:817-22. https://doi.org/10.2217/fvl-2020-0168 DOI: https://doi.org/10.2217/fvl-2020-0168
Sabaka P, Koščálová A, Straka I, Hodosy J, Lipták R, Kmotorková B, et al. Role of interleukin 6 as a predictive factor for a severe course of Covid-19: Retrospective data analysis of patients from a long-term care facility during Covid-19 outbreak. BMC Infect Dis. 2021;21(1):308. https://doi.org/10.1186/ s12879-021-05945-8 PMid:33781216 DOI: https://doi.org/10.1186/s12879-021-05945-8
Downloads
Published
How to Cite
License
Copyright (c) 2024 Opeyemi M. Folorunso, Chiara Frazzoli, Orish E. Orisakwe (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0