Branch Retinal Vein Occlusions as a Serious Complication of Covid 19 Infection
DOI:
https://doi.org/10.3889/oamjms.2022.10116Keywords:
Retinal vein occlusion, Branch retinal vein occlusion, COVID-19Abstract
BACKGROUND: Branch retinal vein occlusion (BRVO) has an incidence of 0.5–1.2%. COVID-19 is associated with both venous and arterial thromboembolisms due to excessive inflammation, hypoxia, immobilization, and diffuse intravascular coagulation.
AIM: The present study aims to describe our experience with BRVO in Egyptian COVID-19 patients.
PATIENTS AND METHODS: The present retrospective study included 17 polymerase chain reaction (PCR)-proven COVID-19 patients with BRVO. Data obtained from the studied patients included detailed history taking. In addition, patients were diagnosed with BRVO based on a comprehensive ophthalmic evaluation, including logMAR Best-corrected visual acuity assessment, slit-lamp bio-microscopy, fundoscopy, fundus fluorescein angiography, and optical coherence tomography macular assessment.
RESULTS: The present study included 17 PCR-proven COVID-19 patients with BRVO. They comprised 9 males (52.9%) and 8 females (47.1%) with an age of 52.8 ± 13.3 years. Fundus examination revealed BRVO as superior temporal in 9 patients (52.9%), inferior temporal in 5 patients (29.4%), superior nasal in 2 patients (11.8%), and inferior nasal in 1 patient (5.9%). The reported retinal thickness was 355.7 ± 41.7 μm. In addition, fundus fluorescein angiography identified ischemic changes in 2 patients (11.8%).
CONCLUSION: BRVO is a rare severe complication of COVID-19 infection. In patients with proven or suspected infection with a diminution of vision, there should be high suspicion of BRVO and prompt full-scale ophthalmological examination to exclude the condition.Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Jaulim A, Ahmed B, Khanam T, Chatziralli IP. Branch retinal vein occlusion: Epidemiology, pathogenesis, risk factors, clinical features, diagnosis, and complications. An update of the literature. Retina. 2013;33(5):901-10. https://doi.org/10.1097/IAE.0b013e3182870c15 PMid:23609064 DOI: https://doi.org/10.1097/IAE.0b013e3182870c15
Lin LL, Dong YM, Zong Y, Zheng QS, Fu Y, Yuan YG, et al. Study of retinal vessel oxygen saturation in ischemic and non-ischemic branch retinal vein occlusion. Int J Ophthalmol. 2016;9(1):99-107. https://doi.org/10.18240/ijo.2016.01.17 PMid:2694961 DOI: https://doi.org/10.18240/ijo.2016.01.17
Tripathy K, Sharma YR, Chawla R, Basu K, Vohra R, Venkatesh P. Triads in ophthalmology: A comprehensive review. Semin Ophthalmol. 2017;32(2):237-50. https://doi.org/10.3109/08820538.2015.1045150 PMid:26148300 DOI: https://doi.org/10.3109/08820538.2015.1045150
Kimmel AS, Magargal LE, Morrison DL, Robb-Doyle E. Temporal branch retinal vein obstruction masquerading as a retinal arterial macroaneurysm: The Bonet sign. Ann Ophthalmol. 1989;21(7):251-2. PMid:2774431
Kumagai K, Tsujikawa A, Muraoka Y, Akagi-Kurashige Y, Murakami T, Miyamoto K, et al. Three-dimensional optical coherence tomography evaluation of vascular changes at arteriovenous crossings. Invest Ophthalmol Vis Sci. 2014;55(3):1867-75. https://doi.org/10.1167/iovs.13-13303 PMid:24576872 DOI: https://doi.org/10.1167/iovs.13-13303
Ota M, Tsujikawa A, Murakami T, Kita M, Miyamoto K, Sakamoto A, et al. Association between integrity of foveal photoreceptor layer and visual acuity in branch retinal vein occlusion. Br J Ophthalmol. 2007;91(12):1644-9. https://doi.org/10.1136/bjo.2007.118497 PMid:17504858 DOI: https://doi.org/10.1136/bjo.2007.118497
Fraenkl SA, Mozaffarieh M, Flammer J. Retinal vein occlusions: The potential impact of a dysregulation of the retinal veins. EPMA J. 2010;1(2):253-61. https://doi.org/10.1007/s13167-010-0025-2 PMid:21258633 DOI: https://doi.org/10.1007/s13167-010-0025-2
Noma H, Funatsu H, Yamasaki M, Tsukamoto H, Mimura T, Sone T, et al. Pathogenesis of macular edema with branch retinal vein occlusion and intraocular levels of vascular endothelial growth factor and interleukin-6. Am J Ophthalmol. 2005;140(2):256-61. https://doi.org/10.1016/j.ajo.2005.03.003 PMid:16086947 DOI: https://doi.org/10.1016/j.ajo.2005.03.003
Yoshimura T, Sonoda KH, Sugahara M, Mochizuki Y, Enaida H, Oshima Y, et al. Comprehensive analysis of inflammatory immune mediators in vitreoretinal diseases. PLoS One. 2009;4(12):e8158. https://doi.org/10.1371/journal.pone.0008158 PMid:19997642 DOI: https://doi.org/10.1371/journal.pone.0008158
Terpos E, Ntanasis-Stathopoulos I, Elalamy I, Kastritis E, Sergentanis TN, Politou M, et al. Hematological findings and complications of COVID-19. Am J Hematol. 2020;95(7):834-47. https://doi.org/10.1002/ajh.25829 PMid:32282949 DOI: https://doi.org/10.1002/ajh.25829
Ferrara M, Romano V, Steel DH, Gupta R, Iovino C, van Dijk EH, et al. Reshaping ophthalmology training after COVID-19 pandemic. Eye (Lond). 2020;34(11):2089-97. https://doi.org/10.1038/s41433-020-1061-3 PMid:32612174 DOI: https://doi.org/10.1038/s41433-020-1061-3
Klok FA, Kruip M, van der Meer NJ, Arbous MS, Gommers D, Kant KM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145-7. https://doi.org/10.1016/j.thromres.2020.04.013 PMid:32291094 DOI: https://doi.org/10.1016/j.thromres.2020.04.013
Bonzano C, Borroni D, Lancia A, Bonzano E. Doxycycline: From ocular rosacea to COVID-19 anosmia. New insight into the coronavirus outbreak. Front Med. 2020;7:200. https://doi.org/10.3389/fmed.2020.00200 PMid:32574320 DOI: https://doi.org/10.3389/fmed.2020.00200
Marinho PM, Marcos AA, Romano AC, Nascimento H, Belfort R Jr. Retinal findings in patients with COVID-19. Lancet. 2020;395(10237):1610. https://doi.org/10.1016/S0140-6736(20)31014-X PMid:32405105 DOI: https://doi.org/10.1016/S0140-6736(20)31014-X
Venkatesh P. Seeking clarity on retinal findings in patients with COVID-19. Lancet. 2020;396(10254):e36. DOI: https://doi.org/10.1016/S0140-6736(20)31922-X
El-Sheshtawy HS, Sofy MR, Ghareeb DA, Yacout GA, Eldemellawy MA, Ibrahim BM. Eco-friendly polyurethane acrylate (PUA)/natural filler-based composite as an antifouling product for marine coating. Appl Microbiol Biotechnol. 2021;105(18):7023-34. https://doi.org/10.1007/s00253-021-11501-w DOI: https://doi.org/10.1007/s00253-021-11501-w
Xia J, Tong J, Liu M, Shen Y, Guo D. Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS-CoV-2 infection. J Med Virol. 2020;92(6):589-94. https://doi.org/10.1002/jmv.25725 PMid:32100876 DOI: https://doi.org/10.1002/jmv.25725
Agha MS, Abbas MA, Sofy MR, Haroun SA, Mowafy AM. Dual inoculation of Bradyrhizobium and Enterobacter alleviates the adverse effect of salinity on Glycine max seedling. Not Bot Horti Agrobot Cluj Napoca. 2021;49(3):12461. https://doi.org/10.15835/nbha49312461 DOI: https://doi.org/10.15835/nbha49312461
Casagrande M, Fitzek A, Puschel K, Aleshcheva G, Schultheiss HP, Berneking L, et al. Detection of SARS-CoV-2 in human retinal biopsies of deceased COVID-19 patients. Ocul Immunol Inflamm. 2020;28(5):721-5. https://doi.org/10.1080/09273948.2020.1770301 PMid:32469258 DOI: https://doi.org/10.1080/09273948.2020.1770301
Senanayake PD, Bonilha VL, Peterson JW, Yamada Y, Karnik SS, Daneshgari F, et al. Retinal angiotensin II and angiotensin-(1-7) response to hyperglycemia and an intervention with captopril. J Renin Angiotensin Aldosterone Syst. 2018;19(3). https://doi.org/10.1177/1470320318789323 PMid:30126320 DOI: https://doi.org/10.1177/1470320318789323
Sofy MR, Mancy AG, Alnaggar AE, Refaey EE, Mohamed HI, Elnosary ME, et al. A polishing the harmful effects of Broad bean mottle virus infecting broad bean plants by enhancing the immunity using different potassium concentrations. Not Bot Horti Agrobot Cluj Napoca. 2022;50(1):12654. https://doi.org/10.15835/nbha50112654 DOI: https://doi.org/10.15835/nbha50112654
Panigada M, Bottino N, Tagliabue P, Grasselli G, Novembrino C, Chantarangkul V, et al. Hypercoagulability of COVID-19 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis. J Thromb Haemost. 2020;18(7):1738-42. https://doi.org/10.1111/jth.14850 PMid:32302438 DOI: https://doi.org/10.1111/jth.14850
Rotzinger DC, Beigelman-Aubry C, von Garnier C, Qanadli SD. Pulmonary embolism in patients with COVID-19: Time to change the paradigm of computed tomography. Thromb Res. 2020;190:58-9. https://doi.org/10.1016/j.thromres.2020.04.011 PMid:32302782 DOI: https://doi.org/10.1016/j.thromres.2020.04.011
Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844-7. https://doi.org/10.1111/jth.14768 PMid:32073213 DOI: https://doi.org/10.1111/jth.14768
Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708-20. https://doi.org/10.1056/NEJMoa2002032 DOI: https://doi.org/10.1056/NEJMoa2002032
Sheth JU, Narayanan R, Goyal J, Goyal V. Retinal vein occlusion in COVID-19: A novel entity. Indian J Ophthalmol. 2020;68(10):2291-3. https://doi.org/10.4103/ijo.IJO_2380_20 PMid:32971697 DOI: https://doi.org/10.4103/ijo.IJO_2380_20
Walinjkar JA. Combined retinal vascular occlusion in a recovered case of COVID-19. Apollo Med. 2021;18(3):205-7. https://doi.org/10.4103/am.am_38_21 DOI: https://doi.org/10.4103/am.am_38_21
Duff SM, Wilde M, Khurshid G. Branch retinal vein occlusion in a COVID-19 positive patient. Cureus. 2021;13(2):e13586. https://doi.org/10.7759/cureus.13586 PMid:33815989 DOI: https://doi.org/10.7759/cureus.13586
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Sanaa Ahmed Mohamed, Marwa Byomy, Eman El Sayed Mohamed El Sayed, Mostafa Osman Hussein, Marwa M. Abdulrehim , Ahmed Gomaa Elmahdy (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0