Autophagy and Oxidative Balance Mediate the Effect of Carvedilol and Glibenclamide in a Rat Model of Renal Ischemia-Reperfusion Injury

Authors

  • Amany Elfakhrany Department of Clinical Pharmacology, Faculty of Medicine, Menoufia University, Shibin Al Kawm, Egypt
  • Reda Abo Elfath Ahmed Abo-Elsoud Department of Clinical Physiology, Faculty of Medicine, Menoufia University, Shibin Al Kawm, Egypt
  • Heba Mohamed Abd El Kareem Department of Medical Biochemistry, Faculty of Medicine, Benha University, Banha, Egypt; Department of Medical Biochemistry, Faculty of Medicine, Mutah University, Mu’tah, Jordan
  • Rehab Monir Samaka Department of Pathology, Faculty of Medicine, Menoufia University, Shibin Al Kawm, Egypt
  • Safa Reyad Elfiky Department of Clinical Pharmacology, Faculty of Medicine, Menoufia University, Shibin Al Kawm, Egypt

DOI:

https://doi.org/10.3889/oamjms.2022.10125

Keywords:

Kidney, Ischemia-reperfusion injury, Autophagy, Carvedilol, Glibenclamide

Abstract

BACKGROUND: Reactive oxygen species and cytokines are the main players in the development of renal ischemia-reperfusion (I/R) injury.

AIM: The current study aimed to evaluate the effects of carvedilol and/or glibenclamide and the interaction between autophagy and oxidative stress.

METHODS: 50 male rats were divided into five groups: Control, IR injury (IRI), carvedilol pretreated, glibenclamide pretreated, and combined carvedilol and glibenclamide pretreated. Measurements of renal blood flow (RBF), creatinine clearance, serum blood urea nitrogen (BUN), histopathological, and immunohistochemical evaluation of autophagy marker Becl-1 in the rat kidney were performed. Beclin-1and light chain 3 (LC3) Mrna expression was detected by real time polymerase chain reaction.

RESULTS: IRI was associated with significant increases in BUN, tumor necrosis factor-alpha, nuclear factor κB, and histo (H) score value of Becl-1. However, there was a significant decrease in RBF, creatinine clearance, and glutathione peroxidase compared to the control group. There was significant increase in Beclin-1 and LC3 mRNA gene expression in carvedilol, glibenclamide, and combined treatment groups as compared to IRI and control groups. Combination of carvedilol and glibenclamide significantly restored IRI changes when compared with the other pretreated groups.

CONCLUSION: This study suggests that carvedilol and glibenclamide are promising reno-protective drugs to reduce renal injury induced by I/R through their antioxidant and autophagy stimulation.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Eltzschig HK, Eckle T. Ischemia and reperfusion-from mechanism to translation. Nat Med. 2011;17(11):1391-401. https://doi.org/10.1038/nm.2507 PMid:22064429 DOI: https://doi.org/10.1038/nm.2507

Avery SV. Molecular targets of oxidative stress. Biochem J. 2011;434(2):201-10. https://doi.org/10.1042/BJ20101695 PMid:21309749 DOI: https://doi.org/10.1042/BJ20101695

Abdelhamid MA, Moustafa A, Sekinah M, Abbas AT, Rashed NE, Hussein HS. Carvedilol and nebivolol protect the kidney against renal ischemia in wistar rats. Zagazig Univ Med J. 2019;25(3):335-43. https://doi.org/10.21608/zumj.2019.30932 DOI: https://doi.org/10.21608/zumj.2019.30932

Zhang G, Lin X, Zhang S, Xiu H, Pan C, Cui W. A protective role of glibenclamide in inflammation-associated injury. Mediators Inflamm. 2017;2017:3578702. https://doi.org/10.1155/2017/3578702 PMid:28740332 DOI: https://doi.org/10.1155/2017/3578702

Menon MB, Dhamija S. Beclin 1 Phosphorylation at the center of autophagy regulation. Front Cell Dev Biol. 2018;6:137-39. https://doi.org/10.3389/fcell.2018.00137 PMid:30370269 DOI: https://doi.org/10.3389/fcell.2018.00137

Albus U. Guide for the care and use of laboratory animals (8th edition). Lab Anim. 2012;46(3):267-68. https://doi.org/10.1258/la.2012.150312 DOI: https://doi.org/10.1258/la.2012.150312

Küçük M, Çakıcı ÖU, Gönül İI, Kavutçu M, Arınsoy ST. Comparison of the preventive effects of carvedilol and nebivolol on kidney ischemia reperfusion injury. Turkish J Nephrol. 2021;30(1):9-16. https://doi.org/10.5152/turkjnephrol.2020.4015 DOI: https://doi.org/10.5152/turkjnephrol.2020.4015

Xie Y, Xiao J, Fu C, Zhang Z, Ye Z, Zhang X. Ischemic preconditioning promotes autophagy and alleviates renal ischemia/reperfusion injury. BioMed Res Int. 2018;2018:8353987. https://doi.org/10.1155/2018/8353987 PMid:29607326 DOI: https://doi.org/10.1155/2018/8353987

Haywood JR, Shaffer RA, Fastenow C, Fink GD, Brody MJ. Regional blood flow measurement with pulsed Doppler flowmeter in conscious rat. Am J Physiol. 1981;241(2):273-78. https://doi.org/10.1152/ajpheart.1981.241.2.H273 PMid:6455924 DOI: https://doi.org/10.1152/ajpheart.1981.241.2.H273

Schlatzer D, Maahs DM, Chance MR, Dazard JE, Li X, Hazlett F. Novel urinary protein biomarkers predicting the development of microalbuminuria and renal function decline in Type 1 diabetes. Diabetes Care. 2012;35(3):549-55. https://doi.org/10.2337/dc11-1491 PMid:22238279 DOI: https://doi.org/10.2337/dc11-1491

Hewitt SM, Baskin DG, Frevert CW, Stahl WL, Rosa-Molinar E. Controls for immunohistochemistry: the Histochemical Society’s standards of practice for validation of immunohistochemical assays. J Histochem Cytochem. 2014;62(10):693-97. https://doi.org/10.1369/0022155414545224 PMid:25023613 DOI: https://doi.org/10.1369/0022155414545224

Oba J, Nakahara T, Hayashida S, Kido M, Xie L, Takahara M. Expression of CD10 predicts tumor progression and unfavorable prognosis in malignant melanoma. J Am Acad Dermatol. 2011;65(6):1152-60. https://doi.org/10.1016/j.jaad.2010.10.019 PMid:21700362 DOI: https://doi.org/10.1016/j.jaad.2010.10.019

Pechman KR, De Miguel C, Lund H, Leonard EC, Basile DP, Mattson DL. Recovery from renal ischemia-reperfusion injury is associated with altered renal hemodynamics, blunted pressure natriuresis, and sodium-sensitive hypertension. Am J Physiol Regul Integr Comp Physiol. 2009;297(5):1358-63. https://doi.org/10.1152/ajpregu.91022.2008 PMid:19710386 DOI: https://doi.org/10.1152/ajpregu.91022.2008

Gonullu E, Ozkardesler S, Kume T, Duru LS, Akan M, Guneli ME. Comparison of the effects of dexmedetomidine administered at two different times on renal ischemia/reperfusion injury in rats. Braz J Anesthesiol. 2014;64(3):152-58. https://doi.org/10.1016/j.bjane.2013.06.002 PMid:24907872 DOI: https://doi.org/10.1016/j.bjane.2013.06.002

Akgüllü Ç, Hekim T, Eryılmaz U, Boyacıoğlu M, Güngör H, Meteoğlu İ. The usefulness of carvedilol and nebivolol in preventing contrast nephropathy in rats. Ren Fail. 2015;37(3):511-17. https://doi.org/10.3109/0886022X.2015.1006087 PMid:25608451 DOI: https://doi.org/10.3109/0886022X.2015.1006087

Diego LA, Marques CD, Vianna PT, Viero RM, Braz JR, Castiglia YM. Glibenclamide effects on renal function and histology after acute hemorrhage in rats under sevoflurane anesthesia. Ren Fail. 2007;29(8):1039-45. https://doi.org/10.1080/08860220701641835 PMid:18067053 DOI: https://doi.org/10.1080/08860220701641835

Safari T, Shahraki MR, Miri S, Bakhshani NM, Niazi AA, Komeili GR. The effect of angiotensin 1-7 and losartan on renal ischemic/reperfusion injury in male rats. Res Pharm Sci. 2019;5:441-7. https://doi.org/10.4103/1735-5362.268205 PMid:31798661 DOI: https://doi.org/10.4103/1735-5362.268205

Zoroddu MA, Medici S, Peana M. Metal-chelating properties of carvedilol: An antihypertensive drug with antioxidant activity. J Coord Chem. 2009;62(23):3828-36. https://doi.org/10.1080/00958970903267280 DOI: https://doi.org/10.1080/00958970903267280

Shimizu S, Oikawa R, Tsounapi P, Inoue K, Shimizu T, Tanaka K. Blocking of the ATP sensitive potassium channel ameliorates the ischaemia-reperfusion injury in the rat testis. Andrology. 2014;2(3):458-65. https://doi.org/10.1111/j.2047-2927.2014.00199.x PMid:24604784 DOI: https://doi.org/10.1111/j.2047-2927.2014.00199.x

Gao D, Jing S, Zhang Q, Wu G. Pterostilbene protects against acute renal ischemia reperfusion injury and inhibits oxidative stress, inducible nitric oxide synthase expression and inflammation in rats via the Toll-like receptor 4/nuclear factor-κB signaling pathway. Exp Ther Med. 2018;15(1):1029-35. https://doi.org/10.3892/etm.2017.5479 PMid:29403551 DOI: https://doi.org/10.3892/etm.2017.5479

Harhaj EW, Giam CZ. NF-κB signaling mechanisms in HTLV-1-induced adult T-cell leukemia/lymphoma. FEBS J. 2018;285(18):3324-36.https://doi.org/10.1111/febs.14492 PMid:29722927 DOI: https://doi.org/10.1111/febs.14492

Bhaskar S, Sudhakaran PR, Helen A. Quercetin attenuates atherosclerotic inflammation and adhesion molecule expression by modulating TLR-NF-κB signaling pathway. Cell Immunol. 2016;310:131-40. https://doi.org/10.1016/j.cellimm.2016.08.011 PMid:27585526 DOI: https://doi.org/10.1016/j.cellimm.2016.08.011

Zhang YL, Zhang J, Cui LY, Yang S. Autophagy activation attenuates renal ischemia-reperfusion injury in rats. Exp Biol Med (Maywood). 2015;240(12):1590-98. https://doi.org/10.1177/1535370215581306 PMid:25898836 DOI: https://doi.org/10.1177/1535370215581306

Meng D, Li Z. Wang G, Ling L, Wu Y, Zhang C. Carvedilol attenuates liver fibrosis by suppressing autophagy and promoting apoptosis in hepatic stellate cells. Biomed Pharmacother. 2018;108:1617-27. https://doi.org/10.1016/j.biopha.2018.10.005 PMid:30372864 DOI: https://doi.org/10.1016/j.biopha.2018.10.005

Shi Q, Pei F, Silverman GA, Pak SC, Perlmutter DH, Liu B. Mechanisms of action of autophagy modulators dissected by quantitative systems pharmacology analysis. Int J Mol Sci. 2020;21(8):2855-59. https://doi.org/10.3390/ijms21082855 PMid:32325894 DOI: https://doi.org/10.3390/ijms21082855

Liu Y, Shi B, Li Y, Zhang H. Protective effect of Luteolin against renal ischemia/reperfusion injury via modulation of pro-inflammatory cytokines, oxidative stress and apoptosis for possible benefit in kidney transplant. Med Sci Monit. 2017;23:5720-7. https://doi.org/10.12659/MSM.903253 PMid:29196613 DOI: https://doi.org/10.12659/MSM.903253

Akindele AJ, Oludadepo GO, Amagon KI, Singh D, Osiagwu DD. Protective effect of carvedilol alone and coadministered with diltiazem and prednisolone on doxorubicin and 5-fluorouracil-induced hepatotoxicity and nephrotoxicity in rats. Pharmacol Res Perspect. 2018;6(1):178-85. https://doi.org/10.1002/prp2.381 PMid:29417758 DOI: https://doi.org/10.1002/prp2.381

Benadiba M, Maor Y. Importance of ABC transporters in drug development. Curr Pharm Des. 2016;22(38):5817-29. https://doi.org/10.2174/1381612822666160810120359 PMid:27514710 DOI: https://doi.org/10.2174/1381612822666160810120359

Zhang JL, Lu JK, Chen D, Cai Q, Li TX, Wu LS. Myocardial autophagy variation during acute myocardial infarction in rats: The effects of carvedilol. Chin Med J (Engl). 2009;122(19):2372-81. PMid:20079142

Su H, Liu X, Su L, Zhang L, Liu X. Autophagy induced by glibenclamide serves as a defense against apoptosis in INS-1 rat insulinoma cells. J Diabetes Mellitus. 2013;3(3):122-30. https://doi.org/10.4236/jdm.2013.33018 DOI: https://doi.org/10.4236/jdm.2013.33018

Ichikawa A, Nakahara T, Kurauchi Y, Mori A, Sakamoto K, Ishii K. Rapamycin prevents N-methyl-D-aspartate-induced retinal damage through an ERK-dependent mechanism in rats. J Neurosci Res. 2014;92(6):692-702. https://doi.org/10.1002/jnr.23358 PMid:24510654 DOI: https://doi.org/10.1002/jnr.23358

Downloads

Published

2022-02-05

How to Cite

1.
Elfakhrany A, Abo-Elsoud RAEA, Abd El Kareem HM, Samaka RM, Elfiky SR. Autophagy and Oxidative Balance Mediate the Effect of Carvedilol and Glibenclamide in a Rat Model of Renal Ischemia-Reperfusion Injury. Open Access Maced J Med Sci [Internet]. 2022 Feb. 5 [cited 2024 Nov. 21];10(A):1402-10. Available from: https://oamjms.eu/index.php/mjms/article/view/10125