Bond Strength of New Fiber Post-system (Rebilda GT)


  • Emad Farhan Alkhalidi Department of Conservative Dentistry, College of Dentistry, University of Mosul, Mosul, Iraq
  • Zena A. Ahmad Department of Conservative Dentistry, College of Dentistry, University of Mosul, Mosul, Iraq



Bond strength, Rebilda GT post, Rebilda fiber post


AIM: The aim of this in vitro study is to determine the push-out bond strength of bundle glass fiber post (Rebilda GT) and tapered glass fiber post (Rebilda fiber post).

MATERIALS AND METHODS: Twenty freshly extracted human single rooted premolar teeth were used, all teeth were endodontically treated, after 24 h from obturation the gutta-percha removed leaving 5 mm apically to ensure clinically acceptable apical seal. Finally, all canals were flushed with 2 ml NaOcl 5.25% and 2 ml distilled water, respectively, then the canals were dried using paper points. The roots were divided randomly into two sets with ten roots for each group according to post-type. Group A: Rebilda fiber posts were used. Group B: Rebilda GT bundle fiber posts were used. The posts were inserted into the canals according to the manufacturer instructions. All specimens were stored for 72 h in an incubator. Slices of 2 mm thickness were cut from the roots at different levels (cervical, middle, and apical thirds), bond strength was determined using universal testing machine at a speed of 0.5 mm/min.

RESULTS: One-way analysis of variance and Tukey HSD tests showed that the (bundle fiber) Rebilda GT fiber post had bond strength higher than that of the Rebilda fiber post in all regions. (p < 0.05), also the cervical area showed higher bond strength in both groups than the middle and the apical areas, respectively.

CONCLUSIONS: The bundle glass fiber post (Rebilda GT) showed bond strength higher than the taper glass fiber (Rebilda fiber) post in all regions (apical, middle, and cervical). The cervical region showed higher bond strength than the middle and the apical thirds.


Download data is not yet available.


Metrics Loading ...

Plum Analytics Artifact Widget Block


Desai P, Dutta K, Das UK. Comparison of push out bond strength of customizable fiber post using two self adhesive resin cement-an in-vitro study. Adv Dent Oral Health. 2016;2(1):6. DOI:

Asmussen E, Peutzfeldt A, Heitmann T. Stiffness, elastic limit, and strength of newer types of endodontic posts. J Dent. 1999;27(4):275-8. PMid:10193104 DOI:

Torbjörner A, Karlsson S, Odman PA. Survival rate and failure characteristics for two post designs. J Prosthet Dent. 1995;73(5):439-44. PMid:7658393 DOI:

Sirimai S, Riis DN, Morgano SM. An in vitro study of the fracture resistance and the incidence of vertical root fracture of pulpless teeth restored with six post-and-coresystems. J Prosthet Dent. 1999;81(3):262-9. PMid:10050112 DOI:

Amin RA, Mandour MH, El-Ghany OS. Fracture strength and nanoleakage of weakened roots reconstructed using relined glass fiber-reinforced dowels combined with a novel prefabricated core system. J Prosthodont. 2014;23(6):484-94. PMid:24495157 DOI:

Park JS, Lee JS, Park JW, Chung WG, Choi EH, Lee Y. Comparison of push-out bond strength of fiber-reinforced composite resin posts according to cement thickness. J Prosthet Dent. 2017;118(3):372-8. PMid:28222875 DOI:

Alnaqbi IO, Elbishari H, Elsubeihi ES. Effect of fiber post-resin matrix composition on bond strength of post-cement interface. Int J Dent. 2018;2018:4751627. PMid:30631361 DOI:

Machado J, Almeida P, Fernandes J, Marques A, Vaz M. Currently used systems of dental posts for endodontic treatment. Proc Struct Integr. 2017;5:27-33. DOI:

Alkhalidi EF. Fracture resistance of new fiber post system (rebilda GT). Indian J Forensic Med Toxicol. 2020;14(3):2632-8. DOI:

Nagas E, Nagas I, Egilmez F, Ergun G, Pekka K, Lassila LV. Bond strength of fiber posts and short fiber-reinforced composite to root canal dentin following cyclic loading. J Adhes Sci Technol. 2016;31(13):1397-407. DOI:

Mobilio N, Borelli B, Sorrentino R, Catapano S. Effect of fiber post length and bone level on the fracture resistance of endodontically treated teeth. Dent Mat J. 2013;32(5):816-21. PMid:24088839 DOI:

D’Arcangelo C, De Angelis F, Vadini M, D’Amario M, Caputi S. Fracture resistance and deflection of pulpless anterior teeth restored with composite or porcelain veneers. J Endod. 2010;36(1):153-6. PMid:20003956 DOI:

Goracci C, Sadek FT, Fabianelli A, Tay FR, Ferrari M. Evaluation of the adhesion of fiber posts to intraradicular dentin. Oper Dent. 2005;30(5):627-35. PMid:16268398

Marcos RM, Kinder GR, Alfredo E, Quaranta T, Correr GM, Cunha LF, et al. Influence of the resin cement thickness on the push-out bond strength of glass fiber posts. Braz Dent J. 2016;27(5):592-8. PMid:27982240 DOI:

Latempa AM, Almeida SA, Nunes NF, Da Silva EM, Guimarães JG, Poskus LT. Techniques for restoring enlarged canals: An evaluation of fracture resistance and bond strength. Int Endod J. 2015;48(1):28-36. PMid:24697574 DOI:

Egilmez F, Ergun G, Cekic-Nagas I, Vallittu PK, Ozcan M, Lassila LV. Effect of surface modification on the bond strength between zirconia and resin cement. J Prosthodont. 2013;22(7):529-36. PMid:23551581 DOI:

Kremeier K, Fasen L, Klaiber B, Hofmann N. Influence of endodontic post type (glass fiber, quartz fiber or gold) and luting material on push-out bond strength to dentin in vitro. Dent Mater. 2008;24(5):660-6. PMid:17719082 DOI:

Bouillaguet S, Bertossa B, Krejci I, Wataha JC, Tay FR, Pashley DH. Alternative adhesive strategies to optimize bonding to radicular dentin. J Endod. 2007;33(10):1227-30. PMid:17889695 DOI:

Lopes GC, Ballarin A, Baratieri LN. Bond strength and fracture analysis between resin cements and root canal dentin. Aust Endod J. 2012;38(1):14-20. PMid:22432821 DOI:




How to Cite

Alkhalidi EF, Ahmad ZA. Bond Strength of New Fiber Post-system (Rebilda GT). Open Access Maced J Med Sci [Internet]. 2022 Jul. 15 [cited 2024 Apr. 23];10(D):347-51. Available from:



Dental Pathology and Endodontics