Morning Exercise is More Effective in Ameliorating Oxidative Stress in Patients with Type 2 Diabetes Mellitus
DOI:
https://doi.org/10.3889/oamjms.2022.10229Keywords:
Exercise, Glutathione peroxidase-1, Malondialdehyde, T2DMAbstract
Introduction: Exercise has been believed to be an important step in treating and preventing Type 2 Diabetes Mellitus complications. The circadian rhythm influences systems in the body, including antioxidants in the human body. By synchronizing exercise with exercise time, it will maximize the benefits of exercise for health.
Aim: Examining the effect of morning and afternoon exercise on increasing antioxidants and improving oxidative stress in patients with T2DM.
Methods: Twenty-two T2DM patients were randomly assigned to morning and afternoon exercise groups. The exercise treatment in this study was in the form of diabetes Persadia gymnastic, for 10 weeks. All participants were taken venous blood before exercise and after the tenth week. The data examined consisted of GPx-1 (Glutathione Peroxidase-1) and MDA (malodialdehyde). The pre and post data were statistically processed using a comparative test.
Results: After 10 weeks of exercise, GPx-1 levels increased significantly in both groups (p<0.05). The increase in this enzyme was considerably greater (p<0.05) in the morning group than in the afternoon group (130.37 ± 2.4 h/ml VS 72.38 ± 3.93 h/ml). MDA levels decreased significantly in morning and afternoon groups (p<0.05). The decrease in MDA was significantly greater (p<0.05) in the morning than in the afternoon exercise group (8.22 ± 0.36 nmol/ml VS 5.2 ± 0.86 nmol/ml).
Conclusions: Exercise in the morning was more effective in improving oxidative stress by increasing glutathione peroxidase-1 enzyme and reducing malondialdehyde in patients with Type 2 Diabetes Mellitus.
Keywords: Exercise; Glutathione Peroxidase; Malondialdehyde, T2DM.
Downloads
Metrics
Plum Analytics Artifact Widget Block
References
Decroli E. In: Kam A, Effendi YP, Decroli GP, Rahmadi A, editors. Diabetes Melitus Tipe 2. 1sted. Padang: Bagian IPD FK Universitas Andalas Padang; 2019.
Hwang M, Kim S. Type 2 diabetes : Endothelial dysfunction and exercise. J Exerc Nutr Biochem. 2014;18(3):239-47. https://doi.org/10.5717/jenb.2014.18.3.239 PMid:25566460 DOI: https://doi.org/10.5717/jenb.2014.18.3.239
Akhigbe R, Ajayi A. The impact of reactive oxygen species in the development of cardiometabolic disorders: A review. Lipids Health Dis. 2021;20(1):23. https://doi.org/10.1186/s12944-021-01435-7 PMid:33639960 DOI: https://doi.org/10.1186/s12944-021-01435-7
Kayama Y, Raaz U, Jagger A, Adam M, Schellinger IN, Sakamoto M, et al. Diabetic cardiovascular disease induced by oxidative stress. Int J Mol Sci. 2015;16(10):25234-63. https://doi.org/10.3390/ijms161025234 PMid:26512646 DOI: https://doi.org/10.3390/ijms161025234
Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med. 2018;54(4):287-93. https://doi.org/10.1016/j.ajme.2017.09.001 DOI: https://doi.org/10.1016/j.ajme.2017.09.001
Arslan M, Ipekci SH, Kebapcilar L, Dede ND, Kurban S, Erbay E, et al. Effect of aerobic exercise training on MDA and TNF-α levels in patients with Type 2 diabetes mellitus. Int Sch Res Notices. 2014;2014(4):820387. https://doi.org/10.1155/2014/820387 PMid:27437465 DOI: https://doi.org/10.1155/2014/820387
Teixeira-Lemos E, Nunes S, Teixeira F, Reis F. Regular physical exercise training assists in preventing Type 2 diabetes development: Focus on its antioxidant and anti-inflammatory properties. Cardiovasc Diabetol. 2011;10(1):12. https://doi.org/10.1186/1475-2840-10-12 PMid:21276212 DOI: https://doi.org/10.1186/1475-2840-10-12
Dipla K. The FITT principle in individuals with Type 2 diabetes: From cellular adaptations to individualized exercise prescription. J Adv Med Med Res. 2017;22(11):1-18. https://doi.org/10.9734/JAMMR/2017/34927 DOI: https://doi.org/10.9734/JAMMR/2017/34927
Möbius-Winkler S, Linke A, Adams V, Schuler G, Erbs S. How to improve endothelial repair mechanisms : The lifestyle approach. Expert Rev Cardiovasc Ther. 2010;8(4):573-80. https://doi.org/10.1586/erc.10.7 PMid:20397830 DOI: https://doi.org/10.1586/erc.10.7
Di Francescomarino S, Sciartilli A, Di Valerio V, Di Baldassarre A, Gallina S. The effect of physical exercise on endothelial function. Sport Med. 2009;39(10):797-812. https://doi.org/10.2165/11317750-000000000-00000 PMid:19757859 DOI: https://doi.org/10.2165/11317750-000000000-00000
Ghisi GL, Durieux A, Pinho R, Benetti M. Physical exercise and endothelial dysfunction. Arq Bras Cardiol. 2010;95(5):e130-7. https://doi.org/10.1590/s0066-782x2010001500025 PMid:21225112 DOI: https://doi.org/10.1590/S0066-782X2010001500025
Rusip G, Suhartini SM. Effects of moderate intensity exercise on glutathione peroxidase activity and vo2 max in elderly women. Open Access Maced J Med Sci. 2020;8(A):230-3. https://doi.org/10.3889/oamjms.2020.3837 DOI: https://doi.org/10.3889/oamjms.2020.3837
Hammouda O, Chahed H, Chtourou H, Ferchichi S, Miled A, Souissi N. Morning-to-evening difference of biomarkers of muscle injury and antioxidant status in young trained soccer players. Biol Rhythm Res. 2012;43(4):431-8. https://doi.org/10.1080/09291016.2011.599638 DOI: https://doi.org/10.1080/09291016.2011.599638
Ammar A, Chtourou H, Souissi N. Effect of time-of-day on biochemical markers in response to physical exercise. J Strength Cond Res. 2017;31(1):272-82. https://doi.org/10.1519/JSC.0000000000001481 PMid:27191691 DOI: https://doi.org/10.1519/JSC.0000000000001481
Atalay M, Laaksonen DE. Diabetes, oxidative stress and physical exercise. J Sport Sci Med. 2002;1(1):1-14. PMid:24672266
Kholid A. Prosedur Senam Diabetes Melitus; 2007. Available from: https://www.academia.edu/35646071/PROSEDUR_SENAM_DIABETES_MELLITUS.
Karimi SA, Salehi I, Taheri M, Faraji N, Komaki A. Effects of regular exercise on diabetes-induced memory deficits and biochemical parameters in male rats. J Mol Neurosci. 2021;71(5):1023-30. https://doi.org/10.1007/s12031-020-01724-3 PMid:33000398 DOI: https://doi.org/10.1007/s12031-020-01724-3
Fatouros IG, Jamurtas AZ, Villiotou V, Pouliopoulou S, Fotinakis P, Taxildaris K, et al. Oxidative stress responses in older men during endurance training and detraining. Med Sci Sports Exerc. 2004;36(12):2065-72. https://doi.org/10.1249/01.mss.0000147632.17450.ff PMid:15570141 DOI: https://doi.org/10.1249/01.MSS.0000147632.17450.FF
Vargas-Mendoza N, Morales-González Á, Madrigal-Santillán EO, Madrigal-Bujaidar E, Álvarez-González I, García-Melo LF, et al. Antioxidant and adaptative response mediated by Nrf2 during physical exercise. Antioxidants (Basel). 2019;8(6):196. https://doi.org/10.3390/antiox8060196 PMid:31242588 DOI: https://doi.org/10.3390/antiox8060196
Lew JK, Pearson JT, Schwenke DO, Katare R. Exercise mediated protection of diabetic heart through modulation of microRNA mediated molecular pathways. Cardiovasc Diabetol. 2017;16(1):10. https://doi.org/10.1186/s12933-016-0484-4 PMid:28086863 DOI: https://doi.org/10.1186/s12933-016-0484-4
Marrin K, Drust B, Gregson W, Morris CJ, Chester N, Atkinson G. Diurnal variation in the salivary melatonin responses to exercise: Relation to exercise-mediated tachycardia. Eur J Appl Physiol. 2011;111(11):2707-14. https://doi.org/10.1007/s00421-011-1890-7 PMid:21399961 DOI: https://doi.org/10.1007/s00421-011-1890-7
Carlson LA, Koch AJ, Pobocik KM, Lawrence MA, Brazeau DA. Influence of exercise time of day on salivary melatonin responses. Int J Sports Physiol Perform. 2018;14(3):351-3. https://doi.org/10.1123/ijspp.2018-0073 DOI: https://doi.org/10.1123/ijspp.2018-0073
Tarocco A, Caroccia N, Morciano G, Wieckowski MR, Ancora G, Garani G, et al. Melatonin as a master regulator of cell death and inflammation : Molecular mechanisms and clinical implications for newborn care. Cell Death Dis. 2019;10(4):317. https://doi.org/10.1038/s41419-019-1556-7 PMid:30962427 DOI: https://doi.org/10.1038/s41419-019-1556-7
Benot S, Goberna R, Reiter RJ, Garcia-Mauriño S, Osuna C, Guerrero JM. Physiological levels of melatonin contribute to the antioxidant capacity of human serum. J Pineal Res. 1999;27(1):59-64. https://doi.org/10.1111/j.1600-079x.1999.tb00597.x PMid:10451025 DOI: https://doi.org/10.1111/j.1600-079X.1999.tb00597.x
Tan DX, Manchester LC, Esteban-Zubero E, Zhou Z, Reiter RJ. Melatonin as a potent and inducible endogenous antioxidant: Synthesis and metabolism. Molecules. 2015;20(10):18886-906. https://doi.org/10.3390/molecules201018886 PMid:26501252 DOI: https://doi.org/10.3390/molecules201018886
McMullan CJ, Schernhammer ES, Rimm EB, Hu FB, Forman JP. Melatonin secretion and the incidence of type 2 diabetes. JAMA. 2013;309(13):1388-96. https://doi.org/10.1001/jama.2013.2710 PMid:23549584 DOI: https://doi.org/10.1001/jama.2013.2710
Nimitphong H, Holick MF. Prevalence of Vitamin D deficiency in Asia Vitamin D status and sun exposure in Southeast Asia. Dermatoendocrinol. 2013;5(1):34-7. https://doi.org/10.4161/derm.24054 PMid:24494040 DOI: https://doi.org/10.4161/derm.24054
Elnasr MS, Ibrahim IM, Alkady MM. Role of Vitamin D on glycemic control and oxidative stress in Type 2 diabetes mellitus. J Res Med Sci. 2017;22:22. https://doi.org/10.4103/1735-1995.200278 PMid:28413419 DOI: https://doi.org/10.4103/1735-1995.200278
Kim DH, Meza CA, Clarke H, Kim JS, Hickner RC. Vitamin D and endothelial function. Nutrients. 2020;12(2):575. https://doi.org/10.3390/nu12020575 DOI: https://doi.org/10.3390/nu12020575
Gordon LA, Morrison EY, McGrowder DA, Young R, Fraser YT, Zamora EM, et al. Effect of exercise therapy on lipid profile and oxidative stress indicators in patients with Type 2 diabetes. BMC Complement Altern Med. 2008;8:21. https://doi.org/10.1186/1472-6882-8-21 PMid:18477407 DOI: https://doi.org/10.1186/1472-6882-8-21
Anam SC, Sulistiawati S, Purwanto B. Acute response moderate intensity treadmill training on decrease malondialdehyde in obesity women. Str J Ilm Kesehat. 2020;9(2):358-67. https://doi.org/10.30994/sjik.v9i2.301 DOI: https://doi.org/10.30994/sjik.v9i2.301
Goto C, Higashi Y, Kimura M, Noma K, Hara K, Nakagawa K, et al. Effect of different intensities of exercise on endothelium-dependent vasodilation in humans role of endothelium-dependent nitric oxide and oxidative stress Circulation. 2003;108:530-5. https://doi.org/10.1161/01.CIR.0000080893.55729.28 PMid:12874192 DOI: https://doi.org/10.1161/01.CIR.0000080893.55729.28
Naderi R, Mohaddes G, Mohammadi M, Ghaznavi R, Ghyasi R, Vatankhah AM. Voluntary exercise protects heart from oxidative stress in diabetic rats. Adv Pharm Bull. 2015;5(2):231-6. https://doi.org/10.15171/apb.2015.032 PMid:26236662 DOI: https://doi.org/10.15171/apb.2015.032
Aloui K, Abedelmalek S, Chtourou H, Wong DP, Boussetta N, Souissi N. Effects of time-of-day on oxidative stress, cardiovascular parameters, biochemical markers, and hormonal response following level-1 Yo-Yo intermittent recovery test. Physiol Int. 2017;104(1):77-90. https://doi.org/10.1556/2060.104.2017.1.6 PMid:28361573 DOI: https://doi.org/10.1556/2060.104.2017.1.6
Kim H, Konishi M, Takahashi M, Tabata H, Endo N, Numao S, et al. Effects of acute endurance exercise performed in the morning and evening on inflammatory cytokine and metabolic hormone responses. PLoS One. 2015;10(9):e013767. https://doi.org/10.1371/journal.pone.0137567 PMid:26352938 DOI: https://doi.org/10.1371/journal.pone.0137567
Kuryłowicz A, Kózniewski K. Anti-inflammatory strategies targeting metaflammation in Type 2 diabetes. Molecules. 2020;25(9):2224. https://doi.org/10.3390/molecules25092224 PMid:32397353 DOI: https://doi.org/10.3390/molecules25092224
Downloads
Published
How to Cite
License
Copyright (c) 2022 Sinu Jusup, Muhsin Douwes, Bambang Purwanto, Dono Indarto, Hartono Hartono, Eti Poncorini Pamungkasari (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
http://creativecommons.org/licenses/by-nc/4.0